Таблица массы и объема кислорода

Таблица массы и объема кислорода Кислород

Жидкий кислород

Как и другие вещества, кислород может пребывать в различных агрегатных состояниях. Чтобы превратить газ в твердое тело или жидкость, его нужно сильно охладить. При давлении в 51 атмосферу он становится жидким уже при -119 °C. При нормальном давлении превращение происходит только при -183 °C. Охлаждаясь до температуры -220 °C, он затвердевает, образуя светло-голубые снегоподобные кристаллы.

В жидком состоянии кислород окрашивается в голубой оттенок и усиливает некоторые свойства газообразного вещества. Так, он ведет себя более агрессивно в химических реакциях, а также становится сильным парамагнетиком и может притягиваться магнитом.

Он закипает только при -183 °C, а плавится при 219 °C. Благодаря устойчивости к столь низким температурам жидкий кислород обладает криогенными свойствами и может использоваться в качестве хладагента. В нормальных условиях он быстро испаряется, превращаясь в газ.

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (возможно, в 1770-м) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

[Лавуазье провел опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теории флогистона.]

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Опасные факторы и меры безопасности

  • Кислород не токсичен, сам по себе не взрывоопасен и не горюч, однако является сильным окислителем и активно поддерживает горение различных материалов, в особенности органических и других горючих веществ; поэтому для работы в соприкосновении с кислородом должны применяться только разрешенные для этого материалы;
  • При контакте сжатого кислорода под давлением более 30 кгс/см2 с жирами и маслами происходит их мгновенное окисление, сопровождающееся выделением теплоты, что может привести к их воспламенению, а при определенных условиях – к взрыву; в связи с этим при работе с кислородом необходимо следить, чтобы баллоны, оборудование и одежда персонала не имели следов жиров и масел;
  • Такие вещества как дерево, уголь, бумага, асфальт и др., пропитанные жидким кислородом, способны детонировать;
  • Во избежание пожаров содержание кислорода в воздухе рабочих помещений не должно быть больше 23% по объему; помещения, в которых возможно превышение объемной доли кислорода, должны оснащаться вытяжной вентиляцией и средствами контроля воздуха; в таких помещениях необходимо ограничивать пребывание людей и исключать присутствие легковоспламеняющихся веществ;
  • После нахождения в среде с повышенным содержанием кислорода запрещается приближаться к огню, курить, необходимо проветрить одежду в течение 30 минут;
  • Жидкий кислород поражает слизистую оболочку глаз, а при попадании на кожу вызывает обморожение ткани; отбор проб сжиженного газа должен производиться в защитных очках и рукавицах;
  • Баллоны и трубопроводы, предназначенные для транспортирования кислорода, нельзя использовать для хранения и транспортирования других газов; необходимо применять меры для предотвращения загрязнения баллонов маслом, их соударений, падений, а также нужно предохранять их от нагревания источниками тепла и атмосферных осадков.

Применение

Способность жидкого кислорода окислять другие вещества и усиливать горение ценятся во многих сферах производства. В конце XIX – середине XX века из него изготавливали взрывчатку «Оксиликвит», которую использовали в горной промышленности для подрыва породы, а также в качестве оружия во Второй мировой войне.

Сегодня его чаще применяют в медицине, фармацевтике, в металлургии, стекольной, химической, бумажной и других видах промышленности. С его помощью получают различные полезные соединения, например окись титана, которая участвует в производстве лакокрасочных изделий, бумаги и пластмасс.

При изготовлении стекла он нужен для поддержания жара в печах, а также для уменьшения количества окиси азота, попадающей в атмосферу. В космической авиации жидкий кислород является одним из компонентов ракетного топлива, где он используется в качестве окислителя, а в роли самого топлива выступает водород или керосин.

В медицине и фармацевтике без него тоже не обходится. Жидкий кислород входит в состав биореакторов, а также используется в качестве добавки к ферментам. В медицине он необходим для анестезии, приготовления кислородных ванн и коктейлей, лечения или облегчения состояния при интоксикации, астме и других недугах. Здесь он чаще всего не используется напрямую в виде жидкости, а является источником газообразного кислорода.

