Дыхательный аппарат АП Альфа: устройство и описание

Дыхательный аппарат АП Альфа: устройство и описание Кислород

Взгляд снаружи

Диапазон концентрации кислорода в воздухе, пригодный для жизни. Диапазон содержания кислорода в воздухе ( p_{text{O}_2}), при котором возможна жизнедеятельность человека в течение длительного времени, ограничен значениями

90–100 мм рт. ст. < ( p_{text{O}_2}) < 400–450 мм рт. ст.

Нижняя граница соответствует началу кислородного голодания, верхняя — началу кислородного отравления. В процентном отношении наступление кислородного голодания у здорового человека наступает уже при содержании O2 в воздухе ( p_{text{O}_2}) / pатм менее 14% (при pатм = 760 мм рт. ст.).

Эти данные соответствуют диапазону жизнедеятельности человека на уровне моря. По мере подъема в горы давление снижается, что наглядно отражают кривые атмосферного давления и парциального давления кислорода (рис. 1).

Видно, что начиная с высот 4,5–5 км давление кислорода становится ниже допустимой нижней границы давления в 90 мм рт. ст. При этом давление воздуха в альвеолах составляет 105–110 мм рт. ст., что также близко к нижней границе. По мере уменьшения давления кислорода до уровня 100 мм рт. ст. замедляются обменные процессы в организме, дыхание и сердцебиение учащаются, ухудшаются зрение и работа мозга…

Оценка времени развития кислородной недостаточности при нахождении в замкнутом объеме. В качестве примера рассмотрим несколько ситуаций с людьми, находящимися в замкнутом объеме: один человек, застрявший в лифте объемом V = 2 м3; два человека в комнате с V = 30 м3; сто человек, застрявшие в остановившемся вагоне метро с V = 250 м3.

В каждом случае найдем, за какое время Δt в замкнутом объеме V в процессе спокойного дыхания людей концентрация кислорода снижается от первоначального уровня 21% до начала кислородной недостаточности, т.е. до 14%. Подчеркнем — спокойного, поскольку при панике это время сильно снижается.

Спокойному дыханию соответствует потребление кислорода на уровне 0,25 литра в минуту. Поскольку 1 литр O2 соответствует 5 ккал энергии, то 0,25 л/мин сообщает организму за сутки 0,25 × 5 × 60 × 24 ккал = 1800 ккал энергии. Так как плотность человеческого организма около 1000 кг/м3, тело массой 70 кг занимает объем 0,07 м3, или 70 литров. Добавив одежду, получим оценку объема, вытесняемого из замкнутого помещения, в 100 литров, или 0,1 кубометра на человека.

Лифт. Свободный объем, занятый воздухом, составляет 1,9 м3. В этом объеме содержится 1,9 × 0,21 м3 = 0,4 м3 = 400 л кислорода. Признаки кислородной недостаточности развиваются, когда полезный объем кислорода уменьшится до 1,9 × 0,14 м3 = 0,27 м3 = 270 л.

Комната. Свободный объем около 30 м3. Начальный объем кислорода 6,3 м3. Минимально допустимый объем кислорода 4,2 м3. Потребление кислорода 0,5 л/мин. Время ( Δt_{text{O}_2}) = 2100 / 0,5 мин = 4200 мин, т.е. почти трое суток (!).

Вагон метро. Свободный объем около 240 м3. Начальный объем кислорода 50 м3. Минимально допустимый объем кислорода 34 м3. Потребление кислорода около 25 л/мин . Время ( Δt_{text{O}_2}) = 16000/25 мин = 640 мин, т.е. около 10 часов.

Во всех указанных случаях (если нет паники) время развития кислородной недостаточности очень велико. Однако, такой вывод находится в противоречии с житейским опытом: в метро и застрявшем лифте бывает душно и даже после сна в комнате с закрытой форточкой наутро ощущается духота.

По всей видимости, имеет место другой, более мощный механизм развития неблагоприятных ощущений в процессе дыхания при нахождении в замкнутом объеме, не связанный с потерей кислорода из воздуха. Оказывается, таким механизмом является накопление углекислого газа.

