Какой самый тяжелый газ? – Энциклопедия Википедии?

Какой самый тяжелый газ? – Энциклопедия Википедии? Кислород

Взаимодействие  со  сложными  веществами

Некоторые  сложные вещества  также  взаимодействуют  с  кислородом  с  образованием  оксидов. Например, при горении пропана, который входит в состав природного газа, протекает следующая реакция:

При автогенной сварке и резке металлов горит ацетилен:

В  металлургии  в  обжиговых  печах  протекают  реакции  окисления обогащенных руд: 

Реакции взаимодействия простых и сложных веществ с кислородом называются реакциями окисления.

ДЕЛЛЕМ ВЫВОДЫ

  • 1.    Кислород — самый распространенный в природе элемент. Он встречается в виде двух аллотропных модификаций: кислород (О.,) и озон (О3).
  • 2.    С участием кислорода идут процессы медленного окисления, горения, гниения, брожения.
  • 3.    Явление образования нескольких простых веществ одним элементом называется аллотропией.
  • 4.    Кислород вступает в реакцию с металлами, неметаллами и сложными веществами.

Услуги по химии:

  1. Заказать химию
  2. Заказать контрольную работу по химии
  3. Помощь по химии

Лекции по химии:

  1. Основные понятия и законы химии
  2. Атомно-молекулярное учение
  3. Периодический закон Д. И. Менделеева
  4. Химическая связь
  5. Скорость химических реакций
  6. Растворы
  7. Окислительно-восстановительные реакции
  8. Дисперсные системы
  9. Атомно-молекулярная теория
  10. Строение атома в химии
  11. Простые вещества
  12. Химические соединения
  13. Электролитическая диссоциация
  14. Химия и электрический ток
  15. Чистые вещества и смеси
  16. Изменения состояния вещества
  17. Атомы. Молекулы. Вещества
  18. Воздух
  19. Химические реакции
  20. Закономерности химических реакций
  21. Периодическая таблица химических элементов
  22. Относительная атомная масса химических элементов
  23. Химические формулы
  24. Движение электронов в атомах
  25. Формулы веществ и уравнения химических реакций
  26. Химическая активность металлов 
  27. Количество вещества
  28. Стехиометрические расчёты
  29. Энергия в химических реакциях
  30. Вода 
  31. Необратимые реакции
  32. Кинетика
  33. Химическое равновесие
  34. Разработка новых веществ и материалов
  35. Зеленая химия
  36. Термохимия
  37. Правило фаз Гиббса
  38. Диаграммы растворимости
  39. Законы Рауля
  40. Растворы электролитов
  41. Гидролиз солей и нейтрализация
  42. Растворимость электролитов
  43. Электрохимические процессы
  44. Электрохимия
  45. Кинетика химических реакций
  46. Катализ
  47. Строение вещества в химии
  48. Строение твердого тела и жидкости
  49. Протекание химических реакций
  50. Комплексные соединения

Лекции по неорганической химии:

  1. Важнейшие классы неорганических соединений
  2. Водород и галогены
  3. Подгруппа кислорода
  4. Подгруппа азота
  5. Подгруппа углерода
  6. Общие свойства металлов
  7. Металлы главных подгрупп
  8. Металлы побочных подгрупп
  9. Свойства элементов первых трёх периодов периодической системы
  10. Классификация неорганических веществ
  11. Углерод
  12. Качественный анализ неорганических соединений
  13. Металлы и сплавы
  14. Металлы и неметаллы
  15. Производство металлов
  16. Переходные металлы
  17. Элементы 1 (1А), 2 IIA и 13 IIIA групп и соединения
  18. Элементы 17(VIIA), 16(VIA) 15(VA), 14(IVA) групп и их соединения
  19. Важнейшие S -элементы и их соединения
  20. Важнейшие d элементы и их соединения
  21. Важнейшие р-элементы и их соединения
  22. Производство неорганических соединений и сплавов
  23. Главная подгруппа шестой группы
  24. Главная подгруппа пятой группы
  25. Главная подгруппа четвертой группы
  26. Первая группа периодической системы
  27. Вторая группа периодической системы
  28. Третья группа периодической системы
  29. Побочные подгруппы четвертой, пятой, шестой и седьмой групп
  30. Восьмая группа периодической системы
  31. Водород
  32. Озон
  33. Водород
  34. Галогены
  35. Естественные семейства химических элементов и их свойства
  36. Химические элементы и соединения в организме человека
  37. Геологические химические соединения