Применение кислорода

Помимо того, что все живые существам в природе, за исключением немногих микроорганизмов, при дыхании потребляют кислород, он широко применяется во многих отраслях промышленности: металлургической, химической, машиностроении, авиации, ракетостроении и даже в медицине.

В химической промышленности его применяет:

  • при получении ацетилена из природного газа (метана);
  • при производстве кислот (азотной, серной);
  • для газификации твердого топлива;
  • для производства аммиака, формальдегида и метанола.

В металлургии его используют:

  • при получении цветных металлов из руд;
  • при выплавке чугуна в доменных печах;
  • при выплавке стали в мартеновских и электрических печах;
  • кислородно-конверторной выплавке стали.

В медицинских целях больным, у которых нарушена нормальная деятельность органов дыхания или кровообращения, искусственно увеличивают содержание O2 в воздухе или дают дышать непродолжительное время чистым O2. Медицинский кислород, выпускаемый ГОСТ 5583, особенно тщательно очищают от всех примесей.

Применение кислорода в сварке

Сам по себе O2 является негорючим газом, но из-за свойства активно поддерживать горение и увеличения интенсивности (интенсификации) горения газов и жидкого топлива его используют в ракетных энергетических установках и во всех процессах газопламенной обработки.

В таких процессах газопламенной обработки, как газовая сварка, поверхностная закалка высокая температура пламени достигается путем сжигания горючих газов в O2, а при газовой резке благодаря ему происходит окисление и сгорание разрезаемого металла.

При полуавтоматической сварке (MIG/MAG) кислород O2 используют как компонент защитных газовых смесей с аргоном (Ar) или углекислым газом (CO2).

Кислород добавляют в аргон при полуавтоматической сварке легированных сталей для обеспечения устойчивости горения дуги и струйного переноса расплавленного металла в сварочную ванну. Дело в том, что как поверхностно активный элемент он уменьшает поверхностное натяжение жидкого металла, способствуя образованию на конце электрода более мелких капель.

При сварке низколегированных и низкоуглеродистых сталей полуавтоматом O2 добавляют в углекислый газ для обеспечения глубокого проплавления и хорошего формирования сварного шва, а также для уменьшения разбрызгивания.

Чаще всего кислород используют в газообразном виде, а в виде жидкости используют только при его хранении и транспортировке от завода-изготовителя до потребителей.

Расчет ацетилена в баллонах

Параметры и размеры баллонов для ацетилена можно посмотреть по ГОСТ 949-73 «Баллоны стальные малого и среднего для газов на Рр ≤ 19,7МПа». Наиболее популярными являются баллоны объемами 5, 10 и 40 литров. Корпус ацетиленового баллона отличается от корпуса кислородного баллона меньшим размером.

   При давлении 1,0 МПа и температуре 20 °С в 40л баллоне вмещается 5 – 5,8 кг ацетилена по массе ( 4,6 – 5,3 м3 газа при температуре 20 °С и 760 мм.рт.ст.).

   Приближенное количество ацетилена в баллоне (определяется взвешиванием) можно определить по формуле:

Va = 0,07 • Е • (Р – 0,1)

   0,07– коэф., который учитывает количество ацетона в баллоне и растворимость ацетилена.

    Е – водяной объем баллона в куб.дм;

    Р – давление в баллоне, МПа (давлении 1,9 МПа (19,0 кгс/см2) при 20 °С по ГОСТ 5457-75 «Ацетилен растворенный и газообразный технический»);

    0,1 – атмосферное давление в МПа;

   Вес 1 м3 ацетилена при температуре 0°С и 760 мм.рт.ст. составляет – 1,17 кг.

   Вес 1 куб.м ацетилена при температуре 20°С и 760 мм.рт.ст. составляет 1,09 кг.

