Валентность | CHEMEGE.RU

Валентность | CHEMEGE.RU Кислород
Содержание
  1. Валентность
  2. Валентность и кислоты
  3. Валентность и электронная теория
  4. Валентные возможности атома азота
  5. Валентные возможности атома водорода
  6. Валентные возможности атома серы
  7. Валентные возможности атома углерода
  8. Валентные возможности фосфора
  9. Как определить валентность химических элементов
  10. Как проявляется валентность в соединениях?
  11. Как рассчитать степень окисления элемента в соединении?
  12. Элементы, проявляющие постоянную со
  13. Значение постоянной со этого элемента
  14. Какая валентность у кислорода?
  15. Общая характеристика элементов via группы
  16. Особенности размещения кислорода в периодической таблице
  17. Получение
  18. Постоянная и переменная валентность
  19. Пример 1
  20. Природные соединения
  21. Решение:
  22. Составление химических формул по валентности
  23. Степень окисления
  24. Таблица валентностей химических элементов. максимальная и минимальная валентность. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)
  25. Таблица элементов с постоянной валентностью
  26. Характеристики валентности
  27. Химические свойства
  28. Электроотрицательность химических элементов
  29. Заключение

Валентность

Валентность — число химических связей, которые образует атом элемента в химическом соединении.

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов орбиталь с неспаренным электрономорбиталь с неподеленной парой электроновВалентность | CHEMEGE.RUвакантная орбиталь

Валентность и кислоты

Поскольку валентность водорода остается неизменной и хорошо вам известна, вы легко сможете определить и валентность кислотного остатка. Так, к примеру, в H2SO3 валентность SO3 – I, в HСlO3 валентность СlO3 – I.

Аналогчиным образом, если известна валентность кислотного остатка, несложно записать правильную формулу кислоты: NO2(I) – HNO2, S4O6 (II) – H2 S4O6.

Валентность и электронная теория

В рамках электронной теории валентность атома определеяется на основании числа непарных электронов, которые участвуют в образовании электронных пар с электронами других атомов.

В образовании химических связей участвуют только электроны, находящиеся на внешней оболочке атома. Поэтому максимальная валентность химического элемента – это число электронов во внешней электронной оболочке его атома.

Понятие валентности тесно связано с Периодическим законом, открытым Д. И. Менделеевым. Если вы внимательно посмотрите на таблицу Менделеева, легко сможете заметить: положение элемента в перодической системе и его валентность неравзрывно связаны. Высшая валентность элементов, которые относятся к одной и тоже группе,  соответсвует порядковому номеру группы в периодичнеской системе.

Низшую валентность вы узнаете, когда от числа групп в таблице Менделеева (их восемь) отнимете номер группы элемента, который вас интересует.

Например, валентность многих металлов совпадает с номерами групп в таблице периодических элементов, к которым они относятся.

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH3), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но  также и тогда, когда один атом, имеющий неподеленную пару электронов — донор( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.Валентность | CHEMEGE.RU

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии.

Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие  могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

Пунктирной линией на иллюстрации изображена так называемая делокализованнаяπ-связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O3, бензола C6H6 и т.д.

em>Резюмируя информацию по валентным возможностям атома азота:

1) Для азота возможны валентности I, II, III и IV

2) Валентности V у азота не бывает!

3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления 5 (!).

4) В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония NH4 , азотная кислота и д.р).

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон.

Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода  H2S.

Как мы видим, у атома серы на внешнем уровне появляется d-подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p-подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO2, SF4, SOCl2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s-подуровне, внешний энергетический уровень приобретает конфигурацию:

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO3, H2SO4, SO2Cl2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных ( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.

Резюмируя информацию по валентным возможностям атома углерода:

1) Для углерода возможны валентности II, III, IV

2) Наиболее распространенная валентность углерода в соединениях IV

3) В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d-подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s-орбитали:

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Как определить валентность химических элементов

Валентность показывает колличество связей. Она только положительная.

  1. У металлов — валентность = № группы;
  2. У неметаллов:

Как проявляется валентность в соединениях?