Концентрация углекислого газа в воздухе, пригодная для жизни. Диапазон допустимого содержания CO2 в воздухе составляет

( 0 < C_{text{CO}_2} = frac{p_{text{CO}_2}}{p_{атм}} < text{0,1%}. )

Отметим, что обычное содержание углекислого газа в воздухе ( C_{text{CO}_2} ) = 0,04%.

Величину принятого ограничения сверху на содержание углекислого газа (( C_{text{CO}_{2:text{max}}} ) = 0,1%) обсудим чуть позже, а сначала проведем оценки для замкнутых объемов лифта, комнаты, вагона метро и школьного класса применительно ко времени накопления концентрации углекислого газа до верхней границы. Примем, что взрослый человек обычно выдыхает углекислого газа в атмосферу ( q_{text{CO}_2}) = 0,25 л/мин.

Лифт. Свободный объем, занятый воздухом, равен 1,9 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет

( Δt_{text{CO}_2} = frac{(C_{text{CO}_{2:text{max}}}:-:C_{text{CO}_2}):·:V}{q_{text{CO}_2}} = frac{(1:·:10^{-3}:-:4:·:10^{-4}):·:text{1,9}:·:10^3 }{text{0,25}}:text{мин} = 5:text{мин}. )

Комната. Свободный объем около 30 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет ( Δt_{text{CO}_2} ) = 6 · 10−4 · 30 · 103 / (2 · 0,25) мин = 36 мин.

Вагон метро. Свободный объем около 240 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет ( Δt_{text{CO}_2} ) = 6 · 10−4 · 240 · 103 / (100 · 0,3) мин ≈ 6 мин.

Школьный класс. Приведем также оценки для школьного класса объемом около 200 м3, в котором находится 25 учеников. При уровне выдоха CO2 одним школьником 0,12 л/м (половина от взрослого) получим ( Δt_{text{CO}_2} ) = 6 · 10−4 · 200 · 103 / (25 · 0,12) мин ≈ 40 мин.

Это уже ближе к житейским ощущениям и оправдывает присутствие вентиляции на потолке лифтов, необходимость проветривания комнат в домах, в школьных классах после каждого урока, а также наличие системы вентиляции в метро.

Таким образом, именно накопление углекислого газа в замкнутых помещениях в первую очередь действует угнетающе на человека. В чем это проявляется?

В литературе отмечается два типа воздействия: кратковременное (часы) и длительное (регулярно, более нескольких часов в день). Симптомы при кратковременном воздействии при уровне вдыхаемого углекислого газа выше 0,1% — это усталость, головная боль, ухудшение концентрации внимания, плохой сон…

При длительном воздействии при уровне CO2 выше 0,1% появляются проблемы с дыхательной системой (сухой кашель, риниты…), снижение иммунитета, ухудшение работы сердечно-сосудистой системы… При уровне выше 0,2% еще больше ухудшается концентрация внимания, растет количество совершаемых ошибок и т.д. по нарастающей.

Еще одна проблема помещений без вентиляции — возможность расслоения воздуха на фракции. Поскольку углекислый газ в полтора раза тяжелее воздуха, он может опуститься ближе к полу и его концентрация там увеличится. Но процесс этот медленный, и любое движение воздуха перемешивает фракции.

Наконец, использование растений, казалось бы, должно помочь — ведь они выделяют кислород и поглощают углекислый газ. Однако, это происходит только днем, а вечером и ночью (когда свежий воздух особенно нужен) растения выделяют углекислый газ, усугубляя проблему с его накоплением.

Накопление угарного газа в замкнутом помещении. Казалось бы, откуда взяться угарному газу (СО) в замкнутом помещении, если нет рядом дровяной печки или камина с неидеальной вытяжкой? Но в литературе приводятся следующие данные: наряду с углекислым газом человек выдыхает также и угарный газ — в количестве примерно 1,6 мл/ч (при нормальных условиях); предельно допустимая для человека концентрация угарного газа составляет 1 мг/м3.

Этих данных достаточно, чтобы снова провести оценки времени накопления предельной концентрации угарного газа для людей в лифте, комнате, вагоне метро и школьном классе. Для этого перейдем от объема к массе образовывающегося угарного газа, воспользовавшись известным соотношением: один моль любого газа при нормальных условиях занимает объем 22,4 л.