   Посчитаем объем ацетилена в баллоне объемом 40л с рабочим давлением 1,9МПа (19кгс/см2) при температуре 20°С:

Va = 0,07 • 40 • (1,9 – 0,1) = 5,04м3

   Вес ацетилена в баллоне объемом 40л с рабочим давлением 1,9МПа (19кгс/см2) при температуре 20°С:

5,04 • 1,09 = 5,5кг

   Вывод (для рассматриваемого случая): 1 баллон = 40л = 5,5кг = 5,04м3

Данный газ доступен у нас: ацетилен (C2H2)

Расчет двуокиси углерода (углекислота) в баллонах

   Углекислота (по ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая») применяется как защитный газ для электросварочных работ. Состав смеси: СО2; Ar CO2 ; Ar CO2 O2. Еще производители могут маркировать ее как смесь MIX1 – MIX5.

   Параметры и размеры баллонов для ацетилена можно посмотреть по ГОСТ 949-73 «Баллоны стальные малого и среднего для газов на Рр ≤ 19,7МПа». Наиболее популярными являются баллоны объемами 5, 10 и 40 литров.

   При рабочем давлении углекислоты в баллоне 14,7 МПа (150 кгс/см2) коэффициент заполнения: 0,60 кг/л; при 9,8 МПа (100 кгс/см2) – 0,29 кг/л; при 12,25 МПа (125кгс/см2) – 0,47 кг/л.

   Объемный вес углекислоты в газообразном состоянии равен 1.98 кг/м³, при нормальных условиях.

   Посчитаем вес углекислоты в самом распространенном баллоне в строительстве: объемом 40л с рабочим давлением 14,7 МПа (150 кгс/см2).

40л • 0,6 = 24кг

   Посчитаем объем углекислоты в газообразном состоянии:

24кг / 1,98 кг / м3 = 12,12м3

   Вывод (для рассматриваемого случая): 1 баллон = 40л = 24кг = 12,12м3

Данный газ доступен у нас: двуокись углерода (углекислота)

Расчет кислорода в баллонах

   Параметры и размеры кислородных баллонов можно посмотреть по ГОСТ 949-73 «Баллоны стальные малого и среднего для газов на Рр ≤ 19,7МПа». Наиболее популярными являются баллоны объемами 5, 10 и 40 литров.

   По ГОСТ 5583-78 «Кислород газообразный технический и медицинский» (приложение 2), объем газообразного кислорода в баллоне (V) в кубических метрах при нормальных условиях вычисляют по формуле:

V = K1•Vб,

   Vб — вместимость баллона, дм3;

    K1 — коэффициент для определения объема кислорода в баллоне при нормальных условиях, вычисляемый по формуле

К1 = (0,968Р 1) *   *

   Р — давление газа в баллоне, измеренное манометром, кгс/см2;

    0,968 — коэффициент для пересчета технических атмосфер (кгс/см2) в физические;

    t — температура газа в баллоне, °С;

    Z — коэффициент сжигаемости кислорода при температуре t.

    Значения коэффициента К1 приведены в таблице 4, ГОСТ 5583-78.

   Посчитаем объем кислорода в самом распространенном баллоне в строительстве: объемом 40л с рабочим давлением 14,7МПа (150кгс/см2). Коэффициент К1 определяем по таблице 4, ГОСТ 5583-78 при температуре 15°С:

V = 0,159 • 40 = 6,36м3

   Вывод (для рассматриваемого случая): 1 баллон кислорода = 40л = 6,36м3

Таблица 4. ГОСТ 5583-78.