Лекции по органической химии:

  1. Органическая химия
  2. Углеводороды
  3. Кислородсодержащие органические соединения
  4. Азотсодержащие органические соединения
  5. Теория А. М. Бутлерова
  6. Соединения ароматического ряда
  7. Циклические соединения
  8. Карбонильные соединения
  9. Амины и аминокислоты
  10. Химия живого вещества
  11. Синтетические полимеры
  12. Органический синтез
  13. Элементы 14(IVA) группы
  14. Азот и сера
  15. Растворы кислот и оснований

Какие газы легче воздуха? — faq | урал-тест в перми

Количество газов, которые легче воздуха, невелико.

Способ определения того, какие газы легче или тяжелее воздуха, заключается в сравнении их молекулярного веса (который вы можете найти в списке обнаруживаемых газов). Вы даже можете вычислить молекулярный вес M вещества, если вам известна химическая формула, установив H = 1, C = 12, N = 14, и O = 16 г/моль.

Пример:

Этанол, химическая формула C2H5OH, содержит 2 C, 6 H, и 1 O,

 отсюда M = 2∗12 6∗1 1∗16 =46 г/моль.

Метан, химическая формула CH4, содержит 1 C и 4 H, 

отсюда M = 1∗12 4∗1 = 16 г/моль.

Молекулярный вес воздуха, состоящего из 20,9 объемн. % O2 (M = 2∗16 = 32 г/моль) и 79,1 объемн. % N2 (M = 2∗14 = 28 г/моль), составляет 0,209∗32 0,791∗28 = 28,836 г/моль.

Вывод: любое вещество с молекулярным весом менее 28,836 г/моль легче воздуха.

Удивительно, что существует лишь 12 газов легче воздуха:

ГАЗ ФОРМУЛА МОЛ.ВЕС ОТН.ВЕС (Воздух=1) ТОЧКА КИПЕНИЯ ГОРЮЧЕСТЬ
Водород Н2 2 0,069 — 252.8 °C Да
Гелий He 4 0,139 — 268.9 °C Нет
Метан СН4 16 0,560 — 161.5 °C Да
Аммиак NH3 17 0,589 — 33.4 °C Да
Фтористый водород HF 20 0,694 19.5 °C Нет
Неон Ne 20 0,694 — 246.1 °C Нет
Ацетилен С2Н2 26 0,902 — 84.0 °C Да
Диборан В2Н6 27 0,936 — 92.5 °C Да
Синильная кислота HCN 27 0,936 25.7 °C *) Да
Угарный газ СО 28 0,971 — 191.6 °C Да
Азот N2 28 0,971 — 195.8 °C Нет
Этилен(Этен) С2Н4 28 0,971 — 103.8 °C Да

*) На самом деле синильная кислота в большей степени жидкость, нежели газ, давление ее паров составляет 817 мбар при 20 °C (по определению, газы имеют точку кипения ниже 20°C).

Кстати: пары еще одного, крайне важного негорючего вещества легче воздуха: H2O, молярный вес — 18 г/моль. Вывод: сухой воздух тяжелее влажного, который поднимается и конденсируется наверху в облаках.

Что касается размещения сенсоров на горючие газы, то это необходимо учитывать лишь для метана, водорода и аммиака. Эти газы поднимаются вверх до потолка, где и следует устанавливать сенсоры.

Помните, что любые горючие пары тяжелее воздуха!

Краткие сведения о кислороде, пропан-бутане и ацетилене — газресурс

Кислород — это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.

Кислород — это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации.

