3. Сжижение газов [1962 Андрлик К., Петру Ф. — Повторяем химию]

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию] Кислород

Сжижение газов

Первые успешные опыты превращения газов в жидкое состояние провел английский физик Майкл Фарадей (1791 — 1867). Условия для сжижения газов определили (независимо друг от друга) Д. И. Менделеев и Т. Эндрюс. Воздух был впервые превращен в жидкое состояние Карлом Линде (1842 — 1934).

Газы отличаются от жидких тел расстоянием между молекулами. Казалось бы поэтому, что для сжижения газа достаточно сблизить его молекулы, т. е. сильно сдавить газ. Однако оказалось, что это не так и что для превращения газа в жидкое состояние должна быть путем охлаждения газа снижена движущая (кинетическая) энергия молекул.

Опыт показал, что для каждого газа существует своя определенная максимальная температура, при которой можно превратить газ в жидкость при помощи давления. При температуре более высокой, чем эта температура, газ остается веществом газообразным и ни при каком давлении не превращается в жидкость.

Эта температура называется критической температурой газа, а давление, которым при критической температуре можно газ превратить в жидкость, критическим давлением. Оба значения очень важны для любого газа. Так напр., у углекислого газа (СО2) критическая температура 31,1°С, а критическое давление его — 73 ат.

Таблица 6

Физические константы газов

Название газа Плотность (воздуха = 1) Вес 1 литра в г при 0°С и 760 мм 1 кг газа = литрам газа Уд. вес жидкого газа при темпер. 15°С вода = 1 (4°) Давление паров жидкого газа при 150 атм Точка кипения °С Точка плавления °С Критич. температура °С Критич. давление атм
Азот 0,9701 1,2542 789 0,7914 (-196°) 196° -211° -147° 34
Аммиак 0,5895 0,7621 1 312 0,6138 7,14 -38,5° -75° -132° 112
Аргон 1,379 1,782 561 1,212 (-186°) -186° -190° -121° 51
Ацетилен 0,8988 1,620 617 0,420 (10°) 37,9 -84° -81° 37° 68
Водород 0,0697 0,0900 11 106 0,0763 (-253°) -259° -253° -239° 12
Гелий 0,1382 0,1787 5 596 0,122 (-269°) -269° -272° -268° 2
Двуокись азота 3,1812 4,1126 243 1,451 0,76 26° 11° 171° 100
Двуокись серы 2,2131 2,8611 350 1,3964 2,72 -10° -79° 157° 78
Двуокись углерода 1,5201 1,9652 509 0,814 52,17 -78° -65° 31,1° 73
Закись азота 1,5229 1,9688 508 0,800 49,77 -90° -115° 36° 75
Кислород 1,1055 1,4292 700 0,106 (-183°) -183° -218° -119° 51
Криптон 2,868 3,654 274 2,16 (-152°) -152° -169° -63° 54
Ксенон 4,49 5,717 175 3,52 (107°) -107° -140° 15° 57
Метан 0,5539 0,7160 1 396 0,466 (-160°) -160° -184° -96° 50
Метиламин 1,0737 1,388 720 0,699 (-11°) -6° 155° 72
Неон 0,695 0,9004 1 111 0,456 (-233°) -233° -253° -228° 27
Окись углерода 0,9673 1,2506 800 0,7676 (-184°) -190° -207° -140° 36
Фосген 3,4168 4,4172 227 1,392 1,35 8,2° -118°
Хлор 2,4494 3,1666 316 1,4273 5,75 -33,6° -102° 146° 94
Хлористый метил 1,7438 2,2543 443 0,917 (17°) 4,10 -24° -104° 142° 73
Хлористый этил 2,2280 2,8804 347 0,921 (0°) 1,09 12,5° -143° 182° 54
Этиламин 1,558 2,0141 497 0,689 0,9 18° -85° 177° 66
Этилен 0,9684 1,252 798 0,310 (6°) 46 (6°) -103° -169° 10° 51
Этан 1,038 1,3421 746 0,466 32,3 -84° -171° 35° 45

Углекислый газ довольно легко превращается в жидкость, потому что его критическая температура сравнительно высока. Еще легче можно превратить в жидкость аммиак (NH3) -132,4°С, 112 ат), сернистый ангидрид (SO2)

-157,7°С, 77,7 ат) или хлор (146°С, 94 ат). Большие затруднения обнаружились у азота (-147,1°С, 33,5 ат), кислорода (-119°С, 50 ат) и водорода (-239°С, 12,8 ат). При помощи жидкого водорода удалось превратить в жидкое состояние и гелий (-267,9°С, 2,26 ат), критическая температура которого приближается к абсолютной нулевой точке 0°К.