Температура газа в баллоне, °С

Значение коэффициента Ki при избыточном давлении, МПа (кгс/см2)

13,7 (140) 14,2 (145) 14,7 (150) 15,2 (155) 15,7 (160) 16,2 (165) 16,7 (170) 17,2 (175) 17,7 (180) 18,1 (185) 18,6 (190) 19,1 (195) 19,6 (200) 20,1 (205) 20,6 (210)
-50 0,232 0,242 0,251 0,260 0,269 0,278 0,286 0,296 0,303 0,311 0,319 0,327 0,335 0,342 0,349
-40 0,212 0,221 0,229 0,236 0,245 0,253 0,260 0,269 0,275 0,284 0,290 0,298 0,305 0,312 0,319
-35 0,203 0,211 0,219 0,226 0,234 0,242 0,249 0,257 0,264 0,272 0,278 0,286 0,293 0,299 0,306
-30 0,195 0,202 0,211 0,217 0,225 0,232 0,239 0,248 0,253 0,261 0,267 0,274 0,281 0,288 0,294
-25 0,188 0,195 0,202 0,209 0,217 0,223 0,230 0,238 0,243 0,251 0,257 0,264 0,270 0,277 0,283
-20 0,182 0,188 0,195 0,202 0,209 0,215 0,222 0,229 0,235 0,242 0,248 0,255 0,261 0,267 0,273
-15 0,176 0,182 0,189 0,196 0,202 0,208 0,215 0,221 0,227 0,234 0,240 0,246 0,252 0,258 0,263
-10 0,171 0,177 0,183 0,189 0,195 0,202 0,208 0,214 0,220 0,226 0,232 0,238 0,244 0,250 0,255
-5 0,165 0,172 0,178 0,184 0,190 0,195 0,202 0,207 0,213 0,219 0,225 0,231 0,236 0,242 0,247
0 0,161 0,167 0,172 0,179 0,184 0,190 0,196 0,201 0,207 0,213 0,219 0,224 0,229 0,235 0,240
5 0,157 0,162 0,168 0,174 0,179 0,185 0,190 0,196 0,201 0,207 0,212 0,217 0,223 0,228 0,233
10 0,153 0,158 0,163 0,169 0,174 0,180 0,185 0,191 0,196 0,201 0,206 0,211 0,217 0,222 0,227
15 0,149 0,154 0,159 0,165 0,170 0,175 0,180 0,186 0,191 0,196 0,201 0,206 0,211 0,216 0,221
20 0,145 0,150 0,156 0,160 0,166 0,171 0,176 0,181 0,186 0,191 0,196 0,201 0,206 0,211 0,215
25 0.142 0,147 0,152 0,157 0,162 0,167 0,172 0,177 0,182 0,186 0,191 0,196 0,201 0,206 0,210
30 0,139 0,143 0,148 0,153 0,158 0,163 0,168 0,173 0,177 0,182 0,187 0,192 0,196 0,201 0,206
35 0,136 0,140 0,145 0,150 0,154 0,159 0,164 0,169 0,173 0,178 0,182 0,187 0,192 0,196 0,201
40 0,133 0,137 0,142 0,147 0,151 0,156 0,160 0,165 0,170 0,174 0,178 0,183 0,188 0,192 0,196
50 0,127 0,132 0,136 0,141 0,145 0,149 0,154 0,158 0,163 0,167 0,171 0,175 0,180 0,184 0,188

Расчет пропана-бутана в баллонах

   Параметры и размеры кислородных баллонов для пропана, бутана и их смесей можно посмотреть по ГОСТ 15860-84. В настоящее время применяются четыре типа данных изделий, объемами 5, 12, 27 и 50 литров.

При нормальных атмосферных условиях и температуре 15°С плотность пропана в жидком состоянии составляет 510 кг/м3, а бутана 580 кг/м3. Пропана в газовом состоянии при атмосферном давлении и температуре 15°С равна 1,9 кг/м3, а бутана — 2,55 кг/м3. При нормальных атмосферных условиях и температуре 15°С из 1 кг жидкого бутана образуется 0,392 м3 газа, а из 1 кг пропана 0,526 м3.

   Посчитаем вес пропанобутановой смеси в самом распространенном баллоне в строительстве: объемом 50 с максимальным давлением газа 1,6МПа. Доля пропана по ГОСТ 15860-84 должна быть не менее 60% (примечание 1 к табл.2):

50л = 50дм3 = 0,05м3;

0,05м3 • (510 • 0,6 580 •0,4) = 26,9кг

   Но из-за ограничения давления газа 1,6МПа на стенки в баллон этого типа не заправляют более 21кг.