Технический кислород для газопламенных работ получают в специальных установках из атмосферного воздуха в жидком состоянии. Жидкий кислород — это легко подвижная, голубоватая жидкость. Температура кипения (начало испарения) жидкого кислорода минус 183° С.

При нормальных условиях и температуре минус 183° С. легко испаряется, превращаясь в газообразное состояние. При повышении температуры интенсивность испарении увеличивается. Из 1 литра жидкого кислорода, образуется около 860 литров газообразного.

Кислород обладает большой химической активностью. Реакция соединения его с маслами, жирами, угольной пылью, ворсинками ткани и т.д., приводит их к мгновенному окислению, самовоспламенению и взрыву при обычных температурах.

Кислород в смеси с горючими газами и парами горючих жидкостей образует в широких пределах взрывчатые смеси.

«Кислород газообразный технический» согласно ГОСТ 5583- 78 выпускается для сварки и резки трех сортов: 1-й — чистотой не менее 99,7%, 2-й — не менее 99,5%, 3-й — не менее 99,2% по объёму. Чем меньше в кислороде газовых примесей, тем выше скорость реза, чище кромки и меньше расход кислорода. На предприятие поставляется в газообразном состоянии, в стальных кислородных баллонах «голубого» цвета ёмкостью 40 дм. куб. и давлением 150 кгс/см2. Сжатый кислород хранят и транспортируют в баллонах по ГОСТ 949-73.


Пропан — технический, бесцветный газ с резким запахом, состоящий из пропана С3Н8 или из пропана и пропилена С3Н6, суммарное содержание которых должно быть не менее 93%. Получают пропан при переработке нефтепродуктов. Пропанобутановая смесь – это смесь газов главным образом технического пропана и бутана. Эти газы относятся к группе тяжёлых углеводородов. Сырьём для их получения являются природные нефтяные газы, отходящие газы нефтеперерабатывающих заводов. Эти газы в чистом виде или в виде смесей при нормальной температуре и на большом повышении давления могут быть переведены из газообразного состояния в жидкое состояние.Хранится и транспортируется пропанобутановая смесь в жидком состоянии, а используется в газообразном.

Газообразная пропанобутановая смесь — это горючий газ без вкуса, запаха и цвета, тяжелее воздуха в 2 раза, поэтому при утечке газа он не рассеивается в атмосфере, а опускается вниз и заполняет углубления пола или местности.

При содержании газа пропан-бутана в воздухе или кислороде до нижнего предела взрываемости и внесении открытого огня происходит горение газа вокруг источника открытого огня.

При содержании газа пропан-бутана в воздухе или кислороде свыше нижнего предела взрываемости и внесении открытого огня или искры происходит пожар, т.е. интенсивное горение газа.

Газообразная пропанобутановая смесь при атмосферном давлении не обладает токсичным (отравляющим) воздействием на организм человека, так как мало растворяется в крови. Но, попадая в воздух, смешивается с ним, вытесняет и уменьшает содержание кислорода в воздухе. Человек, находящийся, а такой атмосфере испытывает кислородное голодание, а при значительных концентрациях газа в воздухе может погибнуть от удушья.

Предельно допустимая концентрация пропан-бутана в воздухе рабочей зоны должна быть не более 300 мг/м3(в пересчёте на углерод).При попадании жидкого пропан-бутана на кожные покровы тела, нормальная температура которого 36,6 град. С, происходит быстрое его испарение и интенсивный отбор тепла с поверхности тела, затем наступает обморожение.

По ГОСТ 20448-80 промышленность выпускает пропанобутановую смесь 3 марок:

  • пропан технический, с содержанием пропана более 93%, бутана — менее 3 процентов;
  • бутан технический, с содержанием бутана менее 93%, пропана не более 4 процентов;
  • пропанобутановая смесь, 2-х типов: зимняя и летняя.

На предприятия для газопламенной обработки металлов поставляется пропанобутановая смесь в стальных баллонах зимняя и летняя.