В таблице 2 приведены значения времени накопления CO2 и СО до опасной концентрации, а также времени развития кислородной недостаточности в лифте, комнате, вагоне метро и школьном классе. Для детей принята половинная величина выдыхаемого СО и CO2.

Таблица 2. Сопоставление времени снижения концентрации O2, накопления СО и CO2

Видно, что накопление углекислого газа примерно на порядок опаснее накопления угарного газа и еще на порядок опаснее снижения концентрации кислорода.

Мощность систем вентиляции. Как оценить мощность систем вентиляции qвент, необходимую для поддержания нормального состава воздуха? Если отвлечься от переходных процессов установления и выравнивания потоков воздуха, то конечный результат выглядит очень просто:

( q_{text{вент}} = frac{q_{text{CO}_2}}{(C_{text{CO}_{2:text{max}}}:-:C_{text{CO}_2})}. )

Так, если ( q_{text{CO}_2} ) = 0,25 литра в минуту (в этом случае человек выдыхает 15 литров CO2 в час), то при ( C_{text{CO}_{2:text{max}}} ) = 1 · 10−3 и ( C_{text{CO}_{2}} ) = 4 · 10−4 получим требуемую мощность вентиляции в 420 литров воздуха в минуту или 25 м3 в час.

Если же выдыхается 20 литров CO2 в час, то мощность вентиляции увеличивается до 33 м3 воздуха в час. А если принять для максимально допустимого значения концентрации CO2 в воздухе несколько меньшее значение 0,8 · 10−3, то мощность вырастет уже до 38 м3 воздуха в час (при 15 л CO2 в час) и 50 м3 воздуха в час (при 20 л CO2 в час).

Много это или мало? Как обеспечить такой приток свежего воздуха? Например, если приоткрыть дверь, то через каждый квадратный сантиметр щели при перепаде давлений по обе стороны двери Δp = 10 Па проходит в час один кубометр воздуха. Это означает, что при указанном Δp через сантиметровую щель в двери высотой два метра проходит 200 м3 воздуха за час.

Отметим, что принятый уровень перепада давлений 10 Па довольно мал (это 10−4 от атмосферного) и вполне может быть достигнут. Еще более мощный эффект вентиляции оказывает проветривание при открытии окон и дверей в течение хотя бы нескольких минут.

В качестве примера рассмотрим ситуацию с кислородом и углекислым газом при спасении детей в пещере Таиланда, частично затопленной водой. В 2022 году весь мир следил за спасением футбольной команды из 12 школьников и их тренера, ушедших на экскурсию в пещеру Кхао Луанг и застрявших в ней на 18 дней (23 июня — 10 июля) из-за дождей, затопивших вход в пещеру.

Они укрылись в воздушном кармане, полностью перекрытом водой и удаленном от выхода из пещеры на 5 километров. Задача заключалась в высвобождении ослабевших детей и тренера из пещеры. Ситуация осложнялась наличием узкой щели — на рисунке 2 она обозначена как «опасная точка», через которую предстояло выбираться.

В этой ситуации оказались важны все отмеченные выше особенности поведения кислорода и углекислого газа в замкнутом объеме. Для борьбы с постепенным уменьшением количества кислорода в пещере была организована доставка кислорода с помощью специального трубопровода.

Было решено, что накопление углекислого газа в пещере представляет существенно большую опасность, чем нехватка кислорода. Закачкой кислорода по трубопроводу в верхнюю часть пещеры вытесняли углекислый газ. Учитывалось также расслоение воздуха на фракции — CO2 скапливался в нижней части пещеры. Вот почему дети и тренер скрылись в верхней ее части.

Поиски ребят и подготовительные работы заняли почти две недели. За это время известный изобретатель и организатор исследований Илон Маск (космические корабли, электрокары) успел из запчастей к ракете изготовить миниатюрную подводную лодку на одного человека и доставить ее в Таиланд. Но из-за узкой щели от ее использования отказались.

Ситуация с каждым днем становилась все более сложной. Необходимо было постоянное присутствие людей, занятых на откачке воды из пещеры (иначе пещера полностью заполнилась бы водой) и установке труб для подачи кислорода. Более десятка аквалангистов доставляли в пещеру воду, еду и кислородные баллоны.

