ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 —

ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 - Кислород

Таблица: плотности газов, химические формулы газов и молекулярные веса основных распространенных газов — ацетилен, воздух, метан, азот, кислород и многих других — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)

Таблица: плотности, химические формулы и молекулярные веса основных распространенных газов — ацетилен, воздух, метан, азот, кислород и многих других
Газ Химическая
формула
Молекулярный
вес
Плотность

кг/м3

футов/фут3(lb/ft3)

относительная плотность газа по воздуху

Азот / Nitrogen N2 28.02 1.1651)
1.25062)
0.07271)
0.0780722)
0,97
Ацетилен = этин / Acetylene (ethyne) C2H2 26 1.0921)
1.1702)
0.06821)
0.07292)
0,91
Аммиак / Ammonia NH3 17.031 0.7171)
0.7692)
0.04481)
0.04802)
0,60
Аргон / Argon Ar 39.948 1.6611)
1.78372)
0.10371)
0.1113532)
1,38
Бензол / Benzene C6H6 78.11 3.486 0.20643 2,90
Биогаз, генерируемый метантенком; метан, генерируемый метантенком / Digester Gas (Sewage or Biogas) 0.062
Бутан / Butane C4H10 58.1 2.4891)
2.52)
0.15541)
0.1562)
2,07
Бутилен = Бутен / Butylene (Butene) C4H8 56.11 2.504 0.1482) 2,03
Веселящий газ, закись азота / Nitrous Oxide N2O 44.013 1.9801) 0.114 1,65
Водород / Hydrogen H2 2.016 0.08992) 0.00562) 0,08
Водяной пар / Water Vapor, steam H2O 18.016 0.804 0.048 0,67
Водяной битуминозный газ= голубой водяной газ жирный / Water gas (bituminous) 0.054
Водяной карбюрированный газ = голубой водяной газ / Carbureted Water Gas 0.048
Воздух / Air 29 1.2051)
1.2932)
0.07521)
0.08062)
1
Газ Химическая
формула
Молекулярный
вес
Плотность

кг/м3

футов/фут3(lb/ft3)

Гелий / Helium He 4.02 0.16641)
0.17852)
0.010391)
0.0111432)
0,014
Гексан / Hexane 86.17
Двукосиь азота / Nitric oxide NO 30.0 1.2491) 0.07801) 1,04
Двуокись азота = перекись азота / Nitrogen Dioxide NO2 46.006
Доменный газ = колошниковый газ / Blast furnace gas 1.2502) 0.07802) 0,97
Дисульфид углерода = двусернистый углерод = сернистый углерод = сероуглерод / Carbon disulphide 76.13
Криптон / Krypton 3.742) 2,90
Коксовальный газ = коксовый газ / Coke Oven Gas 0.0342)
Метан / Methane CH4 16.043 0.6681)
0.7172)
0.04171)
0.04472)
0,56
Метиловый спирт / Methyl Alcohol 32.04
Пригодный газ = натуральный газ / Natural gas 19.5 0.7 — 0.92) 0.044 — 0.0562) 0,55-0,70
Продукты сгорания = смесь продуктов полного сгорания в виде CO2, Н2О, SO2 и золы неполного сгорания в виде СО, Н2, и др., а также азота и кислорода / Combustion products 1.112) 0.0692) 0,86
Изопентан / Iso-Pentane 72.15
Газ Химическая
формула
Молекулярный
вес
Плотность

кг/м3

футов/фут3(lb/ft3)

Кислород / Oxygen O2 32 1.3311)
1.42902)
0.08311)
0.0892102)
1,11
Ксенон / Xenon 5.862) 4,54
Метилбензол = толуол / Toluene C7H8 92.141 4.111 0.2435 3,42
Неон / Neon Ne 20.179 0.89992) 0.0561792) 0,70
Н-гептан / N-Heptane 100.20
Н-октан / N-Octane 114.22
Н-пентан / N-Pentane 72.15
Озон / Ozone O3 48.0 2.142) 0.125 1,78
Оксид серы (II)= диоксид серы = двуокись серы = сернистый ангидрид = сернистый газ / Sulfur Dioxide SO2 64.06 2.2791)
2.9262)
0.17031)
0.18282)
1,90
Оксид серы (III)= триоксид серы = серный ангидрид = серный газ / Sulfur Trioxide SO3 80.062
Оксид серы (I)= моноксид серы / Sulfuric Oxide SO 48.063
Пропан / Propane C3H8 44.09 1.8821) 0.11751) 1,57
Пропен = пропилен / Propene (propylene) C3H6 42.1 1.7481) 0.10911) 1,45
Перокид азота / Nitrous Trioxide NO3 62.005
Светильный газ угольный газ (горючий газ, состоящий из 20-30% метана и 50% водорода
получаемый из каменного угля в процессе его полукоксования и частичного термического крекинга / Coal gas
0.5802) 0,45
Сера / Sulfur S 32.06 0.135
Соляная кислота = хлористый водород / Hydrochloric Acid = Hydrogen Chloride HCl 36.5 1.5281) 0.09541) 1,27
Сероводород = сернистый водород / Hydrogen Sulfide H2S 34.076 1.4341) 0.08951) 1,19
Угарный газ, моноксид углерода / Carbon monoxide CO 28.01 1.1651)
1.2502)
0.07271)
0.07802)
0,97
Углекислый газ = двуокись углерода, диоксид углерода / Carbon dioxide CO2 44.01 1.8421)
1.9772)
0.11501)
0.12342)
1,53
Газ Химическая
формула
Молекулярный
вес
Плотность