Кислород способен непосредственно взаимодействовать со многими химическими элементами. Известны его соединения практически со всеми представителями таблицы Менделеева (за исключением инертных газов: аргона, гелия, неона). В реакцию с галогенами, благородными металлами кислород может непосредственно не вступать, но оксиды Au2O3, F2O, Cl2O7 и другие существуют (получают косвенно).

Для бинарных соединений, в образовании которых принимает участие кислород, характерны ковалентная связь и полярность. Валентность в таких молекулах зависит от числа возникших пар электронов, к которым притягиваются ядра разных атомов. В подавляющем большинстве соединений атомы кислорода участвуют в создании двух ковалентных связей.

Например, в оксидах СО2, Р2О5, SO2, SO3, К2О, В2О3, Мо2О5 и в других молекулах. В катионе гидроксония Н3О кислород проявляет нетипичную для него валентность III.

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Элементы, проявляющие постоянную со

Значение постоянной со этого элемента

Щелочные металлы, т.е. все металлы
IA группы — Li, Na, K, Rb, Cs, Fr
1
Все элементы II группы, кроме ртути:
Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
2
Алюминий Al 3
Фтор F -1

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = №группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Какая валентность у кислорода?

На первоначальном этапе накопления знаний о свойствах и строении веществ химики думали, что валентность — это способность связывать определенное количество атомов в молекулу вещества. Многие ученые после открытия элемента пытались понять, какая валентность у кислорода.

Ответ был получен экспериментальным путем: кислород присоединяет в химической реакции два атома одновалентного водорода, значит, двухвалентен. Представления о химической связи менялись по мере накопления знаний о строении вещества. В своей теории валентности Г. Льюис и В.

Коссель раскрывают сущность химического взаимодействия с точки зрения электронного строения. Исследователи объясняли способность атома к образованию определенного числа связей стремлением к наиболее устойчивому энергетическому состоянию. В случае его достижения наименьшая частица вещества становится более стабильной.

Общая характеристика элементов via группы


Общее название элементов VIa группы O, S, Se, Te, Po — халькогены. Халькогены (греч. χαλκος — руда γενος —
рождающий) — входят в состав многих минералов. Например, кислород составляет 50% массы земной коры.

От O к Po (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств.
Уменьшается электроотрицательность, энергия ионизации, сродство к электрону.

Среди элементов VIa группы O, S, Se — неметаллы. Te, Po — металлы.


Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np4:

  • O — 2s22p4
  • S — 3s23p4
  • Se — 4s24p4
  • Te — 5s25p4
  • Po — 6s26p4

Особенности размещения кислорода в периодической таблице

Для того чтобы определить, какая валентность у кислорода, необходимо рассмотреть некоторые особенности его электронного строения. Кислород возглавляет 16 группу периодической таблицы. Тривиальное название семейства элементов — «халькогены», по устаревшей классификации они относятся к VI(А) группе.

В периодической таблице кислород находится в ячейке под №8. Ядро содержит в своем составе 8 положительных и столько же нейтральных элементарных частиц. В пространстве атома насчитывается два энергетических уровня, которые возникают при движении 8 электронов, из которых 6 — внешние.

Получение


В промышленности кислород получают из сжиженного воздуха. Также активно применяются кислородные установки, мембрана которых
устроена как фильтр, отсеивающие кислород (мембранная технология).

В лаборатории кислород получают разложением перманганата калия (марганцовки) или бертолетовой соли при нагревании. Применяется реакция
каталитического разложения пероксида водорода.

KMnO4 → K2MnO4 MnO2 O2↑

KClO3 → KCl O2↑


H2O2 → (кат. — MnO2) H2O O2

На подводных лодках для получения кислорода применяют следующую реакцию:

Na2O2 CO2 → Na2CO3 O2↑

Постоянная и переменная валентность

Как видим, углерод соединяется с разным числом атомов кислорода, т. е. имеет переменную валентность. У большинства элементов валентность — величина переменная. Только у водорода, кислорода и еще нескольких элементов она постоянна (см. таблицу).

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Природные соединения

  • Воздух — в составе воздуха кислород занимает 21% (это число пригодится в задачах!)
  • В форме различных минералов в земной коре кислорода содержится около 50%
  • В живых организмов кислород входит в состав органических веществ: белков, жиров, углеводов и нуклеиновых кислот

Решение:

Запишем формулу дихромата аммония:

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH4  (заряд данного катиона можно посмотреть в таблице растворимости).

Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH4  , заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH4  и анионами Cr2O72-.

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

Т.е. мы получаем два независимых уравнения:

Решая которые, находим x и y:

Таким образом, в дихромате аммония степени окисления азота -3, водорода 1, хрома 6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать здесь.

Составление химических формул по валентности

Зная валентность элементов, можно составлять формулы их бинарных соединений. Например, необходимо записать формулу кислородного соединения хлора, в котором валентность хлора равна семи. Порядок действий здесь таков.

Еще один пример. Составим формулу соединения кремния с азотом, если валентность кремния равна IV, а азота — III.

Записываем рядом символы элементов в следующем виде:

Затем находим НОК валентностей обоих элементов. Оно равно 12 (IV·III).

Определяем индексы каждого элемента:

Записываем формулу соединения: Si3N4.

В дальнейшем при составлении формул веществ не обязательно указывать цифрами значения валентностей, а необходимые несложные вычисления можно выполнять в уме.

Краткие выводы урока:

  1. Численной характеристикой способности атомов данного элемента соединяться с другими атомами является валентность.
  2. Валентность водорода постоянна и равна единице. Валентность кислорода также постоянна и равна двум.
  3. Валентность большинства остальных элементов не является постоянной. Ее можно определить по формулам их бинарных соединений с водородом или кислородом.

Степень окисления

Степень окисления – условный заряд атома химического элемента  в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.

Таблица валентностей химических элементов. максимальная и минимальная валентность. — инженерный справочник / технический справочник дпва / таблицы для инженеров (ex dpva-info)

Валентность химических элементов – это способность у атомов химических элементов образовывать некоторое число химических связей. Определяется числом электронов атома затраченых на образование химических связей с другим атомом. Справочно: Электронные формулы атомов химических элементов.

Считается, что валентность химических элементов определяется группой (колонкой) Периодической таблицы . Действительно, теоретически, это самая распространенная валентность для элемента, но на практике поведение химических элементов значительно сложнее. Причина множественности значений валентности заключается в том, что существуют различные способы (или варианты) заполнения, при которых электронные оболочки стабилизируются. Поэтому, предлагаем Вашему вниманию таблицу валентностей химических элементов.

Числовое значение положительной валентности элемента равно числу отданных атомом электронов, а отрицательной валентности – числу электронов, которые атом должен присоединить для завершения внешнего энергетического уровня. В неорганической химии обычно применяется понятие степень окисления, а в органической химии — валентность, так как многие из неорганических веществ имеют немолекулярное строение, а органических — молекулярное..

Таблица валентностей химических элементов.

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

1

Водород valency/валентность Hydrogen

H

(-1), 1

2

Гелий valency/валентность Helium

He

0

3

Литий valency/валентность Lithium

Li

1

4

Бериллий valency/валентность Beryllium

Be

2

5

Бор valency/валентность Boron

B

-3, 3

6

Углерод valency/валентность Carbon

C

( 2), 4

7

Азот valency/валентность Nitrogen

N

-3, -2, -1, ( 1), 2, 3, 4, 5

8

Кислород valency/валентность Oxygen

O

-2

9

Фтор valency/валентность Fluorine

F

-1, ( 1)

10

Неон valency/валентность Neon

Ne

0

11

Натрий valency/валентность Sodium

Na

1

12

Магний valency/валентность Magnesium

Mg

2

13

Алюминий valency/валентность Aluminum

Al

3

14

Кремний valency/валентность Silicon

Si

-4, ( 2), 4

15

Фосфор valency/валентность Phosphorus

P

-3, 1, 3, 5

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

16

Сера valency/валентность Sulfur

S

-2, 2, 4, 6

17

Хлор valency/валентность Chlorine

Cl

-1, 1, ( 2), 3, ( 4), 5, 7

18

Аргон valency/валентность Argon

Ar

0

19

Калий valency/валентность Potassium

K

1

20

Кальций valency/валентность Calcium

Ca

2

21

Скандий valency/валентность Scandium

Sc

3

22

Титан valency/валентность Titanium

Ti

2, 3, 4

23

Ванадий valency/валентность Vanadium

V

2, 3, 4, 5

24

Хром valency/валентность Chromium

Cr

2, 3, 6

25

Марганец valency/валентность Manganese

Mn

2, ( 3), 4, ( 6), 7

26

Железо valency/валентность Iron

Fe

2, 3, ( 4), ( 6)