Абсолютный нуль (точно — 273,16°С = 0°К) — это нижний предел температуры. При этой температуре, согласно кинетической теории, все молекулы находятся в покое. Аналогичный верхний предел температуры по-видимому не существует. На звездах были спектроскопически обнаружены температуры во много миллионов градусов. Однако пока нам удалось достигнуть максимальной температуры около 5000°С.

Сжижение газов является в настоящее время важной отраслью химической промышленности. Так напр., сжижается воздух, и из него при помощи фракционированной дистилляции получается кислород, азот и редкие газы. Сжижается хлор и в жидком виде транспортируется в стальных баллонах на отбельные заводы.

Жидкие сернистый ангидрит, аммиак и другие жидкие газы применяются в холодильных установках. Их действие заключается в том, что сильно сжатому компрессором и охлажденному газу представляется возможность сразу расшириться (в пространстве, из которого компрессором отсасывается воздух через так наз. редукционный клапан); в результате этого газ так сильно охлаждается, что превращается в жидкость (явление Джоуля-Томсона).

Технически важные газы транспортируются в стальных баллонах, которые согласно нормам должны быть сделаны из хорошей стали методом Маннесмана (как бесшовные трубы). В них можно транспортировать: сжатые газы (до 150 ат), а именно кислород, водород, азот, окись углерода, метан, водяной газ, светильный газ и воздух, а также жидкие газы (их критическая температура так высока, что и при относительно высоком давлении они остаются жидкими), а именно сернистый ангидрид, закись азота, углекислый газ, хлор, фосген, аммиак, масляный газ, и газы растворенные, как ацетилен.

Новые стальные баллоны нельзя наполнять, пока они тщательно не проверены, особенно на давление. Проверка на давление производится периодически (ацетиленовые баллоны проверяются сжатым азотом, прочие — гидравлическим давлением) и на каждом баллоне отмечается меткой.

Все баллоны необходимо отметить цветной полосой (кислород — синей, водород — цвета красной киновари, азот — зеленой, аммиак — фиолетовой, углекислый газ — красной, ацетилен — белой, хлор — желтой, воздух — серебряно-алюминиевым покрытием и т. д.).

Цветные полосы должны быть шириной в 10 см и находиться под верхней закругленной кромкой баллона. Баллоны закрыты затворными клапанами, которые предохраняются металлическими колпачками. Нарезки затворных клапанов для горючих газов нарезаются левой резьбой, для газов негорючих — правой.

Стальные баллоны необходимо оберегать от ударов (при транспортировке) и нельзя подвергать действию высокой температуры (оставлять на солнце или вблизи от отопительной установки или печи). У кислородных баллонов нарезки нужно смазывать не смазочным маслом, а глицерином.

Жидкий кислород

назадоглавлениевперёд

В процессах газопламенной обработки используют кислород в газообразном виде. Кислород в жидком виде применяют только при его хранении и транспортировке от завода-изготовителя до потребителей.
По внешнему виду жидкий кислород — голубоватая прозрачная подвижная жидкость, затвердевающая при -218,4°С и образующая кристаллы голубоватого цвета. Теплоемкость жидкого кислорода равна 1,69 кДж/(кг-°С) [0,406 ккал/(кг-°С)].
Перед подачей в сеть потребления для газопламенной обработки жидкий кислород подвергается испарению при заданном давлении в специальных устройствах — газификаторах, безнасосных или насосных. При испарении 1 дм3 жидкого кислорода получается 0,86 м3, или 860 дм3 газообразного кислорода (при 20°С и 760 мм рт. ст.); здесь 1,14 кг/дм3 и 1,33 кг/м3 соответственно плотности жидкого и газообразного кислорода. При испарении 1 кг жидкого кислорода образуется 1/1,33 = 0,75 м3 газа (при 20°С и 760 мм рт. ст). Основные преимущества хранения и транспортировки кислорода в жидком виде следующие.
1. Сокращается (в среднем в 10 раз) масса тары и уменьшается требуемое количество баллонов и транспортных средств (автомобилей, вагонов), занятых на перевозке кислорода.
2. Отпадают расходы по организации и эксплуатации большого баллонного хозяйства на заводах (приобретение баллонов, постройка складов, учет, испытание и ремонт баллонов, транспортные расходы).
3. Повышается безопасность и упрощается обслуживание газопитания цехов газопламенной обработки, поскольку жидкий кислород хранится и транспортируется под небольшим давлением.
4. Получаемый при газификации жидкого кислорода газообразный кислород не содержит влаги, его можно транспортировать по трубопроводам при низких окружающих температурах без применения специальных мер против замерзания конденсата (прокладка труб ниже глубины промерзания, теплоизоляция, установка конденсатоотводчиков, прокладка паровых обогревателей и пр.).
Недостатком применения жидкого кислорода являются неизбежные потери его на испарение при хранении, перевозке и газификации.
Для хранения и перевозки небольших количеств жидкого кислорода (азота, аргона, воздуха) используют сосуды Дьюара (рис. 2), шаровые (а) или цилиндрические (б). Сжиженный газ заполняет сосуд 2 из алюминиевого сплава, подвешенный на тонкостенной трубке — горловине 1 из стали Х18Н10Т внутри внешнего сосуда 3, изготовленного также из алюминиевого сплава. Все соединения выполнены аргонодуговой сваркой, стальные детали предварительно алитированы. Пространство между сосудами заполнено тепловой изоляцией 5 из смеси порошкообразного аэрогеля и бронзовой пудры.
В этом пространстве создан вакуум до остаточного давления (1 — 2) 10-1 мм рт. ст. Снизу к внутреннему сосуду приварена камера 4, заполненная адсорбентом (силикагелем КСМ). При заполнении сосуда 2 сжиженным газом адсорбент охлаждается и поглощает остаточные газы в межстенном пространстве, создавая в нем вакуум до давления (1 — 5) 10-3 мм рт. ст. Сталь Х18Н10Т обладает низким коэффициентом теплопроводности, вследствие чего теплоприток извне по горловине существенно снижен.