кг/м3

футов/фут3(lb/ft3)

Хладагент R-11 137.37
Хладагент R-12 120.92
Хладагент R-22 86.48
Хладагент R40 = хлористый метил / Methyl Chloride 50.49
Хладагент R-114 170.93
Хладагент R-123 152.93
Хладагент R-134a 102.03
Холодильный агент R160 =хлористый этил / Ethyl Chloride 64.52
Хлор / Chlorine Cl2 70.906 2.9941) 0.18691) 2,49
Циклогексан / Cyclohexane 84.16
Этан / Ethane C2H6 30.07 1.2641) 0.07891) 1,05
Этиловый спирт = этанол / Ethyl Alcohol 46.07
Этилен / Ethylene C2H4 28.03 1.2602) 0.07862) 0,98

1)NTP — Нормальная температура и давление (Normal Temperature and Pressure)20oC (293.15 K, 68oF) при 1 атм ( 101.325 кН/м2, 101.325 кПа, 14.7 psia, 0 psig, 30 in Hg, 760 мм.рт.ст)

2)STP — Стандартная температура и давление (Standard Temperature and Pressure)0oC (273.15 K, 32oF) при 1 атм (101.325 кН/м2, 101.325 кПа, 14.7 psia, 0 psig, 30 in Hg, 760 torr=мм.рт.ст)

Гсссд 19-81 кислород жидкий и газообразный. плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 к и давлениях 0,1-100 мпа от 13 мая 1981 —

ГСССД 19-81

ГОСУДАРСТВЕННАЯ СЛУЖБА СТАНДАРТНЫХ СПРАВОЧНЫХ ДАННЫХ

GSSSD 19-81

РАЗРАБОТАНЫ Московским ордена Ленина энергетическим институтом; Одесским институтом инженеров морского флота; Всесоюзным научно-исследовательским институтом метрологической службы

Авторы: д-р техн. наук В.В.Сычев, д-р техн. наук А.А.Вассерман, канд. техн. наук А.Д.Козлов, канд. техн. наук Г.А.Спиридонов, канд. техн. наук В.А.Цымарный

РЕКОМЕНДОВАНЫ К УТВЕРЖДЕНИЮ Советским национальным комитетом по сбору и оценке численных данных в области науки и техники Президиума АН СССР; Секцией теплофизических свойств веществ Научного совета АН СССР по комплексной проблеме «Теплофизика»;

Всесоюзным научно-исследовательским центром Государственной службы стандартных справочных данных

ОДОБРЕНЫ экспертной комиссией ГСССД в составе:

д-ра техн. наук И.Ф.Голубева, д-ра хим. наук Л.В.Гурвича, д-ра техн. наук А.В.Клецкого, д-ра техн. наук В.А.Рабиновича, д-ра техн. наук А.М.Сироты

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Всесоюзным научно-исследовательским центром Государственной службы стандартных справочных данных (ВНИЦ ГСССД)

УТВЕРЖДЕНЫ Государственным комитетом СССР по стандартам 13 мая 1981 г. (протокол N 64)

     
Применение стандартных справочных данных обязательно во всех отраслях народного хозяйства

Настоящие таблицы стандартных справочных данных содержат значения плотности, энтальпии, энтропии и изобарной теплоемкости жидкого и газообразного кислорода для области температур 700-1000 К* и давлений 0,1-100 МПа.

_______________     

* Текст документа соответствует оригиналу. — Примечание изготовителя базы данных.     

Таблицы рассчитаны с помощью единого усредненного уравнения состояния кислорода:

ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -,

где ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -; ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -; ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -; ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -.

Уравнение составлено по опытным , , -данным, опубликованным в 1893-1975 гг. и охватывающим в совокупности область температур 54-673 К и давлений 0,0001-981 МПа. При составлении уравнения наибольший вес придавался надежным экспериментальным данным [1-8] для области температур ниже 373 К и давлений ниже 70 МПа. Массив перечисленных данных (1842 точки) аппроксимирован уравнением состояния со средней квадратической погрешностью ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -0,10%. Дополнительно при составлении уравнения использованы по 25 значений второго и третьего вириальных коэффициентов для интервала температур 100-1600 К из работ [7, 9], по 200 значений производных ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -0,10%. Дополнительно при составлении уравнения использованы по 25 значений второго и третьего вириальных коэффициентов для интервала температур 100-1600 К из работ [7, 9], по 200 значений производных ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 - к ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 - для области параметров 58-300 К и 0,05-30 МПа [7] и 148 опытных значений изохорной теплоемкости [10] для области 56-284 К и 0,4-35 МПа. В подавляющем большинстве точек погрешность расчета значений производных лежит в пределах ±2%. Опытные данные об изохорной теплоемкости уравнение описывает со средней квадратической погрешностью 2,0%. Уравнение с высокой точностью удовлетворяет правилу Максвелла: значения давления насыщенного пара , найденные с помощью уравнения состояния на основании этого правила, согласуются с достоверными опытными величинами со средней квадратической погрешностью ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 - для области параметров 58-300 К и 0,05-30 МПа [7] и 148 опытных значений изохорной теплоемкости [10] для области 56-284 К и 0,4-35 МПа. В подавляющем большинстве точек погрешность расчета значений производных лежит в пределах ±2%. Опытные данные об изохорной теплоемкости уравнение описывает со средней квадратической погрешностью 2,0%. Уравнение с высокой точностью удовлетворяет правилу Максвелла: значения давления насыщенного пара , найденные с помощью уравнения состояния на основании этого правила, согласуются с достоверными опытными величинами со средней квадратической погрешностью ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -0,06%.