   Посчитаем объем пропанобутановой смеси в газообразном состоянии:

21кг • (0,526 • 0,6 0,392 •0,4) = 9,93м3

   Вывод (для рассматриваемого случая): 1 баллон = 50л = 21кг = 9,93м3

Данные газы доступны у нас: пропан C3H8

Сколько весит воздух?

Интересные материалы:

Как позвонить в Днр с мтс?Как позвонить в Google?Как позвонить в Яндекс музыка?Как позвонить в службу Билайн бесплатно?Как позвонить в справочную с мобильного Набережные Челны?Как правильно батон или белый хлеб?Как правильно брать морскую свинку в руки?Как правильно будний день или будничный день?Как правильно читается Michelin?Как правильно читать аккорды на гитаре?

Сколько весит куб воздуха?

При температуре, равной 0° по Цельсию вес 1 м 3 воздуха составляет 1,29 кг .

То есть, если в комнате мысленно выделить пространство высотой, шириной и длиной, равными 1м, то в этом воздушном кубе будет находиться именно это количество воздуха.

Если воздух имеет вес и вес, достаточно ощутимый, почему человек не чувствует тяжести? Такое физическое явление, как атмосферное давление, подразумевает, что на каждого жителя планеты давит воздушный столб весом 250 кг . Площадь ладони взрослого человека, в среднем, равна 77 см 2 .

То есть, в соответствии с физическим законами, каждый из нас держит на ладони 77 кг воздуха ! Это равноценно тому, что мы постоянно носим в каждой руке по 5 пудовых гирь . В реальной жизни это не под силу даже тяжелоатлету, однако, с такой нагрузкой каждый из нас справляется легко, потому что атмосферное давление давит с двух сторон, как снаружи человеческого организма, так и изнутри, то есть разница в конечном итоге равна нулю.

Свойства воздуха таковы, что он по-разному действует на организм человека. Высоко в горах, из-за недостатка кислорода у людей возникают зрительные галлюцинации, а на большой глубине, соединение кислорода и азота в особую смесь – «веселящий газ» может создавать чувство эйфории и ощущение невесомости.

Зная эти физические величины можно рассчитать массу атмосферы Земли – то количество воздуха, которое удерживается в околоземном пространстве силами тяготения. Верхняя граница атмосферы заканчивается на высоте 118 км , то есть, зная вес м 3 воздуха, можно поделить всю заемную поверхность на воздушные столбы, с основанием 1х1 м и сложить полученную массу таких колонн.

В конечном итоге, она будет равна 5,3*10 15 тонн. Вес воздушной брони планеты достаточно велик, но и он составляет лишь одну миллионную долю от общей массы земного шара. Атмосфера Земли служит своеобразным буфером, сохраняющим Землю от неприятных космических сюрпризов.

Сколько весит литр воздуха?

Человек не замечает, что его постоянно окружает прозрачный и практически невидимый воздух. Можно ли увидеть этот неосязаемый элемент атмосферы? Наглядно, перемещение воздушных масс ежедневно транслируется на телевизионном экране – теплый или холодный фронт приносит долгожданное потепление или обильный снегопад.

Что еще мы знаем о воздухе? Наверное, то, что он жизненно необходим всем живым существам, обитающим на планете. Человек каждые сутки вдыхает и выдыхает порядка 20 кг воздуха, четвертая часть которого потребляется мозгом.

Вес воздуха можно измерять в разных физических величинах, в том числе и в литрах.

Вес одного литра воздуха будет равняться 1,2930 грамм, при давлении 760 мм рт. столба и температуре, равной 0° С.

Кроме привычного газообразного состояния воздух может встречаться и в жидком виде. Для перехода субстанции в данное агрегатное состояние потребуется воздействие огромного давления и очень низких температур. Астрономы предполагают, что существуют планеты, поверхность которых полностью покрыта жидким воздухом.