Транспортные резервуары используют для перевозки больших количеств жидкого кислорода (азота, аргона) автотранспортом и по железной дороге. Автомобильные резервуары имеют емкость 1000-7500 дм

3

, железнодорожные 30 000-35 000 дм

3

, а иногда и более.

Типовой транспортный автомобильный резервуар ТРЖК-2У показан на рис. 3. Внутренний резервуар, в котором хранится жидкий кислород, изготовлен из стали Х18Н9Т аргонодуговой сваркой, наружный (кожух) — из низкоуглеродистой стали 20. Изоляция заполняющая межстенное пространство, — вакуумно-порошковая — из смеси аэрогеля с перлитовой пудрой; вакуум в межстенном пространстве соответствует остаточному давлению 5*10

-2

мм рт. ст.

Заполнение резервуара жидким кислородом из стационарной емкости производится через вентиль 3 и штуцер 5 при открытом вентиле 13 для сброса газа в газгольдер или атмосферу. При опорожнении резервуара в нем создается избыточное давление до 0,1 — 0,15 МПа (1-1,5 кгс/см

2

) за счет испарения части жидкого кислорода в испарителях 17. Слив жидкости производится также через вентиль 3 и штуцер 5 при закрытом вентиле 13. Для уменьшения притока теплоты через опоры резервуара они изготовлены из слоистого стеклопластика, обладающего низким коэффициентом теплопроводности и достаточной прочностью при низких температурах.

Для превращения жидкого кислорода в газообразный служат газификационные установки. Их производительность достигает 15—20 м

3

/ч. Применяют два типа газификационных установок: насосные и безнасосные.

Насосная газификационная установка СГУ-1, показанная на рис. 4, предназначена для газификации непереохлажденного кислорода и наполнения баллонов (реципиентов газообразным кислородом под давлением до 24 МПа (240 кгс/см

2

). Кислород от реципиентов подается по трубопроводу к местам потребления через центральный рамповый редуктор под требуемым давлением порядка 1,2-2 МПа (15-20 кгс/см

2

) для процессов газопламенной обработки. Имеются газификационные станции, насосы которых рассчитаны на давление 20 МПа (200 кгс/см

2

) и служат для подачи кислорода в сеть через буферную емкость. В промышленности применяют также автомобильные передвижные газификационные установки.

Безнасосные газификаторы имеют рабочее давление до 1,6 МПа (16 кгс/см

2

) при относительно постоянном и равномерном расходе кислорода, подаваемого по трубопроводу к местам потребления (рис. 5). Сосуд газификатора снабжен вакуумно-порошковой изоляцией и рассчитан на максимальное рабочее давление.

Первоначально давление в сосуде создается испарением кислорода в испарителе 9 и автоматически поддерживается постоянным регулятором 2. В зависимости от расхода газа жидкий кислород через регулятор 8 поступает в испаритель 7 и затем в виде газа идет в трубопровод к потребителю. Избыток газа в газификаторе сбрасывается при заданном давлении также в трубопровод потребителя через регулятор 3. Сосуд 1 наполняется жидким кислородом через штуцер 4 и вентили 5 и 6.

назадоглавлениевперёд

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).2HgO →ot 2Hg O2↑

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Компонент ракетного топлива

Жидкий кислород является широко распространённым окислительным компонентом ракетного топлива, обычно в сочетании с ним используют керосин. Использование кислорода обусловлено высоким удельным импульсом, который получается при применении этого окислителя в ракетных двигателях.

