Окислительная переработка аренов

Окислительная переработка аренов Кислород

Жидкофазное-каталитическое окисление газоконденсатного толуола

№ 6 (87)

AuiSli am те)

universum:

технические науки

июнь, 2021 г.

ЖИДКОФАЗНОЕ-КАТАЛИТИЧЕСКОЕ ОКИСЛЕНИЕ ГАЗОКОНДЕНСАТНОГО ТОЛУОЛА

Облобердиев Сарвар Бахромжон угли

преподаватель,

Ташкентского государственного технического университета им. Ислома Каримова,

Республика Узбекистан, г. Ташкент E-mail: nayimabazarova89@mail.ru

Рустамов Достон Исроил угли

ассистент,

Ташкентского государственного технического университета им. Ислома Каримова

Республика Узбекистан, г. Ташкент E-mail: doss130396@gmail.com

Валикулов Шерзод Зайнитдинович

преподаватель,

Ташкентского государственного технического университета им. Ислома Каримова,

Республика Узбекистан, г. Ташкент

LIQUID-PHASE-CATALYTIC OXIDATION OF GAS-CONDENSATE TOLUENE

Sarvar Oblaberdiyev

Teacher

Tashkent State Technical University names Isloma Karimova

Uzbekistan, Tashkent

Doston Rustamov

Assistant

Tashkent State Technical University names Isloma Karimova

Uzbekistan, Tashkent

Sherzod Valiqulov

Teacher

Tashkent State Technical University names Isloma Karimova

Uzbekistan, Tashkent

АННОТАЦИЯ

Одним из самых прогрессивных методов получения большинства ароматических карбоновых кислот является жидкофазное каталитическое окисление соответствующих алкилароматических углеводородов. Целью данной работы является исследование процесса получения бензойной кислоты путем жидкофазно -каталитического окисления толуола получаемого из местного газоконденсатного сырья, подбор условий протекания реакций в зависимости от состава катализатора, типа растворителя, температуры и нахождение оптимальных условий позволяющий достичь высокие выходы и чистоты бензойной кислоты.

ABSTRACT

One of the most progressive methods for the preparation of most aromatic carboxylic acids is the liquid-phase catalytic oxidation of the corresponding alkyl aromatic hydrocarbons. The aim of this work is to study the process of producing benzoic acid by liquid-phase catalytic oxidation of toluene obtained from local gas-condensate feedstock, selecting the reaction conditions depending on the composition of the catalyst, the type of solvent, temperature, and finding optimal conditions to achieve high yields and purity of benzoic acid.

Ключевые слова; жидкофазно, углеводород, температура, толуол, реактор.

Keywords; liquid phase, hydrocarbon, temperature, toluene, reactor.

Введение. Окислением алкилароматических углеводородов получают различные кислород содержащие соединения, которые широко применяются в различных отраслях народного хозяйства. Окисление производят различными способами и окислителями.

Окисления толуола в присутствии соединений металлов переменной валентности, в интервале температур 95-110°С, проводили кислородом или воздухом на лабораторной установке, рис.1 [2].

Библиографическое описание: Облобердиев С.Б., Рустамов Д.И., Валикулов Ш.З. Жидкофазное-каталитическое окисление газоконденсатного толуола // Universum: технические науки : электрон. научн. журн. 2021. 6(87). URL: https://lifeo2.ru/ru/tech/archive/item/11946

№ 6 (87)

AuiMi am те)

universum:

технические науки

июнь, 2021 г.

1-реактор; 2-трубинная мешалка; 3-латр; 4-барбатёр; 5-обратный холодильник; 6-флегмоотделитель; 7-нихромовая спираль; 8-реле; 9-контактный термометр; 10-реометр; 11 -пробоотборник.

Рисунок 1. Реактор периодического действия

Результаты. Для более точного исследования реакций окисления опыты проводили в стеклянном реакторе, объёмом 100 мл, снабженном турбинной мешалкой (2), скорость вращения которой регулировалась латром (3), барботёром (4), обратным холодильником (5), которой соединен с реактором (1) через Флегмоотделитель (6). Постоянство температуры поддерживалась с точностью 0,5°С с помощью системы контактный термометр (9) — реле (8). Расход кислорода или воздуха контролировался по реометру (10)

Реакцию проводили следующим образом: в реактор загружали навеску катализатора, затем приливали определенное количество растворителя (если реакция идёт в среде низших алифатических кислот). После этого включали одновременно перемешивание и обогрев реакционной массы. После её гомогенизации и достижения заданной температуры в токе кислорода или воздуха подавали исходный углеводород. Время подачи углеводорода считалось началом реакции. Все опыты велись в кинетической области, т.е., протекание реакции не зависело от концентрации подаваемого кислорода и перемешивания. Во время реакции отбирались определенные количество пробы для анализа из пробоотборника (11).

После окончания процесса раствор, содержащийся в реакторе, переливали в круглодонную колбу для отгонки уксусной кислоты (если она присутствует). После отгонки растворителя к остатку приливали 10%-ный водный раствор КОН и раствор

Физико-химические свойства и групповой

фильтровали с целью удаления выпавших в осадок оснований металлов. Из фильтрата подкислением НС1 до рН=2 — 2,5 высаживали кислоты, которые отфильтровывали холодной водой и сушили до постоянного веса при 65°С.

В качестве катализаторов использовали ацетат кобальта тетрагидрат, ацетат марганца тетрагидрат, стеарат кобальта, ацетат цинка тетрагидрат, ацетат никеля.

В качестве добавок применялись метилэтилке-тон, бензалдегид (БА), бензойная кислота (БК).

Синтез и идентификация реактивов.