Там постоянно присутствовали врачи и те, кто готовили спасательную операцию. При дыхании этих взрослых спасателей состав воздуха ухудшался еще стремительнее. Наступил момент, когда из-за накопления углекислого газа дальше ждать было нельзя. Множество кислородных баллонов было расставлено по всему маршруту из пещеры к выходу (каждый баллон рассчитан на работу только в течение часа).

Тысяча спасателей снаружи, включая сто дайверов, начали операцию. В первый день 13 дайверов спасли четырех подростков. Во второй день 18 дайверов (и 70 аквалангистов сопровождения) спасли еще четверых. Наконец, в третий день были спасены оставшиеся четверо детей и их тренер, а также 4 человека, остававшиеся в пещере. Молодцы!

Земля-снежок

Сейчас оледенение, которое открыл Харленд, принято называть эпохой «Земли-снежка» (Snowball Earth). Судя по всему, оно действительно было всепланетным. А главной его причиной считается резкое ослабление парникового эффекта из-за падения концентрации углекислого газа (который стал главным парниковым газом после того, как кислород «съел» почти весь метан).

Дело в том, что оборот углекислого газа гораздо меньше зависит от живых существ, чем оборот кислорода. Основным источником атмосферного CO2 на Земле до сих пор служат извержения вулканов, а основным стоком — процесс, который называется химическим выветриванием.

Углекислый газ взаимодействует с горными породами, разрушая их, а сам при этом превращается в карбонаты (ионы HCO3− или CO32−). Последние хорошо растворяются в воде, зато в состав атмосферы больше не входят.

На исходе «скучного миллиарда», 800 миллионов лет назад, почти вся земная суша входила в состав единственного суперконтинента под названием Родиния. По словам одного известного геолога, гигантские суперконтиненты, как и крупные империи в социальной истории Земли, всегда оказывались неустойчивыми (В. Е. Хаин, М. Г. Ломизе.

Геотектоника с основами геодинамики. М: Изд-во МГУ, 1995). Поэтому неудивительно, что Родиния начала раскалываться. По краям разломов застывал извергнутый базальт, который сразу же становился объектом химического выветривания. Почвы тогда не было, и продукты выветривания легко сносились в океан.

Вулканизм, которым распад суперконтинента неизбежно сопровождался, мог бы компенсировать это, если бы не одно случайное обстоятельство. В силу каких-то причуд дрейфа континентов и Родиния, и ее обломки находились у экватора, в теплом поясе, где химическое выветривание шло особенно быстро.

Математические модели показывают, что именно по этой причине концентрация CO2 опустилась ниже порога, за которым начинается оледенение (Nature, 2004, 428, 6980, 303–306). А когда оно началось, тормозить выветривание было уже поздно.

Надо признать, что положение континентов в позднем протерозое оказалось настолько неудачным (с точки зрения обитателей планеты), насколько это вообще возможно. Дрейф континентов управляется потоками вещества земной мантии, динамика которых, по сути, неведома.

Но мы знаем, что в данном случае эти потоки собрали всю земную сушу в единый континент, находящийся точно на экваторе и вытянутый по широте. Если бы он оказался на одном из полюсов или был вытянут с севера на юг, начавшееся оледенение закрыло бы часть пород от выветривания и тем самым приостановило уход углекислого газа из атмосферы — тогда процесс мог затормозиться.

Как раз такую ситуацию мы наблюдаем сейчас, когда есть ледяные щиты Антарктиды и Гренландии (Scientific American, 1999, 9, 38). А в конце протерозоя почти все крупные участки суши находились близко к экватору — и были обнажены до того момента, когда северный и южный ледяные покровы сомкнулись. Земля стала ледяным шаром.

На самом деле эпизодов «Земли-снежка» было не меньше трех. Первый из них относился еще к гуронскому оледенению (которое, как мы помним, произошло не из-за углекислого газа, а из-за метана). Потом в течение более чем миллиарда лет никаких оледенений не было совсем.

А затем последовали еще два разделенных небольшим перерывом всепланетных оледенения, одно из которых длилось примерно 60 миллионов лет, другое — примерно 15 миллионов лет. Именно их открыл Брайан Харленд. Геологический период, охватывающий эти оледенения, называют криогением (он является частью протерозоя).