27

Кобальт valency/валентность Cobalt

Co

2, 3, ( 4)

28

Никель valency/валентность Nickel

Ni

( 1), 2, ( 3), ( 4)

29

Медь valency/валентность Copper

Сu

1, 2, ( 3)

30

Цинк valency/валентность Zinc

Zn

2

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

31

Галлий valency/валентность Gallium

Ga

( 2). 3

32

Германий valency/валентность Germanium

Ge

-4, 2, 4

33

Мышьяк valency/валентность Arsenic

As

-3, ( 2), 3, 5

34

Селен valency/валентность Selenium

Se

-2, ( 2), 4, 6

35

Бром valency/валентность Bromine

Br

-1, 1, ( 3), ( 4), 5

36

Криптон valency/валентность Krypton

Kr

0

37

Рубидий valency/валентность Rubidium

Rb

1

38

Стронций valency/валентность Strontium

Sr

2

39

Иттрий valency/валентность Yttrium

Y

3

40

Цирконий valency/валентность Zirconium

Zr

( 2), ( 3), 4

41

Ниобий valency/валентность Niobium

Nb

( 2), 3, ( 4), 5

42

Молибден valency/валентность Molybdenum

Mo

( 2), 3, ( 4), ( 5), 6

43

Технеций valency/валентность Technetium

Tc

6

44

Рутений valency/валентность Ruthenium

Ru

( 2), 3, 4, ( 6), ( 7), 8

45

Родий valency/валентность Rhodium

Rh

( 2), ( 3), 4, ( 6)

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

46

Палладий valency/валентность Palladium

Pd

2, 4, ( 6)

47

Серебро valency/валентность Silver

Ag

1, ( 2), ( 3)

48

Кадмий valency/валентность Cadmium

Cd

( 1), 2

49

Индий valency/валентность Indium

In

( 1), ( 2), 3

50

Олово valency/валентность Tin

Sn

2, 4

51

Сурьма valency/валентность Antimony

Sb

-3, 3, ( 4), 5

52

Теллур valency/валентность Tellurium

Te

-2, ( 2), 4, 6

53

Иод valency/валентность Iodine

I

-1, 1, ( 3), ( 4), 5, 7

54

Ксенон valency/валентность Xenon

Xe

0

55

Цезий valency/валентность Cesium

Cs

1

56

Барий valency/валентность Barium

Ba

2

57

Лантан valency/валентность Lanthanum

La

3

58

Церий valency/валентность Cerium

Ce

3, 4

59

Празеодим valency/валентность Praseodymium

Pr

3

60

Неодим valency/валентность Neodymium

Nd

3, 4

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

61

Прометий valency/валентность Promethium

Pm

3

62

Самарий valency/валентность Samarium

Sm

( 2), 3

63

Европий valency/валентность Europium

Eu

( 2), 3

64

Гадолиний valency/валентность Gadolinium

Gd

3

65

Тербий valency/валентность Terbium

Tb

3, 4

66

Диспрозий valency/валентность Dysprosium

Dy

3

67

Гольмий valency/валентность Holmium

Ho

3

68

Эрбий valency/валентность Erbium

Er

3

69

Тулий valency/валентность Thulium

Tm

( 2), 3

70

Иттербий valency/валентность Ytterbium

Yb

( 2), 3

71

Лютеций valency/валентность Lutetium

Lu

3

72

Гафний valency/валентность Hafnium

Hf

4

73

Тантал valency/валентность Tantalum

Ta

( 3), ( 4), 5

74

Вольфрам valency/валентность Tungsten

W

( 2), ( 3), ( 4), ( 5), 6

75

Рений valency/валентность Rhenium

Re

(-1), ( 1), 2, ( 3), 4, ( 5), 6, 7

Порядковый номер
химического элемента,
он же: атомный номер,
он же: зарядовое число
атомного ядра,
он же: атомное число

Русское /
Английское наименование

Химический
символ

Валентность
В скобках обозначены
более редкие валентности.
Химические элементы с
единственной валентностью
— одну и имеют.