Получение кондиционного толуола из газоконденсата. Способ получения газоконденсатного толуола заключается в следующим:

• выделяется узкая фракция газоконденсата с соответствующим содержанием толуола;

• толуол экстракционно выделяется из смеси с более эффективными экстрагентами, производимыми в нашей республике;

• осуществляется рафинация-ректификация толуола и регенерация экстрагентов.

Для получения индивидуального толуола производили перегонку Шуртанского газоконденсата как сырья в аппарате ректификации нефти (АРН- 2) и выделили фракцию 338-418 К. Физико-химические свойства и групповой состав (%) углеводородов газоконденсата /ГК/ приведены в таблице 1.

Таблица 1.

в (%) углеводородов газоконденсата /ГК/

Газоконденсат d420 о кг/м п420 Ср.мол. масса Аромат. углевод. Нафтены Парафины

Стабильный ГК 762,1 1,4417 164 25 20 55

Месторождение Шуртан, фракция 338-418 К 715,2 1,4141 148 32 29 39

№ 6 (87)

AunÎ

Ж TE)

universum:

технические науки

июнь, 2021 г.

Для экстракции толуола из фракции 338-418°К использованы азотсодержащие полиэфиры в ДЭТ /50-80% растворы/ по принципу создания максимальной концентрации органодисперсий экстрагентов в толуоле, являющихся наиболее эффективными.

Кондиционный толуол, полученный из целевой фракции газоконденсата, имеет следующие свойства: удельный вес -871 кг/м3; показатель преломления — 1,4974; температура кипения — 112°С; поверхностное натяжение — 249 мН/м, что соответствует ГОСТ по толуолу, техническое содержание 98,5% масс.

Методика анализа продуктов окисления толуола. Анализ продуктов окисления толуола осуществляли методами ГЖХ и потенциометрического титрования. Толуола и БА определяли методом

ГЖХ на приборе Хром-5 с детектором по теплопроводности. Неподвижная фаза -силиконовый эластомер 8Б-30, нанесённый в количестве 5% на силани-зированный ГМДС Хроматон N-AW, длина колонки 3 м, диаметр 4мм. Хроматографирование проводили при температуре колонок- 1300, испарителя- 2000С, детектора- 1300С, расход газа носителя (гелий)-60 мл/мин.

Окисление толуола перманганатном калия. Процесс окисления толуола водными растворами перманганата калия производили на лабораторной установке состоящей трехгорлой круглоданной колбе, снабженной мешалкой, капельной воронкой и с обратным холодильником.

Результаты представлены в таблице 2.

Таблица 2.

Результаты

№ п/п Навеска толуола в гр. Температура, ОС Время, час Смесь кислот в гр. Бензойная кислота Щавелевая кислота

гр. % гр.

1. 2,1133 95-960 5 1,6575 1,4178 50,6 0,1823

2. 2,0078 95-960 12 1,8910 1,6183 60,8 0,2296

Из результатов таблицы видно, что перманганатном окислении толуола в кипящей водяной бане при продолжительности процесса окисления 12 час наблюдается максимальный выход бензойной кислоты 60,8%. Бензойная кислота в процессе окисления частично разрушается вследствие чего выход её при окислении толуола не велик. В связи с этим, перед нами была поставлена задача изучения возможности увеличения выхода БК при жидкофазно -каталитическом окислении в отсутствии растворителя.

Заключение. Как указывали ряд исследователей, механизм активации кислорода в присутствии координационных соединение 3ё — элементов и активаторов состоит в частичном переносе заряда в комплексе МЬ2-02создающем условия облегчающие преодоление энергетически не выгодной первой стадии восстановления кислорода необходимую взаимную ориентацию субстрата и кислорода активированном комплексе, а также снимающие запрет по симметрии при передаче электрона с электроннодо-норной орбитали субстрата на электроноакцепторные орбитали кислорода.

Список литературы:

1. Эмануэль Н. М. Теория и практика жидкофазного окисления. -М: Наука, 1974.,- с. 7-33.

2. Эмануэль Н.М., Гал Д. Окисление этилбензола (модельная реакция). -М: Наука, 1984.-с. 126-185.

3. Шапринская Т.М. О кинетических зависимостях окисления бен-: :ла на окисно-ванадиевом катализа—эре. -Кинетика и катализ. 1984, ~.25, вып.2 — С. 382-385.

4. Раевская Л.Н., Пятницкий Ю. И. Кинетика окисления толуола и г э производных на пятиокиси ванадия. — Там же, с. 386-391.

5. Раевская Л.Н., Пятницкий Ю.И. О кинетической модели окисления ароматических соединений на : кнсных катализаторах. — Теоретическая и экспериментальная химия. 1983, .4 1. -С. 96-99.

6. Попова Н.И., КабаковаБ.В. Окисление толуола на медных катали-: ..торах с добавками окислов молибдена и вольфрама -Кинетика и ката-т:з. 1964, Т. 5, вып.2. -С. 324-3 29.

7. Попова Н.П., Вермель Е.Е., Мильман Ф.А. Окисление некоторых непредельных углеводородов на медных катализаторах. -Кинетика и ката-го, 1962, Т.З. вып.2. -С. 241-246.

Лекция 19. ароматические кислоты и их производные : farmf | литература для фармацевтов

Ароматические кислоты – производные ароматических углеводородов, у которых в бензольном ядре один или несколько атомов водорода замещены карбоксильными группами. В качестве лекарственных веществ и исходных продуктов их синтеза наибольшее значение имеют бензойная кислота и кислота салициловая (фенолокислота):

Окислительная переработка аренов

Наличие ароматического ядра в молекуле усиливает кислые свойства вещества. Константа диссоциации у бензойной кислоты имеет несколько меньшее значение ( К=6,3·10-5), чем у уксусной (К=1,8·10-5). Аналогичными химическими свойствами обладает и салициловая кислота, однако присутствие фенольного гидроксила в ее молекуле повышает константу диссоциации до 1,06·10-3 и расширяет число аналитических реакций, которые могут быть использованы для качественного о количественного анализа. Бензойная и салициловая кислоты при взаимодействии со щелочами образуют соли.