Зимняя пропанобутановая смесь содержит 15% пропана, 25% бутана и прочих компонентов.

Летняя пропанобутановая смесь содержит 60% бутана, 40% пропана и прочих компонентов.

Для сжигания I куб. м газообразной пропано-бутановой смеси требуется 25-27 куб. м воздуха или 3,58 — 3,63 кг кислорода.

Температура воспламенения с воздухом:

  • пропана — 510 град. С;
  • бутана — 540 град. С

Температура воспламенения пропанобутановой смеси:

  • с воздухом 490-510 град. С;
  • с кислородом — 465-480 град. С.

Температура пламени пропанобутановой смеси с кислородом зависит от её состава и равна 2200-2680 град. С. При окислительном пламени (избыток кислорода) температура повышается.

Теплотворная способность пропанобутановой смеси равна 93000 Дж/м куб. (22000 ккал/м куб.).

Скорость горения пропанобутановой смеси:

  • при обычном горении 0,8 – 1,5 м/сек.;
  • при дистанционном (со взрывом) 1,5 — 3,5 км/сек.

Пределы взрывоопасности пропан-бутана при нормальном давлении составляют:

  • нижний – 1,5%;
  • верхний – 9,5%.нижний – 2%;
  • верхний – 46%.

Пропанобутановые смеси в жидком виде разрушают резину, поэтому необходимо тщательно следить за резиновыми изделиями, применяемыми в газопламенной аппаратуре, и в случае необходимости производить их своевременную замену.

Наибольшая опасность разрушения резины существует зимой, вследствие большей вероятности попадания жидкой фазы пропанобутановой смеси в рукава.


Ацетилен — это горючий газ, без цвета, вкуса, с резким специфическим чесночным запахом, он легче воздуха. Его плотность по отношению к воздуху 0,9.

При нормальном атмосферном давлении (760 мм ртутного столба) и температуре плюс 20 град. С 1 м куб. имеет массу 1,09 кг, воздух 1,20 кг.

При нормальном атмосферном давлении и температуре от — 82,4 градуса до — 84 градусов С ацетилен переходит из газообразного в жидкое состояние, а при температуре минус 85 град. С затвердевает.

Ацетилен — единственный широко применяемый в промышленности газ, горение и взрыв которого возможны в отсутствии кислорода или других окислителей.

При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии, получая его в передвижных или стационарных ацетиленовых генераторах, либо растворённым в ацетиленовых баллонах. Растворенный ацетилен по ГОСТ 5457-75 представляет собой раствор газообразного ацетилена в ацетоне, распределённый в пористом наполнителе под давлением до 1,9 МПА (19 кгс/см2). В качестве пористых наполнителей используются насыпные – берёзовый активированный уголь (БАЦ) и литые пористые массы.

Основным сырьём для получения ацетилена является карбид кальция. Это твёрдое вещество тёмно-серого или коричневатого цвета. Ацетилен получается в результате разложения (гидролиза) кусков, карбида кальция водой. Выход ацетилена на 1 кг карбида кальция составляет 250 дм куб. Для разложения 1 кг карбида кальция требуется от 5 до 20 дм куб. воды. Карбид кальция транспортируется в герметически закрытых барабанах. Масса карбида в одном барабане от 50 до 130 кг.

При нормальном атмосферном давлении ацетилен с воздухом и кислородом образуют взрывоопасные смеси. Пределы взрывоопасности ацетилена с воздухом:

  • нижний – 2,2%;
  • верхний – 81%.

Пределы взрывоопасности ацетилена с кислородом:

  • нижний – 2,3%;
  • верхний – 93%.

Наиболее взрывоопасные концентрации ацетилена с воздухом и кислородом составляют:

  • нижний – 7%;
  • верхний – 13%.

Нахождение в природе

Кислород

Накопление O

2

в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.

1

. (3,85—2,45 млрд лет назад) — O

2

не производился

2

. (2,45—1,85 млрд лет назад) O

2

производился, но поглощался океаном и породами морского дна

3

. (1,85—0,85 млрд лет назад) O

2

выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя

4

. (0,85—0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление O

2

в атмосфере

5

. (0,54 млрд лет назад — по настоящее время) современный период, содержание O

2

в атмосфере стабилизировалось

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад, в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы).