Кислород — самый дешёвый из применяемых компонентов ракетных топлив. Первое применение имело место в германской БРФау-2, позднее в американских БР «Редстоун» и РН «Атлас», а также в советской МБРР-7.

Жидкий кислород активно использовался в ранних МБР, но в более поздних образцах этих ракет его не применяют из-за очень низкой температуры и необходимости регулярной дозаправки для компенсации выкипания окислителя, что затрудняет быстрый запуск. Многие современные ЖРД используют ЖК в качестве окислителя, например РД-180, RS-25.

Меры безопасности при работе с жидким кислородом

  1. Кислород — не ядовит, но при работе с ним должны применяться защитные средства, предохраняющие от возможного обморожения: летом — хлопчатобумажный комбинезон, рукавицы, кожаные сапоги, очки; зимой — валенки, подшитые кожей, тёплые рукавицы, очки.
  2. Кислород — весьма пожароопасен и даже взрывоопасен при соприкосновении с органическими веществами при наличии даже небольшого теплового импульса. Едва тлеющий на воздухе тепловой очаг разгорается ярким пламенем в атмосфере кислорода. Известны трагические последствия курения на месте недавнего пролива жидкого кислорода на почву. Для воспламенения таких материалов, как паронит, резина, хлопчатобумажная ткань, полиэтилен и др. в атмосфере кислорода достаточно нагрева их всего до 200—300°С. Даже резкое сжатие органического материала, пропитанного кислородом (например, при падении тяжелого предмета на асфальт, облитый жидким кислородом), может вызвать возгорание и взрыв. При соприкосновении с маслами кислород может образовывать с некоторыми их компонентами активные эндотермичные перекисные соединения, накопление которых может приводить к взрыву, поэтому контакт кислорода с такими веществами в любых вариантах, работа в промасленной одежде, замасленными руками или приспособлениями недопустима. По окончании работ в контакте с жидким или газообразным кислородом запрещается ранее, чем через 20—30 минут подходить к открытому огню, закуривать и тому подобное, так как кислород длительное время удерживается в складках одежды, волосах, что при наличии огня создает пожарную опасность.
  3. Сварочные и ремонтные работы в ёмкостях и помещениях, где хранится жидкий кислород, должны производиться только после двух-трёхчасового проветривания их тёплым воздухом (70—80°С). Перед заливкой кислорода в новую ёмкость последняя обезжиривается.
  4. При перекачке жидкого кислорода производится предварительное «захолаживание» системы малым расходом продукта. Без этого в «горячей» системе образуется сильный поток газифицированного кислорода, который при наличии резких поворотов и перепадов давления на элементах системы (вентили и тому подобное) может вызвать возгорание металла.

Парамагнетические свойства

Для объяснения отклонения парамагнетических свойств жидкого кислорода от закона Кюри американским физикохимиком Г. Льюисом в 1924 году была предложена молекула тетракислорода (O4).[2] На сегодняшний день теория Льюиса считается лишь частично верной: компьютерное моделирование показывает, что хотя в жидком кислороде не образуется устойчивых молекул O4[3], молекулы O2 на самом деле имеют тенденцию объединяться в пары с противоположными спинами, которые образуют временные объединения O2—O2[3].

Преимущества сотрудничества с нпк «грасис»

Научно-производственная осуществляет поставки оборудования, которое позволит вам самостоятельно получать газообразный кислород из атмосферного воздуха.

Наша компания более 10 лет занимается разработкой и производством газо- и воздухоразделительного оборудования, а также инжинирингом, проектированием и выполнением комплексных работ «под ключ». Мы поможем вам решить любые задачи, связанные с газо- и воздухоразделением, утилизацией попутного нефтяного газа и подготовкой природного газа.

В процессе производства оборудования мы используем нанотехнологии и высококачественные комплектующие, благодаря которым улучшаются технико-эксплуатационные свойства продукции. Свяжитесь с представителями , чтобы получить развернутую информацию о заинтересовавшей вас установке!

Более подробно Вы можете ознакомиться с кислородным оборудованием (кислородные генераторы, кислородные установки, кислородные станции) на странице

Кислород химический элемент, атомный номер 8, атомная масса 15,9994. Обычно концентрация кислорода (в виде молекул O 2) в атмосфере на уровне моря составляет по объему 21%. Кислород немного тяжелее воздуха, вес 1 м 3 кислорода при 0° и 760 мм рт. ст.

равен 1,43 кг. Плотность по отношению к воздуху 1,1. При температуре -182,97°C и давлении 760 мм рт. ст. кислород превращается в голубоватую легко подвижную жидкость, энергично испаряющуюся при нормальной температуре. При этом занимаемый газом объем уменьшается примерно в 850 раз.