Ароматические кислоты так же, как и неорганические или алифатические, проявляют антисептическое действие. Они могут оказывать на ткани также раздражающее и прижигающее действие, связанное с образованием альбуминатов. Фармакологический эффект зависит от степени диссоциации кислоты.

Натриевые соли бензойной и салициловой кислот в отличие от самих кислот легко растворимы в воде. В водных растворах они ведут себя как соли сильных оснований и слабых кислот. Фармакологическое действие солей и самих кислот одинаково, однако из-за большей растворимости раздражающее действие их ниже.

Бензойная кислота-Acidum benzoicum

Натрия бензоат-Natrii benzoicum

Окислительная переработка аренов

Свойства. Бензойная кислота – бесцветные игольчатые кристаллы или белый мелкокристаллический порошок с т.пл. 122-124,5°C. Бензоат натрия – белый мелкокристаллический порошок без запаха или с очень слабым запахом, сладко-соленого вкуса. Температура плавления не определяется.

Получение.

1. Окисление толуола перманганатом калия, двуокисью марганца, бихроматом калия.

Окислительная переработка аренов

2. Парофазный каталитический процесс окисления кислородом воздуха толуола до бензойной кислоты.

3. Декарбоксилирование фталевой кислоты до бензойной.

Окислительная переработка аренов

Подлинность. Из реакций подлинности специфичной для бензойной кислоты и ее солей является реакция образования комплексной соли телесного цвета при взаимодействии ее с раствором FeCl3. Для этого бензойную кислоту нейтрализуют щелочью по индикатору и затем добавляют несколько ка­пель раствора Fe Cl3:

Окислительная переработка аренов

Необходимым условием проведения этой реакции является получе­ние нейтральной натриевой соли бензойной кислоты, так как в кислой среде осадок комплексной соли будет растворяться, при избытке щелочи будет выпадать бурый осадок гидроокиси железа (III).

При действии на бензойную кислоту перекиси водорода в присут­ствии катализатора сульфата железа (II) она превращается в салици­ловую кислоту, которая может быть обнаружена по фиолетовому окра­шиванию с раствором FeCl3:

Окислительная переработка аренов

В качестве одной из примесей в препарате может быть продукт не­полного хлорирования исходного вещества синтеза (толуола), который обнаруживается по зеленому цвету пламени после внесения крупинки препарата на медной проволоке в бесцветное пламя горелки — реакция Белыитейна.

Количественное содержание препарата определяется методом ней­трализации в спиртовой среде по индикатору фенолфталеину:

Окислительная переработка аренов

Бензойная кислота применяется как слабый антисептик в мазевых основах, она действует и как отхаркивающее средство. Чаще бензойная кислота применяется в виде своей натриевой соли C6H5COONa. Введе­ние катиона натрия уменьшает раздражающее действие бензойной кис­лоты и в то же время несколько уменьшает антисептическую активность препарата. Соли бензойной кислоты действуют как слабые диуретики и, подобно самой бензойной кислоте, применяются для консервации пи­щевых продуктов.

Бензойная кислота летуча, поэтому хранить ее следует в хорошо за­купоренных склянках.

Бензоат натрия.

Получение. Получают по реакции нейтрализации бензойной кислоты содой или щелочью:

Окислительная переработка аренов

Подлинность препарата подтверж­дается образованием осадка телесного цвета при действии раствора FеСl3 .

Сухой остаток после прокаливания бензоата натрия окрашивает пла­мя горелки в желтый цвет (реакция на Na ). Если этот остаток раство­рить в воде, реакция среды оказывается щелочной на лакмус (реакция на Na ).

Характерной (но не официнальной) реакцией на бензоат натрия яв­ляется реакция с 5% раствором сульфата меди — выпадает осадок би­рюзового цвета. Этой реакцией удобно пользоваться во внутриаптечном контроле как быстро выполнимой и специфичной для данного препарата.

При действии на бензоат натрия минеральной кислоты выпадает осадок бензойной кислоты, который отфильтровывается, высушивается и подтверждается определением температуры плавления (122—124,5°). Эта реакция положена в основу количественного определения препара­та: бензоат натрия растворяют в воде и в присутствии эфира, извлекаю­щего бензойную кислоту, титруют кислотой при индикаторе метиловом оранжевом.

Применяется внутрь как отхаркивающее и слабо дезинфицирующее средство. Кроме того, применяется для исследования антитоксической функции печени. Находящаяся в печени аминоуксусная кислота глицин-1 вступает в реакцию с бензойной кислотой с образованием гиппуровой кислоты, которая выделяется с мочой. По количеству выделенной гиппуровой кислоты судят о состоянии печени.

Из эфиров бензойной кислоты в медицинской практике находит применение в настоящее время бензилбензоат.

Бензилбензоат медицинский –Benzylii benzoas medicinalis.

Окислительная переработка аренов

Свойства. Бесцветная маслянистая жидкость со слегка ароматическим запахом. Острого и жгучего вкуса. Практически не растворим в воде. Смешивается в любых соотношениях со спиртом, эфиром и хлороформом. Температура кипения 316-317°C, Т.пл. 18,5-21°C. Нормативный документ ФС 42-1944-89.

Получение. Взаимодействием хлористого бензоила и бензилового спирта в присутствии оснований.

Окислительная переработка аренов

Подлинность.
1. ИК спектр.
2. УФ-Спектр.

Количественное определение.

  • Спектрофотометрия.
  • Газожидкостная хроматография.

Применение. В качестве противочесоточного средства, против вшей. Применяется в ряде косметических средств.

Форма выпуска: гель 20%, крем 25%, мазь 10%, эмульсия.