Леса – это действительно «зеленые» легкие планеты, без которых существование человека попросту невозможно. Поэтому живые комнатные растения в квартире являются не просто предметом интерьера, они очищают воздух в помещении, загрязнение которого в десятки раз выше, чем на улице.

Чистый воздух давно стал дефицитом в мегаполисах, загрязненность атмосферы настолько велика, что люди готовы покупать чистый воздух. Впервые «продавцы воздуха» появились в Японии. Они производили и продавали чистый воздух в консервных банках и любой житель Токио мог на ужин открыть баночку чистейшего воздуха, и насладиться его свежайшим ароматом.

Состав воздуха

Вес 1 м 3 воздуха составляет 1,29 кг.

Можно ли доказать, что воздух имеет вес? Вполне. Если соорудить весы из обычного карандаша и двух воздушных шаров, закрепив конструкцию на нити, карандаш будет находиться в равновесии, поскольку вес двух накачанных шариков одинаков. Стоит проткнуть один из шаров, перевес окажется в сторону надутого шарика, потому как воздух из поврежденного шарика вышел наружу.

Причин разного веса несколько:

  • чем выше поднимается воздух, тем более разряженным он становится, то есть высоко в горах, давление воздуха будет составлять не 1 кг на см 2 , а вполовину меньше, но и содержание необходимого для дыхания кислорода так же уменьшается ровно вполовину, что способно вызвать головокружение, тошноту и боль в ушах;
  • содержание воды в воздухе.

В состав воздушной смеси входят:

  1. Азот – 75,5% ;
  2. Кислород – 23,15% ;
  3. Аргон – 1,292% ;
  4. Углекислый газ – 0,046% ;
  5. Неон – 0,0014% ;
  6. Метан – 0,000084% ;
  7. Гелий – 0,000073% ;
  8. Криптон – 0,003% ;
  9. Водород – 0,00008% ;
  10. Ксенон – 0,00004% .

Рассмотрим, что из себя представляют газы, которые формируют воздух?

Содержание азота в воздухе – 78% по объему и 75% по массе, то есть этот элемент доминирует в атмосфере, имеет звание одного из самых распространенных на Земле, и, кроме того, содержится и за пределами зоны обитания человека – на Уране, Нептуне и в межзвездных пространствах.

  • белков;
  • аминокислот;
  • нуклеиновых кислот;
  • хлорофилла;
  • гемоглобина и др.

В среднем около 2% живой клетки составляют как раз атомы азота, что объясняет, зачем столько азота в воздухе в процентах объема и массы.Азот также является одним из инертных газов, добываемых из атмосферного воздуха. Из него синтезируют аммиак, используют для охлаждения и в других целях.

Способы получения кислорода

В основном кислород получают тремя способами:

  • разделение воздуха путем низкотемпературной ректификации (глубокого охлаждения);
  • разложение воды путем электролиза (пропускание электрического тока);
  • химический способ.

Из атмосферного воздуха его получают методом глубокого охлаждения, как побочный продукт при получении азота.

Также O2 добывают путем пропускания электрического тока через воду (электролиз воды) с попутным получением водорода.

Химические способ получения малопроизводителен, а, следовательно, и неэкономичен, он не нашел широкого применения и используются в лабораторной практике.

Наверно многие помнят химический опыт, когда в колбе нагревают марганцовку (перманганат калия KMnO4), а потом выделяющийся в процессе нагрева газ собирают в другую колбу?

А весь фокус был, когда в данную колбу помещали тлеющую лучинку и она вспыхивала ярким пламенем и учитель объяснял, что выделившийся газ — O2, который поддерживает горение. И что процесс горения — это не что иное, как процесс окисления.

Таблица 4. гост 5583-78.