Коэффициенты уравнения состояния [11], полученные в итоге усреднения коэффициентов системы из 159 уравнений, эквивалентных по точности аналитического описания экспериментальных данных:

0,5003616·10;

0,4697109·10;

-0,1101003·10;

0,5554044·10;

-0,6223903·10;

0,5593279·10;

0,1675656·10;

-0,4078490·10;

-0,6652177·10;

-0,3962116·10;

-0,2169624·10;

0,5797930·10;

-0,9781135·10;

-0,3705044·10;

0,1280217·10;

-0,1481088·10;

0,1920227·10;

-0,1711550·10;

-0,3183172·10;

0,1067042·10;

0,8324700·10;

-0,5225285·10;

-0,2974850·10;

0,73023·10

-0,1625295·10;

0,9576734·10;

-0,1913846·10;

0,3030303·10;

0,2632636·10;

0,4463061·10;

-01683686·10;

-0,7658060·10;

-0,4604221·10;

0,3643325·10;

0,3828505·10;

-0,5490344·10;

0,2180327·10;

-0,4612808·10;

0,5240760·10;

0,2105995·10;

-0,7494169·10;

-0,1560455·10.

При расчетах приняты следующие значения газовой постоянной и критических параметров: 259,835 Дж/(кг·К); 154,581 К; ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -436,2 кг/м.

Значения энтальпии, энтропии и изобарной теплоемкости рассчитаны по формулам

ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -; ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -; ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -;

     
ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -,

где , , — энтальпия, энтропия и изохорная теплоемкость в идеально-газовом состоянии.

Значения и определены по соотношениям

ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -,

     
ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -,

где и — энтальпия и энтропия при температуре ; — теплота сублимации при 0 К; — константа (в данной работе 0).

Значение теплоты сублимации кислорода принято равным 275,542 кДж/кг по данным [12]. Значения энтальпии и энтропии при температуре 100 К, являющейся вспомогательной точкой отсчета при интегрировании уравнения для , составляют 90,66 кДж/кг и 5,4124 кДж/(кг·К) соответственно [9]. Значения изобарной теплоемкости в идеально-газовом состоянии заимствованы из таблиц [9] и аппроксимированы полиномом

ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -,

где

-0,14377991·10;

0,40380420·10;

-0,21055776·10;

0,70241596·10;

-0,15110750·10;

0,21669226·10;

-0,21011829·10;

0,13639068·10;

-0,56838531·10;

0,13754216·10;

ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 --0,14696235·10;

0,37935559·10;

-0,17549860·10;

0,44380734·10;

-0,46774962·10;

ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -.

В табл.1-4 приведены значения термодинамических функций кислорода, а в табл.5-8 — случайные погрешности этих функций, вычисленные по формуле

ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -,

где — среднее значение термодинамической функции; — значение этой функции, полученное по -му уравнению из системы, содержащей уравнений. Погрешность — характеризует рассеяние расчетных значений относительно среднего значения . Значения погрешностей представлены для части изобар; для промежуточных изобар они могут быть определены линейной интерполяцией.

ГСССД 19-81 Кислород жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1000 К и давлениях 0,1-100 МПа от 13 мая 1981 -

     
Продолжение

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

 2HgO →ot  2Hg O2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Нахождение в природе

Кислород

Накопление O

2

в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.

1

. (3,85—2,45 млрд лет назад) — O

2

не производился

2

. (2,45—1,85 млрд лет назад) O

2

производился, но поглощался океаном и породами морского дна

3

. (1,85—0,85 млрд лет назад) O

2

выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя

4

. (0,85—0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление O

2

в атмосфере

5

. (0,54 млрд лет назад — по настоящее время) современный период, содержание O

2

в атмосфере стабилизировалось

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад, в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы).

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

В 2022 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.

Некоторые факты

  • Ⓘ Помните: плотность — это физическая величина, которая определяет соотношение между массой и объемом, который занимает масса.

  • Обычно мы обозначаем плотность буквой d или строчной греческой буквой ρ (произношение: ро).
  • Если тело образца имеет массу m и занимает объем V, то плотность вещества, из которого он состоит, можно рассчитать по следующей формуле:

    куда:

    • d = плотность,
    • m = масса,
    • V = volume.
  • Единица плотности в системе СИ — килограмм на кубический метр :

  • Плотность — это характеристика конкретного вещества. Примером вещества с относительно высокой плотностью является сталь. Примером относительно небольшой плотности является пенополистирол.

    Ⓘ Пример: если мы возьмем в руки небольшой стальной шарик, мы легко почувствуем его вес. Если взять анологичный (то есть того же размера), но сделанный из пенополистирола шарик в б / у, то мы заметим, что он намного легче предыдущего. Это связано с тем, что сталь имеет гораздо более высокую плотность, чем пенополистирол.

  • Вещества с высокой плотностью являются хорошими акустическими изоляторами . Например, если сделать стены комнаты толстым слоем бетона (материал с высокой плотностью), то, что происходит внутри, будет очень плохо слышно снаружи.
  • Плотность древесины может сильно различаться от породы к породе. Средняя плотность древесины охромы пирамидальной (обычно известной как бальзовая древесина ) составляет всего 110 кг / м 3 . Для сравнения: оливковой древесины примерно в 8 раз больше (852 кг / м 3 ). Инженеры отметили очень низкую плотность первого из них, что привело к его использованию во многих отраслях промышленности. Из бальзового дерева строят много полезных вещей, например:
    • плоты и яхты,
    • доски для серфинга
    • планеры и самолеты,
    • ортопедические протезы,
    • ракетки для настольного тенниса,
    • удочки,
    • конструктивные элементы в моделировании,
    • трубчатые фильтры,
    • изоляционная арматура,
    • проводники (летучие мыши).