ФЕНОЛОКИСЛОТЫ. Кислота салициловая. Acidum salicylicum.

Из трех возможных изомеров фенолокислот только салициловая или о-оксибензойная кислота проявляет наибольшую физиологическую активность.

Окислительная переработка аренов

Сама салициловая кислота в настоящее время малоприменима, однако ее производные являются одними из самых многотоннажных лекарственных средств. Сама салициловая кислота –игольчатые кристаллы или мелкокристаллический порошок. При нагревании способна возгоняться – этот факт используется для очистки салициловой кислоты при производстве ацетилсали-циловой кислоты. При нагревании свыше 160°C дексарбоксилируется с образованием фенола.

Впервые салициловая кислота была получена окислением феноло-спирта салигенина, который был получен при гидролизе гликозида сали­цина, содержащегося в коре ивы. От латинского названия ивы — Salix — и произошло название «салициловая кислота»:

Окислительная переработка аренов

В эфирном масле растения Gaulteria procumbens находится метило­вый эфир салициловой кислоты, омылением которого может быть так­же получена салициловая кислота.

Однако природные источники салициловой кислоты не могут удов­летворить потребности в ее препаратах и поэтому кислоту и ее производ­ные получают исключительно синтетическим путем.

Наибольший интерес и промышленное значение имеет метод полу­чения салициловой кислоты из фенолята натрия. Этот метод впервые применил Кольбе и усовершенствовал Р. Шмидт. Сухой фенолят натрия подвергают действию двуокиси углерода под давлением 4,5—5 атм. при температуре 120—135°. В этих условиях СО2 внедряется в молекулу фе­нолята в о-положение по отношению к фенольному гидроксилу:

Окислительная переработка аренов

Полученный фенолят салициловой кислоты тотчас же претерпевает внутримолекулярную перегруппировку, в результате получается натрие­вая соль салициловой кислоты, которая при подкислении выделяет са­лициловую кислоту:

Окислительная переработка аренов

Салициловая кислота проявляет одновременно свойства фенола и кислоты. Как фенол она дает типичную для фенола реакцию с раствором хлорного железа. Салициловая кислота в отличие от фенолов может растворяться не только в щелочах, но и в растворах карбонатов. При растворении в карбонатах она дает среднюю соль – салицилат натрия – применяемую в медицине:

Окислительная переработка аренов

В щелочах образуется динатриевая соль.

Окислительная переработка аренов

3.Температура плавления 158-161°C.

При наличии избытка брома происходит декарбоксилирование и образование трибромфенола. Этот метод используется также для количественного определения.

Количественное определение.

1. Методом нейтрализации в спиртовом растворе при индикаторе фенолфталеине ( фармакопейный метод).

Окислительная переработка аренов

2. Броматометрический метод.

Окислительная переработка аренов

Избыток брома определяется йодометрически.

Применение. Наружно как антисептическое и раздражающее средство.

Формы выпуска. Мази 4%, салициловой кислоты, бензойной кислоты и вазелина паста, салицилово-цинковая паста, спиртовые растворы 2%.

Хранение. В плотно закрытых склянках в защищенном от света месте.

Натрия салицилат
Natrii salicylas

Окислительная переработка аренов

Получение препарата.

Окислительная переработка аренов

Подлинность препарата.
1. По реакции с хлорным железом.
2. С реактивом Марки ( смесь серной кислоты с формалином) дает красное окрашивание.
3. Реакция окрашивания пламени на катион натрия.
4. Отстаток от сжигания дает щелочную реакцию на лакмус.
5. Образование интенсивного зеленого окрашивания с раствором медного купороса. Если к водному раствору салицилата натрия добавлять по каплям 5% раствор CuSO4, появляется интенсивное зеленое окрашивание.

Количественное определение.

1. Ацидиметрический метод прямого титрования. В качестве индикаторов используется смесь метилового оранжевого и метиленового синего.

Окислительная переработка аренов

2. Броматометрический метод.

Применение. Внутрь в порошках и таблетках в качестве болеутоляющего и противовоспалительного средства при ревматизме.Таблетки 0,25 и 0,5 г, Таблетки натрия салицилата 0,3 и кофеина 0.05 г..

Эфиры салициловой кислоты.

МЕТИЛСАЛИЦИЛАТ – Methylii salicilas

Окислительная переработка аренов

В природе встречается в эфирном масле растения Gaulteria procumbens, но в промышленности его получают синтетическим путем при нагревании салициловой кислоты с метиловым спиртом в присутствии серной кислоты. Метилсалицилат – бесцветная жидсть с ароматным запахом. Дает характерную реакцию с хлорным железом на фенолы. Для препарата определяется в качестве характеристического показателя – показатель преломления 1,535-1,538. Недопустимые примеси влага и кислота, так в этих условиях происходит гидролиз препарата.

Количественное определение. Проводят по количеству щелочи, затраченной на омыление эфира. К навеске препарата добавляют избыток титрованного раствора щелочи и нагревают, оставшуюся после омыления щелочь оттитровывают кислотой.

Применяется наружно как обезболивающее и противовоспалительное средство чаще всего в виде линиментов с хлороформом и жирными маслами.

Фенилсалицилат –Phenylii salicylas

Окислительная переработка аренов

Фенилсалицилат (салол) является эфиром салициловой кислоты и фенола. Впервые он был получен М. В. Ненцким в 1886 г. Учитывая раз­дражающее действие салициловой кислоты, он стремился найти такой препарат, который бы, сохраняя антисептические свойства фенола, не обладал ядовитым свойством фенола и раздражающим действием кис­лоты. С этой целью он заблокировал карбоксильную группу в салициловой кислоте и получил эфир ее с фенолом. Исследования показали, что салол, проходя через желудок, не изменяется, а в щелочной среде кишеч­ника омыляется с образованием натриевых солей салициловой кислоты и фенола, которые и оказывают лечебное действие. Так как омыление происходит медленно, продукты омыления салола поступают в организм постепенно и не накапливаются в больших количествах, что обеспечивает более длительное действие препарата. Этот принцип введения в орга­низм сильнодействующих веществ в виде их сложных эфиров вошел в литературу как «принцип салола» М. В. Ненцкого и использовался в дальнейшем для синтеза многих лекарственных препаратов.