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

В 2022 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.

Получение кислорода в лаборатории

Лабораторные методы получения кислорода основаны на химических реакциях.

Дж. Пристли получал этот газ из соединения, название которого — меркурийКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиРис. 54.Получение кислорода нагреванием меркурийКислород как химический элемент в химии - формулы, определение с примерами оксида

Соответствующее химическое уравнение:

Сейчас метод Пристли не используют, поскольку пары ртути токсичны. Кислород получают с помощью других реакций, подобных рассмотренной. Они, как правило, происходят при нагревании.

Реакции, при которых из одного вещества образуются несколько других, называют реакциями разложения.

Для получения кислорода в лаборатории используют такие оксигенсодержащие соединения:

Небольшое количество катализатора — манганКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиПолучение кислорода разложением гидроген пероксида Кислород как химический элемент в химии - формулы, определение с примерамиНалейте в пробирку 2 мл раствора гидроген пероксида (традиционное название этого вещества — перекись водорода). Зажгите длинную лучинку и погасите ее (как вы это делаете со спичкой), чтобы она едва тлела. Насыпьте в пробирку с раствором гидроген пероксида немного катализатора — черного порошка манганКислород как химический элемент в химии - формулы, определение с примерами

Составьте уравнение реакции разложения гидроген пероксида, если вторым продуктом реакции является вода

В лаборатории кислород можно также получить разложением натрий нитрата Кислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерами
Кислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерами
Кислород как химический элемент в химии - формулы, определение с примерамиселитры.Кислород вместе с водородом являются продуктами разложения воды под действием электрического тока:Кислород как химический элемент в химии - формулы, определение с примерами

Распространенность оксигена в природе

Оксиген — один из самых распространенных элементов на нашей планете. В земной коре его атомов больше, чем атомов любого другого элемента (§ 6). Атомы Оксигена содержатся в песке, глине, известняке, многих минералах. Оксиген — второй по распространенности в атмосфере (после Нитрогена) и в гидросфере (после Гидрогена).

Атомы Оксигена входят в состав молекул многих веществ, находящихся в живых организмах (белков, жиров, крахмала и пр.). В теле взрослого человека массовая доля этого элемента составляет примерно 65 %.

Кислород. Важнейшее простое вещество Оксигена — кислород. Этот газ необходим для дыхания; он поддерживает горение.

Формула кислорода вам известна — Кислород как химический элемент в химии - формулы, определение с примерами

Молекула кислорода достаточно устойчива. Но под действием электрического разряда или ультрафиолетовых лучей, а также при температуре свыше 2000 °С она распадается на атомы:

Кислород — компонент воздуха, природной смеси газов. На него приходится приблизительно 1/5

Атомы Оксигена входят в состав молекул многих веществ, находящихся в живых организмах (белков, жиров, крахмала и пр.). В теле взрослого человека массовая доля этого элемента составляет примерно 65 %.

Кислород. Важнейшее простое вещество Оксигена — кислород. Этот газ необходим для дыхания; он поддерживает горение.

Формула кислорода вам известна — 02. Это вещество содержит молекулы, состоящие из двух атомов Оксигена.

Молекула кислорода достаточно устойчива. Но под действием электрического разряда или ультрафиолетовых лучей, а также при температуре свыше 2000 °С она распадается на атомы:

02 = 20.

Кислород — компонент воздуха, природной смеси газов. На него приходится приблизительно 1/5 объема воздуха. Состав сухого воздухаКислород как химический элемент в химии - формулы, определение с примерами

Организм взрослого мужчины ежесуточно потребляет приблизительно 900 г кислорода, а женщины — 600 г.