Плотность газов в жидком и твердом состояниях при различных температурах

Значения плотности газов и паров в жидком и твердом состояниях приведены в таблице в зависимости от температуры при нормальном атмосферном давлении. Величина плотности газов указана в основном при низких температурах (в интервале от -268 до 20°С), при которых они находятся в жидком, или твердом состояниях.

При низких температурах плотность некоторых газов сравнима с плотностью металлов. К плотным (тяжелым) газам в жидком состоянии можно отнести такие газы, как этилен, криптон (плотность 2371 кг/м3) и ксенон (плотность 3060 кг/м3).

Газы в твердом состоянии имеют плотность немногим больше, чем в жидком. Твердое состояние газа достигается при более низкой температуре.Например, углекислый газ находится в виде жидкости при температуре -60°С (при атмосферном давлении), но уже при -79°С становиться твердым и имеет плотность 1530 кг/м3.

Плотность газов в таблице дана в т/м3и приведена для следующих газов: азот N2, окись азота NO, аммиак NH3, аргон Ar, ацетилен C2H2, водород: сернистый H2S, фосфористый H3P, фтористый HF, хлористый HCl, воздух, гелий He, криптон Kr, ксенон Xe, кислород O2, метан CH4, метилхлорид CH3Cl, неон Ne, озон O3, сера двуокись SO2, углерод:

Плотность газов и паров при нормальных условиях

В таблице приведена плотность газов и паров при нормальных условиях – температуре 0°С и нормальном атмосферном давлении (760 мм. рт. ст.). Для некоторых газов, например газа стибина, плотность дана при температуре 15°С и давлении 754 мм. рт. ст.

Значение плотности газов в таблице указано в размерности кг/м3 для следующих газов и паров: азот N2, аммиак NH3, аргон Ar, ацетилен C2H2, бор фтористый BF3, бутан C4H10, водород:

бромистый HBr, йодистый HI, мышьяковистый H3As, селенистый H2Se, сернистый H2S, теллуристый H2Te, фосфористый H3P, хлористый HCl, воздух, гелий He, германия тетрагидрид GeH4, диметиламин (CH3)

2NH, дифтордихлорметан CF2Cl2, дициан C2N2, закись азота N2O, кислород O2, кремний фтористый SiF4, гексагидрид Si2H6, тетрагидрид SiH4, криптон Kr, ксенон Xe, метан CH4, метиленхлорид CH3Cl, метиламин CH5N, метиловый эфир C2H6O, метилфторид CH3F, метилхлорид CH3Cl, мышьяк фтористый AsF5, неон Ne, нитрозил фтористый NOF и хлористый NOCl, озон O3, окись азота NO, пропан C3H8, пропилен C3H6, радон Rn, двуокись серы SO2 и гексафторид серы SF2, силан диметил SiH2(CH3)

2, метил SiH3CH3, хлористый SIH3Cl, трифтористый SiHF3, стибин SbH3, сульфурил фтористый SO2F2, триметиламин (CH3)3N, триметилбор (CH3)

3B, двуокись углерода CO2, окись углерода CO, сероокись COS, фосфор фтористый PF2, оксифторид POF3, пентафторид PF5, фтор F2, фторокись азота NO2, двуокись хлора ClO2, окись хлора Cl2O, хлорокись азота NO2Cl, этан C2H6, этилен C2H4, окись азота NO.

Плотность газов вычисляется, как отношение молярной массы газа к его молярному объему, который при 0°С и давлении 1 атм. равен 22,4 л/моль.

Следует отметить, что самым легким газом является водород — плотность этого газа при нормальных условиях равна 0,0899 кг/м3. Для удобства восприятия плотность газов приводят именно к плотности водорода, используя при этом относительную плотность по водороду. Например, относительная плотность газа азота N2 по водороду равна 13,9.

Наибольшую плотность имеет газ радон.  Этот радиоактивный газ имеет плотность при нормальных условиях 9,73 кг/м3, а его относительная плотность по водороду составляет величину 108,2.

Необходимо отметить, что при увеличении давления газов и паров, их плотность увеличивается пропорционально.

Примечание: Для газов и паров, рядом со значением плотности которых, присутствует символ *, ее величина в таблице приведена при температуре 20°С.

Из анализа данных, представленных в таблице, видно, что плотность рассмотренных газов находится в диапазоне от 0,089 до 9,73 кг/м3.

Получение кислорода

Получают кислород несколькими способами. В лаборатории кислород получают из Кислородсодержащих веществ, которые могут легко его отщеплять, например из перманганата калия КМnO4 (рис. 41) или из бертолетовой соли КСlO3: 2КМnО4 = K2MnO4 МnО2 O2↑

2КСlO3 = 2КСl O2↑ При получении кислорода из бертолетовой соли для ускорения реакции должен присутствовать катализатор — двуокись марганца. Катализатор ускоряет разложение и делает его более равномерным. Без катализатора может

Рис. 41. Прибор для получения кислорода лабораторный способом из перманганата калия. 1 — перманганат калия; 2 — кислород; 3 — вата; 4 — цилиндр — сборник.