При нагревании жидкий кислород снова превращается в газ. Вес 1 л жидкого кислорода при температуре -183°C равен 1,14 кг. Жидкий кислород при атмосферном давлении затвердевает при температуре -218,4°C и образует кристаллы голубоватого цвета. Химическая формула – O. В обычных условиях молекула кислорода двухатомная — O 2 .

Кислород при нормальных условиях (температуре и давлении) представляет собой прозрачный газ без запаха, вкуса и цвета. Не относится к горючим газам, но способен активно поддерживать горение.

По химической активности среди неметаллов кислород занимает второе место после фтора.

Все элементы, кроме благородных металлов (платина, золото, серебро, родий, палладий и др.) и ( , ксенон, криптон и неон), вступают в реакцию с кислородом (окисление) и образовывают оксиды. Процесс окисления элементов, как правило, носит экзотермический (с выделением теплоты) характер.

Применение кислорода в сварке

Сам по себе O2 является негорючим газом, но из-за свойства активно поддерживать горение и увеличения интенсивности (интенсификации) горения газов и жидкого топлива его используют в ракетных энергетических установках и во всех процессах газопламенной обработки.

В таких процессах газопламенной обработки, как газовая сварка, поверхностная закалка высокая температура пламени достигается путем сжигания горючих газов в O2, а при газовой резке благодаря ему происходит окисление и сгорание разрезаемого металла.

При полуавтоматической сварке (MIG/MAG) кислород O2 используют как компонент защитных газовых смесей с аргоном (Ar) или углекислым газом (CO2).

Кислород добавляют в аргон при полуавтоматической сварке легированных сталей для обеспечения устойчивости горения дуги и струйного переноса расплавленного металла в сварочную ванну. Дело в том, что как поверхностно активный элемент он уменьшает поверхностное натяжение жидкого металла, способствуя образованию на конце электрода более мелких капель.

При сварке низколегированных и низкоуглеродистых сталей полуавтоматом O2 добавляют в углекислый газ для обеспечения глубокого проплавления и хорошего формирования сварного шва, а также для уменьшения разбрызгивания.

Чаще всего кислород используют в газообразном виде, а в виде жидкости используют только при его хранении и транспортировке от завода-изготовителя до потребителей.

Список литературы

1. Kamerlingh Onnes Н., Kuypers Н.A. Isotherms of di-atomic substances and their binary mixtures. XXV. On the isotherms of oxygen at low temperatures. — Comm. Phys. Lab. Univ. Leiden, 1924, N 169a, p.3-9.

2. Nijhоff G.P., Кeesоm W.H. Isotherms of di-atomic substances and their binary mixtures. XXXIII. Isotherms of oxygen between -40 °C and -152,5 °C and pressures from 3 to 9 atmospheres. — Comm. Phys. Lab. Univ. Leiden, 1925, N 179b, p.11-19.

3. Hоlbоrn L., Otto J. 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию]

4. Miсhels A., Sсhamp H.W., de Graaf W. Compressibility isotherms of oxygen at 0, 25 and 50 °C and at pressures up to 135 atmospheres. — Physica, 1954, vol. 20, p.1209-1214.

5. The densities of liquid argon, krypton, xenon, oxygen, nitrogen, carbon monoxide, methane and carbon tetrafluoride along the orthobaric liquid curve/Terry M.J., Lynch J.Т., Bunclark M. etc. — J. Chem. Thermodynamics, 1969, vol. 1, p.413-424.

6. Goldman K., Sсrase N.G. Densities of saturated liquid oxygen and nitrogen. — Physica, 1969, vol. 44, p.555-586.

7. Weber L.A. PVT, thermodynamic and related properties of oxygen from triple point to 300 К at pressures to 33 MN/m3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию]

8. Street W.В., Sagan L.S. PVT data for oxygen from 90 to 250 К and pressures to 684 atm. — In: Advances in cryogenic engineering. New York, 1975, vol. 20, p.240-243.

9. Термодинамические свойства индивидуальных веществ/Гурвич Л.В., Венц И.В., Медведев В.А. и др. 3-е изд. М.: Наука, 1978. Т.I, кн.2-327 с.

10. Goodwin R.D., Weber L.A. Specific heats 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию]

11. Термодинамические свойства кислорода/Сычев В.В., Вассерман А.А., Козлов А.Д., Спиридонов Г.А., Цымарный В.А. М.: Изд-во стандартов 1981. — 312 с.