Состав воздуха:

Газ компонент воздуха       Доля воздуха в%

Название Формула объемная* массовая
Азот Кислород как химический элемент в химии - формулы, определение с примерами 78,09 75,51
Кислород Кислород как химический элемент в химии - формулы, определение с примерами 20,95 23,15
Аргон Кислород как химический элемент в химии - формулы, определение с примерами 0,93 1,28
углекислый газ Кислород как химический элемент в химии - формулы, определение с примерами 0,037 0,056
Другие газы менее 0,002 менее 0,003

* Объемная доля вещества в смеси — отношение объема вещества к объему смеси. Объемную долю обозначают греческой буквой Кислород как химический элемент в химии - формулы, определение с примерами

Определить объемную долю кислорода в воздухе можно экспериментально. Для этого нужны стеклянная бутылка без дна с пробкой и кристаллизатор с водой. В пробку вставляют ложку для сжигания, в которую набрано немного красного фосфора. Его поджигают, быстро вносят в бутылку и плотно I закрывают ее пробкой (рис. 52).

Кислород содержится не только в атмосфере. Небольшое его количество вместе с другими газами воздуха растворено в природной воде.

Существует еще одно простое вещество Оксигена — озон Кислород как химический элемент в химии - формулы, определение с примерами Это бесцветный сильнотоксичный газ с резким запахом. Он очень неустойчив и постепенно превращается в кислород: Кислород как химический элемент в химии - формулы, определение с примерами

Озон содержится в атмосфере в незначительном количестве; его объемная доля не превышает

Определение объемной доли кислорода в воздухе сжиганием фосфора:

а — начало опыта;

б — окончание опыта

 Кислород как химический элемент в химии - формулы, определение с примерами

1 0,0004 %. Распадаясь, он поглощает часть ультрафиолетовых лучей солнечного света, вредную для растений и животных, и тем самым оберегает природу.

Химические свойства

При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя(с большинством химических элементов) и свойства восстановителя(только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами, и с неметаллами. Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

O2   2F2  →  2OF2

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремниемс образованием оксидов:

S O2 → SO2

  Si O2 → SiO2

1.3.Фосфоргорит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

4P      3O2  →   2P2O3

Но чаще фосфор сгорает до оксида фосфора (V):

4P      5O2  →   2P2O5

1.4.С азотомкислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000оС), образуя оксид азота (II):

    N2  O2→  2NO

1.5. В реакциях с щелочноземельными металлами, литием  и алюминием кислород  также проявляет свойства окислителя. При этом образуются оксиды:

2Ca       O2 → 2CaO

Однако при горении натрияв кислороде преимущественно образуется пероксид натрия:

    2Na O2→  Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

    K O2→  KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn O2→  2ZnO

Железо, в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe O2→  2FeO

4Fe 3O2→  2Fe2O3

3Fe 2O2→  Fe3O4

1.6. При нагревании с избытком кислорода графит горит, образуя оксид углерода (IV):

C     O2  →  CO2

 при недостатке кислорода образуется угарный газ СО:

2C     O2  →  2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды. При этом образуются оксиды:

4FeS 7O2→  2Fe2O3 4SO2

Al4C3 6O2→  2Al2O3 3CO2

Ca3P2 4O2→  3CaO P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения (сероводород, аммиак, метан, силан гидриды. При этом также образуются оксиды: 

2H2S 3O2→  2H2O 2SO2

Аммиакгорит с образованием простого вещества, азота:

4NH3 3O2→  2N2 6H2O

Аммиакокисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 5O2→  4NO 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора (сероуглерод, сульфид фосфора и др.):

CS2 3O2→  CO2 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления (оксид углерода (II), оксид железа (II) и др.):

2CO O2→  2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например, кислород окисляет гидроксид железа (II):

4Fe(OH)2 O2 2H2O → 4Fe(OH)3

Кислород окисляет азотистую кислоту:

2HNO2 O2 → 2HNO3

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 2O2→  CO2 2H2O

2CH4 3O2→  2CO 4H2O

CH4 O2→  C  2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

2CH2=CH2 O2 → 2CH3-CH=O

Заключение

Какой газ самый легкий? Теперь вы и сами знаете ответ. Самыми легкими считаются водород, азот и кислород, относящиеся к нулевой группе периодической системы. После них следуют метан (углерод водород) и оксид углерода (углерод кислород).