произойти взрыв, если бертолетова соль взята в большом количестве и особенно если она загрязнена органическими веществами. Из перекиси водорода кислород получают также в присутствии катализатора — двуокиси марганца МnО2 по уравнению: 2Н2O2[МnО2] = 2Н2O О2

■ 17. Зачем при разложении бертолетовой соли добавляют МnО2? (См. Ответ) 18. Образующийся при разложении КМnO4 кислород можно собирать над водой. Отразите это в схеме прибора. 19. Иногда при отсутствии в лаборатории двуокиси марганца вместо нее в бертолетову соль добавляют немного остатка после прокаливания перманганата калия. Почему возможна такая замена? 20. Какой объем кислорода выделится при разложении 5 молей бертолетовой соли? (См. Ответ)

Кислород может быть получен также разложением Нитратов при нагревании выше температуры плавления: 2KNO3 = 2KNO2 О2 В промышленности кислород получают в основном из жидкого воздуха. Переведенный в жидкое состояние воздух подвергают испарению. Сначала улетучивается азот (его температура кипения — 195,8°), а кислород остается (его температура кипения —183°).

■ 21. Перечислите известные вам лабораторные и промышленные способы получения кислорода. Запищите их в тетрадь, сопровождая каждый способ уравнением реакции. (См. Ответ) 22. Являются ли реакции, используемые для получения кислорода, окислительно-восстановительными?

Дайте обоснованный ответ. 23. Взято по 10 г следующих веществ; перманганата калия, бертолетовой соли, нитрата калия. В каком случае удастся получить наибольший объем кислорода? 24. В кислороде, полученном при нагревании 20 г перманганата калия, сожгли 1 г угля. Какой процент перманганата подвергся разложению? (См. Ответ)

Применение при сварке и резке

Кислород – важнейший газ для сварки и резки. При сжигании горючего газа в воздухе образуется пламя с температурой не более 2000°C, а в технически чистом кислороде она может превышать 2500–3000°C. Именно такая температура пламени практически пригодна для сварки многих металлов.

При газопламенной обработке обычно используется кислород с объемным содержанием 99,2–99,5% и выше. Для неответственных видов газовой сварки, пайки, поверхностной закалки и других способов нагрева газовым пламенем может применяться кислород чистотой 92–98%.

Для сварки и резки используют кислород в газообразном виде, поступающий от баллона, газификационной установки (СГУ-1, СГУ-4, СГУ-7К, СГУ-8К, ГХ-0,75, ГХК-3 и др.) или автономной станции (КГСН-150, К-0,15, К-0,4, К-0,5 и др.). При значительных объемах потребления кислород безопаснее и экономически целесообразнее хранить и транспортировать в жидком, а не газообразном виде, несмотря на неизбежные потери при испарении сжиженного газа.

Превращение жидкого кислорода в газообразный осуществляется в газификационных установках – насосных или безнасосных. Примером насосной установки может служить стационарная установка АГУ-2М, предназначенная для газификации непереохлажденного кислорода и наполнения реципиентов и баллонов под давлением до 240 кгс/см2 (24 МПа).

При испарении 1 л жидкого кислорода образуется около 860 л газообразного (при нормальном атмосферном давлении и температуре 20°С). При транспортировке жидкого кислорода масса тары, приходящаяся на 1кг кислорода, в 10 и более раз меньше, чем при транспортировке газообразного. При хранении, перевозке и газификации сжиженного газа неизбежны потери на его испарение.

Расчета объема газообразного кислорода в баллоне.

Для расчета объема газообразного кислорода в баллоне в м3 при нормальных условиях используют формулу (ГОСТ 5583-78):

V = K1 • Vб,

где K1 – коэффициент, Vб – вместимость баллона в дм3 (л).

Некоторые значения коэффициента K1 для расчета объема газообразного кислорода при нормальных условиях

t газа в бал- лоне, °С Значение K1 при избыточном давлении, кгс/см2 (МПа)
140 (13,7) 145 (14,2) 150 (14,7) 155 (15,2) 160 (15,7) 165 (16,2) 170 (16,7) 175 (17,2) 180 (17,7) 185 (18,1) 190 (18,6) 195 (19,1)
-50 0,232 0,242 0,251 0,260 0,269 0,278 0,286 0,296 0,303 0,311 0,319 0,327
-40 0,212 0,221 0,229 0,236 0,245 0,253 0,260 0,269 0,275 0,284 0,290 0,298
-30 0,195 0,202 0,211 0,217 0,225 0,232 0,239 0,248 0,253 0,261 0,267 0,274
-20 0,182 0,188 0,195 0,202 0,209 0,215 0,222 0,229 0,235 0,242 0,248 0,255
-10 0,171 0,177 0,183 0,189 0,195 0,202 0,208 0,214 0,220 0,226 0,232 0,238
0 0,161 0,167 0,172 0,179 0,184 0,190 0,196 0,201 0,207 0,213 0,219 0,224
10 0,153 0,158 0,163 0,169 0,174 0,180 0,185 0,191 0,196 0,201 0,206 0,211
20 0,145 0,150 0,156 0,160 0,166 0,171 0,176 0,181 0,186 0,191 0,196 0,201
30 0,139 0,143 0,148 0,153 0,158 0,163 0,168 0,173 0,177 0,182 0,187 0,192
40 0,133 0,137 0,142 0,147 0,151 0,156 0,160 0,165 0,170 0,174 0,178 0,183
50 0,127 0,132 0,136 0,141 0,145 0,149 0,154 0,158 0,163 0,167 0,171 0,175