Температура газа в баллоне, °С Значение коэффициента K i при избыточном давлении, МПа (кгс/см 2 )
13,7 (140) 14,2 (145) 14,7 (150) 15,2 (155) 15,7 (160) 16,2 (165) 16,7 (170) 17,2 (175) 17,7 (180) 18,1 (185) 18,6 (190) 19,1 (195) 19,6 (200) 20,1 (205) 20,6 (210)
-50 0,232 0,242 0,251 0,260 0,269 0,278 0,286 0,296 0,303 0,311 0,319 0,327 0,335 0,342 0,349
-40 0,212 0,221 0,229 0,236 0,245 0,253 0,260 0,269 0,275 0,284 0,290 0,298 0,305 0,312 0,319
-35 0,203 0,211 0,219 0,226 0,234 0,242 0,249 0,257 0,264 0,272 0,278 0,286 0,293 0,299 0,306
-30 0,195 0,202 0,211 0,217 0,225 0,232 0,239 0,248 0,253 0,261 0,267 0,274 0,281 0,288 0,294
-25 0,188 0,195 0,202 0,209 0,217 0,223 0,230 0,238 0,243 0,251 0,257 0,264 0,270 0,277 0,283
-20 0,182 0,188 0,195 0,202 0,209 0,215 0,222 0,229 0,235 0,242 0,248 0,255 0,261 0,267 0,273
-15 0,176 0,182 0,189 0,196 0,202 0,208 0,215 0,221 0,227 0,234 0,240 0,246 0,252 0,258 0,263
-10 0,171 0,177 0,183 0,189 0,195 0,202 0,208 0,214 0,220 0,226 0,232 0,238 0,244 0,250 0,255
-5 0,165 0,172 0,178 0,184 0,190 0,195 0,202 0,207 0,213 0,219 0,225 0,231 0,236 0,242 0,247
0,161 0,167 0,172 0,179 0,184 0,190 0,196 0,201 0,207 0,213 0,219 0,224 0,229 0,235 0,240
5 0,157 0,162 0,168 0,174 0,179 0,185 0,190 0,196 0,201 0,207 0,212 0,217 0,223 0,228 0,233
10 0,153 0,158 0,163 0,169 0,174 0,180 0,185 0,191 0,196 0,201 0,206 0,211 0,217 0,222 0,227
15 0,149 0,154 0,159 0,165 0,170 0,175 0,180 0,186 0,191 0,196 0,201 0,206 0,211 0,216 0,221
20 0,145 0,150 0,156 0,160 0,166 0,171 0,176 0,181 0,186 0,191 0,196 0,201 0,206 0,211 0,215
25 0.142 0,147 0,152 0,157 0,162 0,167 0,172 0,177 0,182 0,186 0,191 0,196 0,201 0,206 0,210
30 0,139 0,143 0,148 0,153 0,158 0,163 0,168 0,173 0,177 0,182 0,187 0,192 0,196 0,201 0,206
35 0,136 0,140 0,145 0,150 0,154 0,159 0,164 0,169 0,173 0,178 0,182 0,187 0,192 0,196 0,201
40 0,133 0,137 0,142 0,147 0,151 0,156 0,160 0,165 0,170 0,174 0,178 0,183 0,188 0,192 0,196
50 0,127 0,132 0,136 0,141 0,145 0,149 0,154 0,158 0,163 0,167 0,171 0,175 0,180 0,184 0,188

Углекислый газ

Углекислый газ составляет атмосферу Венеры и Марса, его процент в земном воздухе куда ниже. При этом огромное количество углекислоты содержится в океане, он регулярно поставляется всеми дышащими организмами, выбрасывается за счет работы промышленности.

Тот самый загадочный свет дискотечных фонарей, яркие вывески и современные фары используют пятый по распространенности химический элемент, который также вдыхает человек – неон. Как и многие инертные газы, неон оказывает на человека наркотическое действие при определенном давлении, однако именно этот газ используют в подготовке водолазов и других людей, работающих при повышенном давлении.

Также неоново-гелиевые смеси используются в медицине при расстройствах дыхания, сам неон используют для охлаждения, в производстве сигнальных огней и тех самых неоновых ламп. Однако, вопреки стереотипу, неоновый свет не синий, а красный. Все остальные цвета дают лампы с другими газами.

Оцените статью
Кислород
Добавить комментарий