Что-то

я одни только серьёзные вещи делаю. Так устал от этого, что решил, для отдыха, фигнёй вчера вечером позаниматься. Составить, скажем, топ-лист самых тяжёлых газов. Если кому интересно — вот результаты.

Точнее, сначала несколько замечаний.

Замечание №1. Список, особенно в лёгкой своей части, наверняка неполон. Веществ всяких синтезировано до чёрта, и мои тыканья вряд ли покрыли всё поле.

Замечение №2. «Тяжёлый» определялось по молекулярной массе. На самом деле, для достаточно сложных молекул, да ещё вблизи температуры кипения, простая линейная связь между плотностью газа и его молекулярной массой может нарушаться (в тяжёлых случаях, как, например, у HF, процентов аж на 30).

Но ясно же, что никто никогда не набирал литр какого-нибудь TeClF5 только чтобы его точно взвесить. Да кой-каких из этих веществ, вероятно, и литра-то за всю историю не произведено! Поэтому, за неимением лучшей линейки, будет всё-таки молекулярный вес. Делим его на 29 — и получаем, в первом приближении, во сколько раз газ тяжелее воздуха.

Замечание №3. «Газом» полагается субстанция, кипящая или полностью сублимирующая при температуре ниже 20 Цельсия и давлении в 1 атмосферу.

Ну вот. Теперь, наконец, слайды наш хит-парад:

10. N(CF 3) 3 . Взяли аммиак и заменили водороды на метиловые группы, в каждой из которых заменили водороды на фтор. Получился perfluorotrimethylamine. Масса: 221, температура кипения -6 C. , .

9.5. Мне тут радон Rn подсказали, с массой в 222 и температурой кипения в -62 C.

9. C 4 F 10 . Обычный бутан, в котором весь водород поменяли на фтор. Так и называется: perfluorobutane. Масса: 238, температура кипения -1.7 C. . Вещество, кстати, весьма химически стойкое, первым никого не атакующее, физиологически инертное, а потому используется как наполнитель некоторых огнетушителей и контрастный агент для УЗИ в медицине.

8. TeF 6 . Теллур, обвешанный со всех сторон фтором, т.е. теллура гексафторид (tellurium hexafluoride). Масса: 241.6, температура кипения -37.6 C. . В отличие от предыдущего газа, правда, очень токсичен и обладает чрезвычайно неприятным запахом, как и большинство летучих соединений теллура. Реагирует с водой.

7. CF 3 CF 2 I. Взяли этан, заменили весь водород фтором и одним атомом иода. В комментариях подсказали, что это называется перфторэтил иодид. Или 1,1,1,2,2-pentafluoro-2-iodoethane, если по IUPAC (ссылка). Масса: 245.9, температура кипения 13 C. (если промотать на страницу 424) сообщает, что вещество является анестетиком, пригодным для наркоза. Так что вряд ли оно совсем уж «злое» по своим свойствам.

6. C 4 F 10 O. Это, в общем, эфир, но тоже со фтором везде вместо водорода. Называется decafluorodiethyl ether. Масса: 254, температура кипения 0 C. тот же и указывает, что вещество является физиологически инертным, но тоже потенцально применимым для наркоза.

5. TeClF 5 . Масса: 258, температура кипения 13.5 C. . По аналогии с родственником №8 наверняка тоже гадость страшная.

4. F 5 TeOF. Масса: 259.6, температура кипения 0.6 C. Называется, предположительно, tellurium hypofluorite, если я правильно проинтерпретировал . И это наверняка тоже не мёд.

3. IF 7 . Масса: 259.6, температура кипения 4.8 C. Гептафторид иода (iodine heptafluoride). . Раздражитель, сильный окисилитель, в контакте с органическими материалами может вызвать пожар. При взгляде на это вещество тут же возникает соблазн «сконструировать» что-нибудь ещё потяжелее, заменив фтор на хлор — скажем, IClF 6 .