О живой природе криогения известно мало. Климат тогда на всей Земле был, по нынешним меркам, антарктическим. Большую часть Мирового океана покрывал километровый слой льда, так что интенсивность фотосинтеза не могла быть высокой. Свет, неожиданно ставший ценнейшим ресурсом, попадал в океан только местами, сквозь трещины, полыньи или небольшие участки тонкого льда.

Удивительно, что некоторые многоклеточные организмы сумели пережить криогений, совершенно не изменившись, — например, красные водоросли. Они и сейчас приспособлены к тому, чтобы использовать очень слабый свет, проникающий на такую глубину, где уже не живут никакие другие фотосинтезирующие существа (Ю. Т. Дьяков.

Введение в альгологию и микологию. М.: Изд-во МГУ, 2000). Никуда не делся и одноклеточный планктон. Содержание кислорода в криогениевом океане сильно упало, поэтому жизнь на его дне, скорее всего, была в основном анаэробной, но подробности этого от нас пока скрыты.

Окончания эпизодов «Земли-снежка» тоже по-своему драматичны. Во время всепланетных оледенений все процессы, связанные с поглощением больших объемов углекислого газа, в буквальном смысле замораживались. А между тем вулканы (работу которых никто не останавливал) выбрасывали и выбрасывали CO2 в атмосферу, постепенно доводя его концентрацию до огромных величин.

В какой-то момент ледяной щит уже не мог сопротивляться парниковому эффекту, и тогда начинался лавинообразный процесс разогрева планеты. Буквально за несколько тысяч лет — то есть геологически за мгновение — весь лед таял, освободившаяся вода заливала значительную часть суши мелкими окраинными морями, а температура земной поверхности, судя по расчетам, подскакивала до 50°С (Engineering and Science, 2005, 4, 10–20).

Продолжение в следующем номере.

Химические свойства

При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя(с большинством химических элементов) и свойства восстановителя(только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами, и с неметаллами. Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

O2   2F2  →  2OF2

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремниемс образованием оксидов:

S O2 → SO2

  Si O2 → SiO2

1.3.Фосфоргорит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

4P      3O2  →   2P2O3

Но чаще фосфор сгорает до оксида фосфора (V):

4P      5O2  →   2P2O5

1.4.С азотомкислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000оС), образуя оксид азота (II):

    N2  O2→  2NO

1.5. В реакциях с щелочноземельными металлами, литием  и алюминием кислород  также проявляет свойства окислителя. При этом образуются оксиды:

2Ca       O2 → 2CaO

Однако при горении натрияв кислороде преимущественно образуется пероксид натрия:

    2Na O2→  Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

    K O2→  KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn O2→  2ZnO

Железо, в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe O2→  2FeO

4Fe 3O2→  2Fe2O3

3Fe 2O2→  Fe3O4

1.6. При нагревании с избытком кислорода графит горит, образуя оксид углерода (IV):

C     O2  →  CO2

 при недостатке кислорода образуется угарный газ СО:

2C     O2  →  2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды. При этом образуются оксиды:

4FeS 7O2→  2Fe2O3 4SO2

Al4C3 6O2→  2Al2O3 3CO2

Ca3P2 4O2→  3CaO P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения (сероводород, аммиак, метан, силан гидриды. При этом также образуются оксиды: 

2H2S 3O2→  2H2O 2SO2

Аммиакгорит с образованием простого вещества, азота:

4NH3 3O2→  2N2 6H2O

Аммиакокисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 5O2→  4NO 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора (сероуглерод, сульфид фосфора и др.):

CS2 3O2→  CO2 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления (оксид углерода (II), оксид железа (II) и др.):

2CO O2→  2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например, кислород окисляет гидроксид железа (II):

4Fe(OH)2 O2 2H2O → 4Fe(OH)3

Кислород окисляет азотистую кислоту:

2HNO2 O2 → 2HNO3

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 2O2→  CO2 2H2O

2CH4 3O2→  2CO 4H2O

CH4 O2→  C  2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

2CH2=CH2 O2 → 2CH3-CH=O

Оцените статью
Кислород
Добавить комментарий