Свойства. Мелкие бесцветные кристаллы со слабым запахом. Температура плавления 42-43°C.

Получение. Фенилсалицилат получают синтетически. Наиболее распространен­ным и общепринятым методом является следующий:

Окислительная переработка аренов

Качественные реакции. В молекуле салола сохранилась свободная фенольная группа, по­этому реакция с раствором FeCl3 дает фиолетовое окрашивание. С реак­тивом Марки, подобно другим фенолам, препарат дает красноватое окра­шивание.

Количественное определение.

1. Омылением с последующим титрованием избытка щелочи кислотой (фармакопейный метод).
2. Броматометрический метод.
3. Ацидиметрический по салицилату натрия. Для этого используется смесь индикаторов. Сначала до розового цвета с метиловым красным нейтрализуют избыток щелочи и фенолят и затем с метиловым оранжевым в присутствии эфира.

Форма выпуска. Таблетки 0,25 и 0,5 г., таблетки с экстрактом красавки и висмутом нитрата основным.

Применение. Антисептическое действие для лечения заболеваний кишечника.

Эфиры салициловой кислоты по ОН-группе. Кислота ацетилсалициловая –Acidum acetylsalicylicum.

Окислительная переработка аренов

о-Ацетилсалициловая кислота является природным продуктом и содержится в цветах растений вида спиреи (spiraea ulmaria). Этот эфир был введен в меди­цинскую практику лечения острого суставного ревматизма еще в 1874 г., а как синтетическое лекарственное вещество стал вы­пускаться в промышленных масштабах в конце прошлого века под названием аспирин (приставка “а” означала, что данное ле­карственное вещество не добывается из спиреи, а делается хи­мическим путем). Аспирин называют лекарством 20-го столетия. В настоящее время его производят в мире более 100 тысяч тонн в год.

Известны его противовоспалитель­ные, жаропонижающие и болеутоляющие свойства. Обнаружено также, что он препятствует образованию тромбов, оказывает со­судорасширяющее действие и начинает применяться даже для профилактики и лечения инфарктов и инсультов. Считают, что весь потенциал лечебных свойств этого вещества еще не исчер­пан. В то же время аспирин раздражает слизистую оболочку же­лудочно-кишечного тракта, что может вызывать кровотечения. Возможны также аллергические реакции. Аспирин в организме влияет на синтез простагландинов (контролирующих,  в частности, образование тромбов)  и гормона гистамина (расширяющего сосуды и вызывающего приток иммунных кле­ток к месту воспаления; кроме того, он может препятствовать при воспалительных процессах    биосинтезу болевых ве­ществ).

Окислительная переработка аренов

Свойства. Бесцветные  кристаллы или белый порошок слабокислого вкуса. Мало растворим в воде(1:500), легко растворим в спирте.

Подлинность.

1. Омыление едким натром приводит к образованию салицилата натрия, который при обработке кислотой дает осадок салициловой кислоты.

Окислительная переработка аренов

Окислительная переработка аренов

2. По фиолетовому окрашиванию с хлорным железом после гидролиза и отщепления ацетильного фрагмента.

3. Салициловая кислота дает характерную реакцию образования ауринового красителя с реактивом Марки:
Окислительная переработка аренов

4.Температура плавления 133-136°C.

Специфической примесью, контролируемой согласно требований Фармакопейной статьи является салициловая кислота. Содержание салициловой кислоты должно быть не более 0,05%. Метод анализа спектрофотометричексий комплекса, образующегося при взаимодействии железоаммонийных квасцов с салициловой кислотой, окрашенного в синий цвет.

Количественное определение.

1. Метод нейтрализации по свободной карбоксильной группе (фармакопейный метод). Титрование проводят в спиртовой среде (во избежание гидролиза ацетильной группы), индикатор фенолфталеин.

Окислительная переработка аренов

2. Омылением с последующим титрованием избытка щелочи кислотой по метиловому оранжевому. Фактор эквивалентности равен ½.

3. Броматометрический метод.

4. ВЭЖХ в буферной среде.

Форма выпуска. Таблетки от 0,1 до 0,5 г. Известны таблетки с кишечнорастворимым покрытием, шипучие таблетки. Используется в композиционных лекарственных средствах в комбинации с кофеином, кодеином и другими веществами.

Применение – противовоспалительное, жаропонижающее, дезагрегант.

Хранение в укупоренных банках.

Ведутся работы по синтезу других производных с фрагментом салицилата. Так, получен препарат флюфенизал (11), который в четыре раза более активен, чем аспирин, по противовоспали­тельному действию (в ревматоидном артрите) и мягче в отноше­нии слизистой оболочки желудка. Его получают фторсульфонированием производного дифенила (7) до соединения (8), в кото­ром затем элиминируют SО2 в присутствии трифенилфосфинродийфторида. Образовавшийся фторид (9) гидрируют для снятия бензильной защиты, затем получают фенолят, который карбоксилируют по методу Кольбе до арилсалицилата (10). После ацилирования соединения (10) получают флюфенизал (11):

Окислительная переработка аренов

АМИДЫ САЛИЦИЛОВОЙ КИСЛОТЫ

САЛИЦИЛАМИД –Salicylamidum

Окислительная переработка аренов

Свойства. Белый кристаллический порошок с т.пл. 140-142°C.

Качественные реакции.
1.При щелочном гидролизе образуется салицилат натрия и выделяется аммиак.
2.С бромом дает дибромпроизводное.