76

Осмий valency/валентность Osmium

Os

( 2), 3, 4, 6, 8

77

Иридий valency/валентность Iridium

Ir

( 1), ( 2), 3, 4, 6

78

Платина valency/валентность Platinum

Pt

( 1), 2, ( 3), 4, 6

79

Золото valency/валентность Gold

Au

1, ( 2), 3

80

Ртуть valency/валентность Mercury

Hg

1, 2

81

Талий valency/валентность Thallium

Tl

1, ( 2), 3

82

Свинец valency/валентность Lead

Pb

2, 4

83

Висмут valency/валентность Bismuth

Bi

(-3), ( 2), 3, ( 4), ( 5)

84

Полоний valency/валентность Polonium

Po

(-2), 2, 4, ( 6)

85

Астат valency/валентность Astatine

At

нет данных

86

Радон valency/валентность Radon

Rn

0

87

Франций valency/валентность Francium

Fr

нет данных

88

Радий valency/валентность Radium

Ra

2

89

Актиний valency/валентность Actinium

Ac

3

90

Торий valency/валентность Thorium

Th

4

91

Проактиний valency/валентность Protactinium

Pa

5

92

Уран valency/валентность Uranium

U

( 2), 3, 4, ( 5), 6

Таблица элементов с постоянной валентностью

Валентности Элементы
I H, Na, Li, K, Rb, Cs
II O, Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
III B, Al, Ga, In

Характеристики валентности

Сегодня определение валентности элементов базируется на знаниях о строении внешних электронных оболочек их атомов.

Валентность может быть:

  • постоянной (металлы главных подгрупп);
  • переменной (неметаллы и металлы побочных групп):
    • высшая валентность;
    • низшая валентность.

Постоянной в различных химических соединениях остается:

  • валентность водорода, натрия, калия, фтора (I);
  • валентность кислорода, магния, кальция, цинка (II);
  • валентность алюминия (III).

А вот валентность железа и меди, брома и хлора, а также многих других элементов изменяется, когда они образуют различные химические соедения.

Химические свойства

Является самым активным неметаллом после фтора, образует бинарные соединения со всеми элементами кроме гелия, неона, аргона. Чаще всего реакции
с кислородом экзотермичны (горение), ускоряются при повышении температуры.

Электроотрицательность химических элементов

Электроотрицательность(ЭО) – свойство атомов элементов оттягивать на себя электроны от другого атома в соединении.

На ЭО влияет несколько факторов: радиус атома и расстояние между ядром и валентными электронами. Численные значения ЭО приблизительные. Часто используют шкалу определения ЭО по Полингу. 

Относительная электроотрицательность атомов элементов по Полингу

Анализируя данную шкалу можно выявить ряд закономерностей, перекликающихся с периодическим законом (ПЗ).

  1. В периодической системе химических элементов (ПСХЭ) ЭО в периоде увеличивается слева направо и уменьшается в главной подгруппе.
  2. ЭО связана с окислительно-восстановительными свойствами элементов, поэтому типичные неметаллы характеризуются высокой ЭО, а металлы – низкой. Самая высокая ЭО у фтора, потому что он самый сильный окислитель.

В зависимости от значения электроотрицательности образуются вещества с различным видом химической связей: если между атомами нет разности в электроотрицательности, образуются простые вещества (состоящие из одного вида атомов), чем больше разность, тем полярность молеклы возрастает: образуются молекулы веществ с полярной связью и ионной связью.

Заключение

Углубляя свои знания о строении атомов, вы глубже и подробнее узнаете и валентность. Эта характеристика химических элементов не является исчерпывающей. Но у нее большое прикладное значение. В чем вы сами не раз убедились, решая задачи и проводя химические опыты на уроках.

Эта статья создана, чтобы помочь вам систематизировать свои знания о валентности. А также напомнить, как можно ее определить и где валентность находит применение.

Надеемся, этот материал окажется для вас полезным при подготовке домашних заданий и самоподготовке к контрольным и экзаменам.

Не забудьте поделиться ссылкой с друзьями в социальных сетях, чтобы они тоже могли воспользоваться этой полезной информацией.

Оцените статью
Кислород
Добавить комментарий