12. Landolt Н., 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию]

Таблица 1. плотность кислорода

     Продолжение

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], К

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], кг/м3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию] при 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], МПа

25

30

35

40

45

50

60

70

80

90

100

70

1269,9

1275,6

1281,0

1286,2

1291,2

1296,0

1305,2

80

1229,8

1236,6

1243,2

1249,5

1255,5

1261,4

1272,6

1283,3

90

1189,3

1197,3

1204,9

1212,2

1219,3

1226,1

1239,1

1251,5

100

1148,1

1157,5

1166,3

1174,7

1182,7

1190,5

1205,1

1218,9

110

1106,1

1117,0

1127,2

1136,9

1146,0

1154,7

1171,0

1186,2

120

1063,0

1075,8

1087,7

1098,7

1109,1

1118,9

1137,0

1153,7

1169,3

130

1018,4

1033,6

1047,5

1060,2

1072,0

1083,0

1103,2

1121,6

1138,4

1154,2

140

972,0

990,3

1006,5

1021,2

1034,6

1047,1

1069,6

1089,7

1108,0

1125,0

150

923,5

945,6

964,8

981,7

997,1

1011,1

1036,2

1058,3

1078,1

1096,3

1113,1

160

872,8

888,8

922,2

941,9

959,4

975,2

1003,0

1027,2

1048,7

1068,2

1086,1

170

820,0

852,6

879,2

910,8

921,7

939,4

970,2

996,6

1019,8

1040,7

1059,7

180

763,3

804,9

835,8

861,7

884,1

903,9

937,8

966,5

991,5

1013,8

1033,9

190

710,2

756,5

792,4

821,8

846,9

868,8

906,0

937,0

963,8

987,4

1008,8

200

655,6

708,8

749,6

782,6

810,4

834,4

874,8

908,1

936,7

961,8

984,3

250

442,7

508,4

562,5

607,4

645,3

678,0

732,1

775,7

812,3

843,9

871,6

300

332,4

388,7

438,9

483,3

522,6

557,6

617,3

666,5

700,1

744,1

775,7

350

270,3

317,6

361,2

401,2

437,8

471,3

530,2

580,4

400

230,0

270,7

308,9

344,6

377,8

408,8

464,6

450

201,3

237,2

500

179,7

211,8

600

148,7

175,4

700

127,4

150,4

800

111,6

132,0

900

99,52

117,8

1000

89,85

106,4

Таблица 2. энтальпия кислорода

Продолжение

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], К

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], кДж/кг, при 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], МПа

25

30

35

40

45

50

60

70

80

90

100

70

123,4

126,4

129,5

132,6

135,8

138,9

145,2

80

139,8

142,9

145,9

148,9

152,0

155,1

161,3

167,5

90

156,0

159,0

161,9

164,9

167,9

170,9

176,9

183,0

100

172,0

174,8

177,7

180,5

183,4

186,4

192,3

198,3

110

188,0

190,6

193,3

196,1

198,9

201,7

207,5

213,3

120

204,1

206,5

209,0

211,6

214,3

217,0

222,6

228,3

234,1

130

220,4

222,5

224,8

227,2

229,8

232,4

237,7

243,3

248,9

254,7

140

237,0

238,7

240,7

242,9

245,3

247,7

252,8

258,2

263,7

269,3

150

253,9

255,2

256,8

258,7

260,8

263,1

267,9

273,0

278,4

283,9

289,5

160

271,2

271,8

273,0

274,6

276,4

278,4

282,9

287,8

293,0

298,4

303,9

170

288,9

288,7

289,4

290,5

292,0

293,8

297,9

302,6

307,5

312,8

318,2

180

308,9

303,8

305,8

306,4

307,6

309,1

312,8

317,2

322,0

327,1

332,4

190

325,2

323,0

322,2

322,4

323,2

324,4

327,6

331,7

336,3

341,2

346,4

200

343,6

340,2

338,6

338,6

338,6

339,5

342,4

346,1

350,5

355,2

360,3

250

428,8

422,2

417,8

415,2

413,8

413,2

413,9

416,1

419,4

423,3

427,7

300

498,1

492,4

488,1

485,1

483,1

481,9

481,3

483,5

484,9

488,2

492,0

350

558,6

554,3

550,9

548,4

546,6

545,4

544,7

545,5

400

615,0

611,8

609,3

607,4

606,1

605,3

604,9

450

669,4

667,1

500

722,9

721,4

600

829,3

828,8

700

936,3

936,6

800

1044,4

1045,3

900

1153,8

1155,2

1000

1264,3

1266,2

Таблица 3. энтропия кислорода

Продолжение

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], К

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], кДж/(кг·К), при 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], МПа