Количественное определение проводят по выделившемуся аммиаку.

Форма выпуска. Таблетки 0,25 и 0,5 г. Жаропонижающее средство.

ОКСАФЕНАМИД Oxaphenamidum.

Окислительная переработка аренов

Свойства. Белый или белый с лиловато-серым оттенком порошок без запаха с т.пл. 175-178°C.

Получение. Сплавлением фенилсалицилата с п-аминофенолом.

Окислительная переработка аренов

Фенолы отгоняют. Оставшуюся смесь обрабатывают изопропанолом с соляной кислотой. Кристаллы отфильтровывают и перекристаллизовывают из амилового спирта.

Подлинность.

1. Спиртовый раствор дает с хлорным железом красно-фиолетовое окрашивание.

2. С соляной кислотой в присутствии резорцина образуется индофенол, дающий с едким натром красно-фиолетовое окрашивание:

Окислительная переработка аренов

1.Метод Кьельдаля
2.ВЭЖХ.

Форма выпуска. Таблетки 0,25 и 0,5 г.

Желчегонное средство (холециститы, желчекаменная болезнь).

ПРОИЗВОДНЫЕ ФЕНИЛПРОПИОНОВОЙ КИСЛОТЫ

ИБУПРОФЕН – Ibuprofenum

Окислительная переработка аренов

Бесцветные кристаллы, белый порошок, температура плавления 75-77°C, нерастворим в воде, растворим в спирте.

Нестероидное противовоспалительное средство. Препарат относи­тельно малотоксичен, обладает выраженной противовоспалител-ной и болеутоляющей активностью, жаропонижающим действием, стимули­рует образование эндогенного интерферона. Применяют для лечения ревматоидного артрита, других заболеваний суставов, для снижения температуры у больных.

Ниже приведен синтез, заключающийся в ацетилировании изобутилбензола по Фриделю-Крафтсу, получении циангидрина реакцией с цианистым натрием и восстановлении этого циангидрина под действием иодистоводородной кислоты и фосфора в п-изобутил-α-метилфенилуксусную кислоту — ибупрофен.

Окислительная переработка аренов

Подлинность.
1.УФ спектр.
2.ИК спектр
3.Осадок с хлорным железом.
4.Температура плавления субстанции 75-77°C.

Количественное определение нейтрализация спиртовым раствором едкого натра с фенолфталеином в спиртовом растворе.

Форма выпуска. Таблетки 0,2 г. покрытые оболочкой. Композиционные лекарственные формы с кодеином (нурофен) и др.

Примененние. Нестероидное противовоспалительное средство. Обладающее обезболивающим эффектом.

Среди других нестероидных противовоспалительных препаратов следует отметить следующие:

Окислительная переработка аренов

ДИКЛОФЕНАК НАТРИЯ, Ортофен, Вольтарен

Diclofenac sodium

Окислительная переработка аренов

Свойства. Белый или сероватый порошок, растворим в воде.

Препараты натрия диклофенак, мефенаминовая кислота и индометацин близки по противовоспалительному и болеутоляющему действию, последний обладает несколько более значительными эффектами в этом отношении, но первый менее токсичен и обладает лучшей переносимостью. Натрия диклофенак и мефенаминовая кислота хорошо проникает в полости суставов при ревматоидном артрите, его применяют при остром ревматизме, артрозах. Использу­ется для купирования болей и при заболеваниях слизистой оболочки полости рта и пародонтите.

Получение.

Окислительная переработка аренов

Белый или сероватый порошок, растворим в воде. ПОДЛИННОСТЬ:

  1. осадок с FeCl3 – бурого цвета
  2. УФ спектр
  3. ИК спектр

КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ: Нейтрализация НСl. ПРИМЕНЕНИЕ:

Противовоспалительное, жаропонижающее, при ревматоидных артритах, 0,025, амп. 2,5% р-р, вольтарен-ретард 0,1.

КИСЛОТА МЕФЕНАМИНОВАЯ Acidum mephenaminicum

Окислительная переработка аренов

Кристаллический порошок серовато-белого цвета, без запаха, горького вкуса. Практически нерастворим в воде, плохо растворим в спирте.

Получение. Препарат получают конденсацией о-хлорбензойной кислоты с ксилидином в присутствии в качестве катализатора порошка меди.

Окислительная переработка аренов

Подлинность.
1.Температура плавления
2.УФ спектр
3.ИК спектр

Количественное определение.
Перевод в растворимую натриевую соль и титрование избытка едкого натра.

Форма выпуска. Таблетки 0,5 г, суспензия. Применение. Противовоспалительное, обезболивающее средство.

ГАЛОПЕРИДОЛ Haloperidolum

Окислительная переработка аренов

Галоперидол является производным 4-фторбутирофенона. Это одна из новейших групп нейролептиков с очень сильным действием

Получение. Синтез осуществляют по двум ниткам. Сначала по Фриделю-Крафтсу ацилируют фторбензол хлорангидридом γ-хлор-масляной кислоты с образованием 4-фтор- γ-хлорбутирофенона (А). Затем по схеме (В) из 4-хлорпропен-2-илбензола получают произ-водное 1,3-оксазина, которое далее в кислой среде трансформируют в 4-п-хлорфенил-1,2,5,6-тетрагидропиридин. Последний при обра-ботке бромистым водородом в уксусной кислоте превращается в 4-гидрокси-4-п-хлорфенилпиперидин (В). И, наконец, при взаимодей-ствии полупродуктов (А) и (В), получают галоперидол.

Окислительная переработка аренов

Белый или желтоватый порошок, мало растворим в воде, растворим в спирте.

ПОДЛИННОСТЬ:
1. ИК спектр
2. УФ спектр
3. Кипятят со щелочью и проводят реакцию на хлорид-ион.

КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ: ВЭЖХ

ПРИМЕНЕНИЕ: 0,0015 и 0,005 табл., 0,2% капли, 0,5% инъекционный р-р для купирования приступов шизофренических психозов, при белой горячке.

Механизм реакции

Реакция
осуществляется в три стадии:

А) Инициирование (зарождение цепи) – гомолитическое расщепление молекулы Сl2 с
образованием свободных радикалов хлора:

Свободные радикалы – это атомы или группы атомов с
неспаренными электронами (•Сl, •Н,  •СН3…)

Б) Развитие
цепи (взаимодействие радикала хлора с
молекулой алкана, метильного радикала с новой молекулой хлора и т.д.):

В) Обрыв цепи (происходит при
соединении двух радикалов друг с другом):

Скорость реакции
замещения водорода на атом галогена у галогеналканов выше, чем у
соответствующего алкана, это связано с взаимным влиянием атомов в молекуле:

Электронная плотность
связи С – Cl смещена к более электроотрицательному атому хлора,
в результате этого на нем образуется частичный отрицательный заряд, а на атоме
углерода – частичный положительный заряд.

На атоме углерода в
метильной группе (-СН3) создаётся недостаток электронной плотности,
поэтому он оттягивает на себя электронную плотность от соседних атомов
водорода,  в результате этого связи С – Н становятся менее прочными и
атомы водорода легче замещаются на атомы хлора.

При увеличении углеводородного
радикала наиболее подвижными остаются атомы водорода у атома углерода
ближайшего к заместителю:

Алканы обесцвечивают
раствор брома при нагревании, вступая в реакцию радикального замещения.

2.Нитрование (замещение
атома водорода нитрогруппой – NO2 с образованием нитроалканов
R-NO2). Нитрующий реагент – разбавленная азотная
кислота HNO3 (НО─NО2).

Нитрование разбавленной
азотной кислотой при t = 1400С и при повышенном или нормальном
давлении — реакция М.И.Коновалова.

В результате реакции
образуется смесь изомерных нитросоединений. Наиболее легко замещаются атомы
водорода у третичного атома углерода, труднее – у вторичного, наиболее трудно –
у первичного:

3.Сульфирование (замещение
атомов водорода сульфогруппой SO3Н с образованием алкансульфокислот
RSO3Н). Сульфирующий реагент – серная кислота Н2SO4 (НО─SO3Н).
Сульфирование алканов происходит при действии очень концентрированной Н2SO4 при
небольшом нагревании.

Наиболее легко замещается атом водорода у
третичного атома углерода:

Реакции
окисления

Алканы – соединения с
низкими степенями окисления углерода и в зависимости от условий реакции они
могут окисляться с образованием различных соединений.

При обычных условиях
алканы устойчивы к действию сильных окислителей (КМnO4, К2Сr2О7).

1. Горение (окисление
кислородом воздуха при высоких температурах)

А) Полное
окисление (избыток О2)

При избытке кислорода
происходит полное окисление алканов до СО2, где углерод имеет высшую
степень окисления 4, и воды. Горение углеводородов приводит к разрыву всех
связей С–С и С–Н и сопровождается выделением большого количества тепла
(экзотермическая реакция).

Низшие гомологи (метан,
этан, пропан, бутан) образуют с воздухом взрывоопасные смеси, что необходимо
учитывать при их использовании. С увеличением молекулярной массы алканы
загораются труднее.

Сжиженная
пропан-бутановая смесь, горение

Видеоопыт «Взрывсмеси метана с кислородом»

Видеоопыт «Горение жидких алканов»

Видеоопыт «Горение твердых углеводородов (на примере парафина)»

Процесс горения
углеводородов широко используется для получения энергии (в двигателях
внутреннего сгорания, в тепловых электростанциях и т.п.).

Общий вид реакции
горения алканов:

Б) Неполное
окисление (недостаток О2)

При горении высших
алканов ((n >>1)) при недостатке кислорода образуются продукты частичного
окисления: угарный газ СО (степень окисления углерода 2),
сажа (мелкодисперсный углерод, со степенью окисления 0).

Поэтому высшие алканы
горят на воздухе коптящим пламенем, выделяя токсичный угарный газ,
представляющий опасность для человека.

Горение метана при
недостатке кислорода происходит по уравнениям:

Последняя реакция
используется в промышленности для получения сажи из природного газа,
содержащего 80-97% метана.

2. Каталитическое
окисление

Частичное окисление
алканов при относительно невысокой температуре и с применением катализаторов
сопровождается разрывом только части связей С–С и С–Н и используется для
получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов.

Например, при неполном
окислении бутана происходит разрыв связи (С2–С3) и
получается две молекулы уксусной кислоты:

Этим способом в
промышленности получают уксусную кислоту.

При мягком окислении
метана кислородом воздуха в присутствии катализаторов могут быть получены
метиловый спирт, формальдегид и муравьиная кислота.

Высшие алканы (n>25)
под действием кислорода воздуха в жидкой фазе в присутствии солей марганца
превращаются в смесь карбоновых кислот со средней длиной цепи С12–С18,
которые используются для получения моющих средств и поверхностно-активных
веществ.

Термические превращения алканов (реакции
разложения)

1. Крекинг (анг. сracking —
расщепление) алканов является основой переработки нефти с целью получения
продуктов меньшей молекулярной массы, которые используются в качестве моторных
топлив, смазочных масел, а также сырья для химической и нефтехимической
промышленности.

Для осуществления этого процесса используют два
способа: термический крекинг (при нагревании без доступа
воздуха) и каталитический крекинг (более умеренное нагревание
в присутствии катализатора).

Термический крекинг —
это разрыв связей С ─ С в молекулах алканов с длинными углеродными цепями, в
результате которого образуются алканы и алкены с меньшим числом атомов
углерода.