Характеристики марок газообразного технического кислорода (ГОСТ 5583-78)

Параметр Кислород газообразный технический
Первого сорта Второго сорта
Объемная доля кислорода O2, %, не менее 99,7 99,5 (в ряде случаев – 99,2)
Объемная доля водяных паров, %, не более 0,007 0,009
Объемная доля водорода H2, %, не более (только для кислорода, полученного электролизом воды) 0,3 0,5
Содержание углекислоты CO2, окиси углерода CO, газообразных кислот и оснований, озона O3 и других газов-окислителей Не нормируется
Содержание щелочи (только для кислорода, полученного электролизом воды) Кусок фильтровальной бумаги (смоченный раствором фенолфталеина, разбавленного водой в соотношении 1:10) в стеклянной трубке с пропускаемым кислородом (0,1–0,2 дм3/мин в течение 8–10 минут) не должен окраситься в красный или розовый цвет
Запах Не нормируется

Таблица плотностей веществ — урок. физика, 7 класс.

Твёрдые вещества kgm3 gcm3
Платина (21500)    (21,5)
Золото (19300) (19,3)
Вольфрам  (19000 ) (19,0)
Ртуть (11400 ) (11,4)
Серебро (10500 ) (10,5)
Медь (8900) (8,9)
Никель  (8800 ) (8,8)
Латунь (8500 ) (8,5)
Сталь, железо (7800) (7,8)
(7300 ) (7,3)
Цинк (7100 ) (7,1)
Чугун (7000 ) (7,0)
Алмаз (3500 ) (3,5)
Алюминий (2700 ) (2,7)
Мрамор (2700) (2,7)
Гранит (2600) (2,6)
Стекло  (2600 ) (2,6)
Бетон (2300 ) (2,3)
Фарфор (2300) (2,3)
Графит (2200 ) (2,2)
Лёд (900 ) (0,9)
Парафин (900 ) (0,9)
Дуб (сухой) (700 ) (0,7)
Берёза (сухая) (650 ) (0,65)
Пробка (200) (0,2)
Платиноиридиевый сплав  (21500 )
Свинец (11400) (11,4)
Жидкости kgm3 gcm3
Ртуть (13600 ) (13,6)
Мёд  (1300 ) (1,3)
Глицерин  (1260) (1,26)
Молоко (1036 ) (1,036)
Морская вода  (1030) (1,03)
Вода (1000) (1)
Подсолнечное масло  (920 ) (0,92)
Нефть (820) (0,82)
Спирт / этанол, керосин (800) (0,8)
Бензин  (700) (0,7)
Газы kgm3
Хлор (3,22)
Озон (2,14)
Пропан  (2,02)
Углекислый газ  (1,98)
Кислород (1,43)
Воздух (1,29)
Азот (1,25)
Гелий (0,18)
Водород  (0,09)
Неон (0,90)

Таблица плотности веществ

В таблице приведена плотность различных материалов и веществ:

  • газов,
  • металлов,
  • сплавов,
  • продуктов.

Для вашего удобства реализован поиск по таблице. Для этого в поле «Найти» введите интересующий вас материал.