25

30

35

40

45

50

60

70

80

90

100

70

2,449

2,436

2,425

2,414

2,403

2,392

2,373

80

2,669

2,656

2,643

2,631

2,619

2,608

2,587

2,567

90

2,859

2,845

2,832

2,819

2,806

2,794

2,771

2,750

100

3,028

3,012

2,998

2,984

2,970

2,968

2,933

2,911

110

3,180

3,163

3,147

3,132

3,118

3,104

3,078

3,054

120

3,320

3,301

3,284

3,267

3,252

3,237

3,210

3,185

3,161

130

3,450

3,429

3,410

3,392

3,376

3,360

3,331

3,304

3,280

3,257

140

3,573

3,550

3,528

3,509

3,490

3,474

3,443

3,415

3,389

3,365

150

3,690

3,663

3,639

3,617

3,598

3,580

3,547

3,517

3,490

3,466

3,443

160

3,802

3,771

3,744

3,720

3,698

3,679

3,644

3,613

3,585

3,559

3,536

170

3,909

3,873

3,843

3,816

3,793

3,772

3,734

3,702

3,673

3,647

3,623

180

4,012

3,970

3,936

3,907

3,882

3,859

3,820

3,786

3,755

3,728

3,703

190

4,111

4,063

4,025

3,994

3,966

3,924

3,900

3,864

3,833

3,805

3,779

200

4,205

4,151

4,110

4,075

4,046

4,020

3,975

3,938

3,906

3,877

3,851

250

4,587

4,518

4,464

4,419

4,381

4,349

4,295

4,251

4,213

4,181

4,152

300

4,840

4,775

4,720

4,674

4,634

4,600

4,541

4,493

4,453

4,171

4,387

350

5,027

4,966

4,914

4,869

4,830

4,796

4,737

4,687

400

5,178

5,120

5,070

5,027

4,989

4,956

4,897

450

5,306

5,250

500

5,419

5,364

600

5,613

5,560

700

5,777

5,726

800

5,922

5,872

900

6,051

6,001

1000

6,167

6,118

Таблица 4. изобарная теплоемкость кислорода

     Продолжение

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], К

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], кДж/(кг·К), при 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], МПа

25

30

35

40

45

50

60

70

80

90

100

70

1,655

1,649

1,643

1,638

1,633

1,628

1,618

80

1,634

1,627

1,619

1,612

1,605

1,599

1,585

1,572

90

1,605

1,595

1,586

1,578

1,570

1,562

1,548

1,535

100

1,594

1,580

1,569

1,558

1,549

1,541

1,526

1,513

110

1,600

1,582

1,566

1,553

1,542

1,532

1,515

1,502

120

1,618

1,594

1,574

1,557

1,543

1,531

1,511

1,496

1,484

130

1,644

1,612

1,586

1,565

1,548

1,533

1,510

1,492

1,479

1,468

140

1,676

1,633

1,600

1,574

1,553

1,536

1,508

1,488

1,473

1,462

150

1,711

1,655

1,614

1,583

1,558

1,537

1,506

1,483

1,466

1,454

1,444

160

1,749

1,677

1,627

1,589

1,560

1,537

1,502

1,477

1,458

1,444

1,433

170

1,787

1,697

1,637

1,593

1,560

1,534

1,495

1,468

1,448

1,433

1,433

180

1,819

1,713

1,643

1,594

1,557

1,529

1,487

1,458

1,437

1,422

1,410

190

1,839

1,721

1,645

1,591

1,551

1,521

1,477

1,447

1,425

1,409

1,396

200

1,836

1,718

1,640

1,584

1,543

1,511

1,465

1,434

1,412

1,395

1,383

250

1,528

1,524

1,502

1,476

1,451

1,428

1,391

1,364

1,343

1,328

1,315

300

1,276

1,304

1,318

1,324

1,323

1,319

1,307

1,293

1,280

1,269

1,260

350

1,159

1,184

1,203

1,215

1,224

1,229

1,232

1,231

400

1,103

1,123

1,140

1,152

1,162

1,170

1,179

450

1,077

1,093

500

1,066

1,079

600

1,065

1,074

700

1,075

1,082

800

1,088

1,093

900

1,100

1,104

1000

1,111

1,114

Таблица 5. средние квадратические случайные погрешности расчетных значений плотности

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], К

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], %, при 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], МПа