2. W(CH 3) 6 . Атом вольфрама, облепленный метиловыми группами. Hexamethyltungsten, гексаметилвольфрам; тетраэтилсвинец помните? Та же порода. Масса: 274.05, температура кипения -30 C (сублимирует). сообщает, что при комнатной температуре соединение разлагается, так что работать с ним надо очень быстро, и вообще помещение его в этот список — некоторая натяжка. Но пусть будет.

Ну и, наконец, победитель:

1. WF 6 . Гексафторид вольфрама, tungsten hexafluoride. Масса: 297.3 (в 10 раз тяжелее воздуха, 12.4 грамма на литр), температура кипения 17.1 C. На грани, но всё-таки газ. . Вещество это довольно стабильно, хорошо изучено и применяется в производстве полупроводников. Правда, вдыхать его не советую: это яд, плюс коррозионно очень активный.

Википедия однако, осторожно именует его лишь «одним из самых тяжёлых газов». Почему? Во-первых, поди перебери всю химию, чтобы проверить. Кто знает, не таятся ли среди многочисленных галогенооргаников какие-нибудь ещё более тяжёлые газы, ведомые только паре экспертов?

А во-вторых, у WF 6 имеется несколько и вполне конкретных конкурентов, способных изменить его статус в будущем. Например:

1. WClF 5 с молекулярной массой в 314.2. Вещество это точно существует (например , и есть ещё много указаний), достаточно стабильно, чтобы его «добавлять» к другим реагентам в каких-то эзотерических фокусах, и достоверно летучее. Но найти его точную
температуру кипения мне так и не удалось. Сильно подозреваю, что она попросту неведома никому за её полной практической ненадобностью.

2. PoF 6 (323) (), OsF 8 (342) (), AmF 6 (357) (). Все эти вещества считаются теоретически возможными, (в частности, гексафторид полония PoF 6 , предположительно, должен быть газом с т. кип. -40 C). Всех их пытались синтезировать — но удача пока никому не улыбнулась.

Так что вопрос «самого тяжёлого газа» остаётся открытым.

И на закуску. Полученные результаты наводят на мысль о следующем «рецепте» построения тяжёлых газов:

1. Взять что-то симметричное потяжелее. Атом или функциональную группу.2. Обвесить симметрично со всех сторон фтором. Это уже даёт результат, но затем:3. Заменить один фтор другим галогеном, если получится.

Так я нашёл почти все газы в этом списке. Возможны ли другие пути? Я видел кое-какие вариации, но все они, похоже, менее перспективны:

а) Хлор, а не фтор? Гораздо худшая летучесть. Правда, PbCl 4 выступает любопытным исключением, но даже его температура кипения — 50 C.

б) Кислород, при той же почти массе, что у фтора, связывает вдвое больше электронов и соединение получается легче. Вероятно, вершина на этом пути — Mn 2 O 7 , нестойкий, взрывоопасный , но чисто формально вроде как сублимирующий при -10 C. Из более стабильных соединений стоит отметить, пожалуй, OsO 4 с температурой кипения аж в 130 градусов.

в) Карбонилы, в том числе тяжёлых металлов, существуют, стойки, хорошо изучены. Но, хоть и летучи, при комнатной температуре в большинстве своём тверды. Самые летучие из них — никелевый Ni(CO) 4 (кипит при 43) и кобальтовый Co 2 (CO) 8 ( 52). Оба — ядовитейшие соединения, которых, по возможности, лучше избегать.

с) Метиловые группы и металлорганика в целом. Уже упомянутый тетраэтилсвинец, хоть и жидкий при комнатной температуре, выглядит многообещающе. Особенно если в метиловые группы галогенов добавить. Увы, толком рассмотреть это поле мне не удалось. Может, из экспертов кто чего подскажет.

Спасибо за внимание. Всё.

Оцените статью
Кислород
Добавить комментарий