Вещество (материал) Плотность
ρ, кг/м3
Плотность
ρ, г/см3
Агат
плотность агата
2600 2,6
Азот
плотность азота
1250 1,25
Азот сжиженный (-195°C)
плотность сжиженного азота
850 0,850
Азота закись N2O
плотность закиси азота
1,98 0,00198
Азота окись NO
плотность окиси азота
1,3402 0,00134
Азота фторокись NO2F
плотность фторокиси азота
2,9 0,0029
Азота хлорокись NO2Cl
плотность хлорокиси азота
2,57 0,00257
Азотная кислота, HNO3 водный раствор 91%
плотность азотной кислоты
1505 1,505
Актиний
плотность актиния
10070 10,07
Алебастр
плотность алебастра
1800-2500 1,8-2,5
Алмаз
плотность алмаза
3510 3,51
Алюминиевая бронза (3-10% Al)
плотность алюминиевой бронзы
7700-8700 7,7-8,7
Алюминиевая фольга
плотность алюминиевой фольги
2700 -2750 7,7-2,75
Алюминий
плотность алюминия
2710 2,71
Алюминий крупнокусковой
плотность крупнокускового алюминия
880 0,88
Алюминий порошкообразный
плотность порошкообразного алюминия
750 0,75
Алюминий фтористый (криолит)
плотность фтористого алюминия
1600 1,6
Алюминия оксид Al2O3 (чистый сухой)
плотность оксида алюминия
1520 1,52
Америций чистый
плотность амерция
13670 13,67
Аммиак
плотность аммиака
770 0,77
Аммиачная селитра (нитрат аммония)
плотность аммиачной селитры
730 0,73
Аммония сульфат; сернокислый аммоний (мокрый)
плотность сульфата аммония
1290 1,29
Аммония сульфат; сернокислый аммоний (сухой)
плотность сульфата аммония
1130 1,13
Андезит цельный
плотность андезита цельного
2770 2,77
Анилин
плотность анилина
1020 1,02
Апатит
плотность апатита
3190 3,19
Арахис нечищеный (земляной орех)
плотность арахиса нечищеного
270 0,27
Арахис чищенный (земляной орех)
плотность арахиса чищенного
650 0,65
Аргон
плотность аргона
1784 1,784
Асбест кусками
плотность асбеста
1600 1,6
Асбест цельный
плотность асбеста
2350-2600 2,35-2,6
Асфальтобетон
плотность асфальтобетона
2250 2,25
Асфальтовая крошка
плотность асфальтовой крошки
720 0,72
Ацетилен C2H2
плотность ацетилена
1,17 0,00117
Ацетон
плотность ацетона
800 0,8
Ацетонитрил
плотность ацетонитрила
780 0,78
Баббит
плотность баббита
7270 7,27
Базальт дробленый
плотность базальта дробленного
1950 1,95
Базальт цельный
плотность базальта цельного
3000 3
Бакелит цельный
плотность бакелита цельного
1360 1,36
Барий чистый
плотность бария чистого
3590 3,59
Бариллиево-медный сплав, бериллиевая бронза
плотность бериллиевой бронзы
8100 — 8250 8,1 — 8,25
Бария сульфат (барит), дробленый
плотность сульфата бария
2880 2,88
Бензин
плотность бензина
750 0,75
Бензол
плотность бензола
880 0,88
Бериллий
плотность бериллия
1848 1,848
Берклий чистый
плотность берклий чистый
14780 14,78
Бетон
плотность бетона
2300 2,3
Бетонит сухой
плотность бетонита сухого
600 0,6
Бобы какао
плотность какое бобов
600 0,6
Бобы касторовые
плотность бобов касторовых
580 0,58
Бобы соевые
плотность соевых бобов
720 0,72
Бокситы дробленые
плотность дробленых бокситов
1282 1,282
Бор
плотность бора
2460 2,46
Бор фтористый
плотность фтористого бора
2,99 0,00299
Бром чистый
плотность брома
3120 3,12
Бронза
плотность бронзы
8700-8900 8,7-8,9
Бронза свинцовистая
плотность свинцовистой бронзы
7700 — 8700 7,7-8,7
Бронза фосфористая
плотность бронзы фосфористной
8780 — 8920 8,78-8,92
Бумага обычная
плотность бумаги
1201 1,201
Бура (пироборнокислый натрий)
плотность буры
850 0,85
Буровой раствор глинистый жидкий
плотность раствора буры
1730 1,73
Бутан (i-Бутан) C4H10
плотность i-бутана
2,67 0,00267
Бутан (n-Бутан) C4H10
плотность n-бутана
2,7 0,0027
Бытовые отходы, бытовой мусор
плотность мусора
480 0,48
Ванадий чистый
плотность ванадия
6020 6,02
Винипласт
плотность винипласта
1380 1,38
Висмут чистый
плотность висмута
9750 9,75
Вода дистиллированная
плотность воды дистиллированной
998 0,998
Вода морская
плотность морской воды
1020 1,02
Водород
плотность водорода
90 0,09
Водород сжиженный
плотность сжиженного водорода
72 0,072
Водород бромистый HBr
плотность бромистого водорода
3,66 0,00366
Водород йодистый Hl
плотность йодистого водорода
5,79 0,00579
Водород мышьяковистый H3As
плотность мышьяковистого водорода
3,48 0,00348
Водород селенистый H2Se
плотность селенистого водорода
3,66 0,00366
Водород сернистый H2S
плотность сернистого водорода
1,54 0,00154
Водород теллуристый H2Te
плотность теллуристого водорода
5,81 0,00581
Водород фосфористый H3P
плотность фосфористого водорода
1,53 0,00153
Водород хлористый HCl
плотность хлористого водорода
1,64 0,00164
Водяной пар (100°C)
плотность водяного пара
880 0,88
Воздух
плотность воздуха
1290 1,29
Воздух сжиженный
плотность воздуха
861 0,861
Вольфрам
плотность вольфрама
19100 19,1
Гадолиний чистый Gadolinium Gd
плотность гадолиния
7895 7,895
Галлий чистый
плотность галлия
5900 5,9
Гафний чистый Hafnium Hf
плотность гафния
13310 13,31
Гелий
плотность гелия
0,18 0,00018
Гелий сжиженный
плотность гелия
147 0,147
Гематит (красный железняк) дробленый
плотность гематита
2100-2900 2,1-2,9
Гематит (красный железняк) цельный
плотность гематита
5095 — 5205 5,095 — 5,205
Германий чистый
плотность германия
5300 5,3
Глицерин
плотность глицерина
1260 1,26
Гранит
плотность гранита
2800 2,8
Двуокись углерода
плотность углекислого газа
1980 1,98
Дедерон
плотность дедерона
1100 1,1
Дизельное топливо (солярка)
плотность дизельного топлива
850 0,85
Дуб
плотность дуба
800 0,8
Дюралюминий
плотность дюралюминия
2790 2,79
Дюралюминий
плотность дюралюминия
2790 2,79
Железо
плотность железа
7800 7,8
Золото
плотность золота
19300 19,3
Инвар
плотность инвара
8700 8,7
Иридий
плотность иридия
22400 22,4
Каменный уголь
плотность каменного угля
1400 1,4
Керосин
плотность керосина
800 0,8
Кислород
плотность кислорода
1470 1,47
Кокс
плотность кокса
600 0,6
Криптон
плотность криптона
3743 3,743
Ксенон
плотность ксенона
5851 5,851
Латунь
плотность латуни
8600 8,6
Лед (вода ниже 0°С)
плотность льда
900 0,9
Литий
плотность лития
535 0,535
Магний
плотность магния
1738 1,738
Медь
плотность меди
8900 8,9
Метан
плотность метана
717 0,717
Молоко
плотность молока
1030 1,03
Натрий
плотность натрия
968 0,986
Неон
плотность неона
900 0,9
Окись углерода
плотность угарного газа
1250 1,25
Пертинакс
плотность пертинакса
1350 1,35
Песчаник
плотность песчаника
2400 2,4
Платина
плотность платины
21500 21,5
Пропан
плотность пропана
2200 2,2
Органическое стекло
плотность органического стекла
1180 1,18
Пробковая кора
плотность пробковой коры
150 0,15
Ртуть
плотность ртути
13500 13,5
Свинец
плотность свинца
11340 11,34
Серебро
плотность серебра
10500 10,5
Серная кислота (концентрированная)
плотность серной кислоты
1830 1,83
Сосна
плотность сосны
500 0,5
Спирт (ректификат)
плотность спирта
830 0,83
Стекло оконное
плотность оконного стекла
2500 2,5
Титан
плотность титана
4500 4,5
Углерод
плотность углерода
2260 2,26
Фтор
плотность фтора
1696 1,696
Хлор
плотность хлора
3220 3,22
Цинк
плотность цинка
7100 7,1
Электрон
плотность электрона
1800 1,8
Этилен
плотность этилена
1260 1,26
Этиловый спирт
плотность этилового спирта
790 0,79
Эфир
плотность эфира
720 0,72