Термический крекинг (пиролиз) осуществляется при
температуре 450 – 7000С:

Каталитический крекинг проводят в присутствии катализаторов (обычно
оксидов алюминия и кремния) при температуре 5000С и
атмосферном давлении. При этом с разрывом молекул происходит реакция
изомеризации и дегидрирования.

2.При нагревании метана или этана до температуры
10000С начинается пиролиз – разложение на простые
вещества:

Полученный этим способом углерод является достаточно
чистым, в технике называется сажей и используется, например, при производстве
автомобильных покрышек.

3. Конверсия метана с
образованием  синтез – газа (СО Н2)

Важное значение имеет реакция взаимодействия метана
с водяным паром, в результате которой образуется смесь оксида углерода (II) с
водородом – «синтез-газ» (водяной газ, генераторный газ):

Эта реакция используется для получения водорода.
Синтез-газ служит сырьем для получения различных углеводородов.

Реакции отщепления 

1.Дегидрирование (отщепление водорода;
происходит в результате разрыва связей С ─ Н; осуществляется в присутствии
катализатора при повышенных температурах).

В ходе пропускания алканов над катализатором (Pt,
Pd, Ni, А1203, Сг203) при
высокой температуре (400­ — 600°С) происходит отщепление молекулы водорода
и образование алкена:

2. Если метан нагреть до более высокой температуры
(15000С) и быстро охладить, то происходит межмолекулярное
дегидрирование и образуется этин (ацетилен):

3.Дегидроциклизация (ароматизация) —
реакция дегидрирования, которая приводит к замыканию цепи в устойчивый цикл.

Алканы, содержащие в основной цепи больше 4-х атомов
углерода, используются для получения циклических соединений.

Если основная цепь молекулы алкана содержит 5 (но не
более) атомов углерода (н-пентан и его алкильные производные), то при
температуре 3000С над Pt-катализатором атомы водорода отщепляются от
концевых атомов углеродной цепи и образуется пятичленный цикл (циклопентан или
его производные):

Алканы с шестью или более углеродными атомами в цепи
в присутствии катализатора циклизуются с образованием бензола м его
производных:

Реакции перегруппировки
(изомеризация)   

1.Изомеризация (превращение химического
соединения в его изомер):

Нормальные алканы под влиянием катализаторов и при
нагревании способны превращаться в алканы с разветвленной цепью без изменения
состава молекул. В этих случаях участвуют алканы, молекулы которых содержат не
менее 4-х углеродных атомов:

Эта реакция является важной для производства
бензина, поскольку наличие в его составе разветвленных углеводородов
повышает октановое число, т.е. качество топлива.

Химические свойства алканов

1

H

ВодородВодород

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

ГелийГелий

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

ЛитийЛитий

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

БериллийБериллий

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

БорБор

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

УглеродУглерод

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

АзотАзот

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

КислородКислород

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

ФторФтор

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

НеонНеон

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

НатрийНатрий

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

МагнийМагний

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

АлюминийАлюминий

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

КремнийКремний

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

ФосфорФосфор

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

СераСера

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

ХлорХлор

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

АргонАргон

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

КалийКалий

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

КальцийКальций

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

СкандийСкандий

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

ТитанТитан

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

ВанадийВанадий

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

ХромХром

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

МарганецМарганец

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

ЖелезоЖелезо

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

КобальтКобальт

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

НикельНикель

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

МедьМедь

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

ЦинкЦинк

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

ГаллийГаллий

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

ГерманийГерманий

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

МышьякМышьяк

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

СеленСелен

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

БромБром

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

КриптонКриптон

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

РубидийРубидий

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

СтронцийСтронций

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

ИттрийИттрий

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

ЦирконийЦирконий

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

НиобийНиобий

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

МолибденМолибден

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

ТехнецийТехнеций

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

РутенийРутений

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

РодийРодий

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

ПалладийПалладий

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

СереброСеребро

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

КадмийКадмий

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

ИндийИндий

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

ОловоОлово

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

СурьмаСурьма

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

ТеллурТеллур

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

ИодИод

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

КсенонКсенон

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

ЦезийЦезий

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

БарийБарий

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

ЛантанЛантан

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

ЦерийЦерий

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

ПразеодимПразеодим

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

НеодимНеодим

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

ПрометийПрометий

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

СамарийСамарий

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

ЕвропийЕвропий

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

ГадолинийГадолиний

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

ТербийТербий

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

ДиспрозийДиспрозий

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

ХольмийХольмий

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

ЭрбийЭрбий

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

ТулийТулий

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

ИттербийИттербий

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

ЛютецийЛютеций

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

ГафнийГафний

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

ТанталТантал

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

ВольфрамВольфрам

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

РенийРений

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

ОсмийОсмий

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

ИрридийИрридий

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

ПлатинаПлатина

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

ЗолотоЗолото

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

РтутьРтуть

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

ТаллийТаллий

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

СвинецСвинец

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

ВисмутВисмут

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

ПолонийПолоний

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

АстатАстат

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

РадонРадон

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

ФранцийФранций

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

РадийРадий

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

АктинийАктиний

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

ТорийТорий

232,04

f-элемент

Серый мягкий металл

91

Pa

ПротактинийПротактиний

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

УранУран

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

НептунийНептуний

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

ПлутонийПлутоний

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

АмерицийАмериций

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

КюрийКюрий

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

БерклийБерклий

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

КалифорнийКалифорний

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

ЭйнштейнийЭйнштейний

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

ФермийФермий

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

МенделевийМенделевий

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

НобелийНобелий

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

ЛоуренсийЛоуренсий

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

РезерфордийРезерфордий

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

ДубнийДубний

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

СиборгийСиборгий

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

БорийБорий

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

ХассийХассий

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

МейтнерийМейтнерий

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

ДармштадтийДармштадтий

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Оцените статью
Кислород
Добавить комментарий