Таблица плотности газов

Вещество Плотность, кг/м3
Азот 1,251
Аммиак 0,7714
Аргон 1,7839
Ацетилен 1,1709
Водород 0,08987
Воздух 1,2928
Гелий 0,1785
Закись азота 1,978
Кислород 1,429
Криптон 3,74
Ксенон 5,89
Метан 0,7168
Неон 0,8999
Озон 2,22
Окись азота 1,3402
Пропан 2,0037
Радон 9,73
Триметиламин 2,58
Двуокись углерода 1,9768
Окись углерода 1,25
Сплав ВМЛ9 1850
Сероокись углерода 2,72
Фтористый фосфор 3,907
Фтор 1,695
Фтороокись азота 2,9
Хлор 3,22
Двуокись хлора 3,09
Окись хлора 3,89
Этан 1,356

Смотрите также:

таблица насыпной плотности

таблица плотности металлов

таблица плотности воды

таблица плотности воздуха

Таблица плотности газов необходима для физических расчетов.

Наша проектная организация готова разработать для Вас проекты водоснабжения и канализации для объектов любой сложности на любом этапе проектирования.

Физика. таблица плотностей

Плотность — это скалярная физическая величина, которая определяется как отношение массы тела к занимаемому этим теломобъёму или площади (поверхностная плотность). Для обозначения плотности обычно используется символ Таблица плотностей.

Наименование Плотность, кг/м3
Алюминий 2,7·103
Барий 3,5·103
Бензин 0.750 · 103
Ванадий 6,0·103
Вольфрам 19,1 ·103
Вода дистилированая 0.998 · 103
Вода морская 1.020 · 103
Висмут 9,8·103
Дизельное топливо 0.850 · 103
Железо 7,8·103
Литий 0,53·103
Медь 8,9·103
Никель 8,9·103
Свинец 11,3·103
Серебро 10,5·103
Цезий 1,9·103
Цинк 7,1·103
Вода (при 40С) 1,00·103
Глицерин 1,26·103
Гранит  2600
Дерево (Дуб) 810
Ртуть 13,6·103
Спирт 0,80·103
Сероуглерод 1,26·103
Водород 0,09
Воздух 1,29
Гелий 0,18
Кислород 1,43
Керосин 800
Эфир 0.720 · 103
Нефть изменяемая 730—1040
Мрамор 2700
Керосин 0.800 · 103
Серная кислота  1.830 · 103
Сера 2070 кг/м³
Золото 19320
Гипс 1500
Бетон 2000
Молоко 1050
Стекло 2500
Чугун 7000

Физические свойства

При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Хорошо растворяется в перфторированных углеводородах (20-40 об/об %).

Межатомное расстояние — 0,12074 нм. Является парамагнетиком. В жидком виде притягивается магнитом.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

Твёрдый кислород (температура плавления −218,35 °C) — синие кристаллы. Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

  • α-O2 — существует при температуре ниже 23,65 K; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.
  • β-O2 — существует в интервале температур от 23,65 до 43,65 K; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°.
  • γ-O2 — существует при температурах от 43,65 до 54,21 K; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

Химические свойства

Сильный окислитель, самый активный неметалл после фтора, образует бинарные соединения (оксиды) со всеми элементами, кроме гелия, неона, аргона. Наиболее распространённая степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

 4Li O2 → 2Li2O
 2Sr O2 → 2SrO

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

 2NO O2 → 2NO2

Окисляет большинство органических соединений в реакциях горения:

 2C6H6 15O2 → 12CO2 6H2O
 CH3CH2OH 3O2 → 2CO2 3H2O

При определённых условиях можно провести мягкое окисление органического соединения:

 CH3CH2OH O2 → CH3COOH H2O

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета.

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

 2Na O2 → Na2O2
 2BaO O2 → 2BaO2
 H2 O2 → H2O2
 Na2O2 O2 → 2NaO2
 K O2 → KO2
 3KOH 3O3 → 2KO3 KOH ∗ H2O 2O2
 PtF6 O2 → O2PtF6

В этой реакции, кислород проявляет восстановительные свойства.

Оцените статью
Кислород
Добавить комментарий