1

3

5

10

20

30

40

50

60

70

80

90

100

70

0,05

0,05

0,05

0,05

0,05

0,06

0,09

0,14

0,20

80

0,05

0,04

0,03

0,03

0,03

0,04

0,08

0,14

0,14

0,24

90

0,05

0,04

0,03

0,02

0,02

0,03

0,05

0,08

0,11

0,20

100

0,06

0,04

0,03

0,02

0,02

0,03

0,04

0,06

0,09

0,17

110

0,06

0,05

0,04

0,02

0,03

0,03

0,03

0,05

0,09

0,16

120

0,12

0,07

0,06

0,03

0,02

0,03

0,04

0,05

0,07

0,12

0,20

130

0,07

0,07

0,06

0,03

0,02

0,03

0,04

0,04

0,07

0,10

0,16

0,24

140

0,05

0,09

0,04

0,02

0,02

0,04

0,04

0,04

0,06

0,09

0,14

0,20

150

0,04

0,08

0,15

0,03

0,02

0,04

0,05

0,06

0,07

0,09

0,12

0,18

0,25

160

0,04

0,06

0,14

0,06

0,02

0,04

0,06

0,07

0,08

0,10

0,12

0,16

0,22

170

0,04

0,07

0,08

0,12

0,04

0,03

0,05

0,08

0,10

0,11

0,14

0,17

0,21

180

0,04

0,08

0,09

0,22

0,05

0,04

0,04

0,07

0,10

0,13

0,15

0,18

0,21

190

0,04

0,08

0,10

0,17

0,05

0,05

0,05

0,07

0,10

0,13

0,16

0,19

0,21

200

0,04

0,08

0,10

0,10

0,05

0,05

0,05

0,07

0,10

0,13

0,16

0,19

0,22

250

0,02

0,05

0,07

0,07

0,08

0,07

0,08

0,12

0,16

0,17

0,18

0,18

0,19

300

0,01

0,03

0,04

0,05

0,14

0,12

0,12

0,20

0,23

0,22

0,20

0,18

0,16

350

0,01

0,02

0,03

0,04

0,18

0,27

0,22

0,23

0,33

0,40

400

0,01

0,01

0,02

0,04

0,18

0,35

0,37

0,32

0,36

450

0,01

0,01

0,02

0,04

0,18

0,38

500

0,01

0,01

0,02

0,05

0,18

0,40

600

0,01

0,01

0,02

0,05

0,16

0,39

700

0,01

0,02

0,03

0,05

0,16

0,36

800

0,01

0,02

0,03

0,06

0,15

0,32

900

0,01

0,02

0,03

0,06

0,15

0,30

1000

0,01

0,02

0,03

0,06

0,14

0,28

Таблица 6. средние квадратические случайные погрешности расчетных значений энтальпии

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], К

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], кДж/кг, при 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], МПа

1

3

5

10

20

30

40

50

60

70

80

90

100

70

0,3

0,3

0,3

0,3

0,2

0,3

0,3

0,3

0,4

80

0,2

0,2

0,2

0,2

0,2

0,2

0,2

0,2

0,4

0,5

90

0,2

0,3

0,2

0,2

0,2

0,2

0,2

0,2

0,3

0,4

100

0,2

0,2

0,2

0,2

0,2

0,2

0,2

0,2

0,3

0,4

110

0,3

0,3

0,3

0,3

0,3

0,3

0,3

0,3

0,3

0,4

120

0,4

0,2

0,2

0,2

0,2

0,2

0,2

0,2

0,2

0,3

0,3

130

0,1

0,2

0,2

0,2

0,2

0,2

0,3

0,3

0,3

0,3

0,3

0,4

140

0,1

0,3

0,3

0,3

0,3

0,3

0,3

0,3

0,3

0,4

0,4

0,4

150

0,1

0,3

0,3

0,3

0,3

0,3

0,3

0,3

0,4

0,4

0,4

0,4

0,5

160

0,1

0,2

0,3

0,3

0,3

0,3

0,3

0,3

0,4

0,4

0,4

0,4

0,5

170

0,1

0,2

0,3

0,2

0,2

0,2

0,3

0,3

0,3

0,3

0,4

0,4

0,4

180

0,1

0,1

0,2

0,3

0,2

0,2

0,2

0,2

0,3

0,3

0,3

0,3

0,4

190

0,1

0,1

0,1

0,3

0,2

0,2

0,2

0,2

0,2

0,2

0,2

0,3

0,3

200

0,1

0,1

0,1

0,2

0,2

0,2

0,2

0,2

0,2

0,2

0,2

0,3

0,3

250

0,1

0,1

0,2

0,2

0,2

0,3

0,4

0,4

0,5

0,4

0,5

0,5

0,6

300

0,1

0,1

0,2

0,2

0,3

0,4

0,6

0,7

0,7

0,6

0,6

0,7

0,8

350

0,1

0,1

0,1

0,2

0,3

0,4

0,6

0,9

1,1

1,2

400

0,1

0,1

0,1

0,2

0,2

0,3

0,6

0,9

1,3

450

0,1

0,1

0,1

0,2

0,2

0,3

500

0,1

0,1

0,1

0,1

0,2

0,3

600

0,1

0,1

0,1

0,1

0,3

0,4

700

0,1

0,1

0,1

0,2

0,3

0,5

800

0,1

0,1

0,1

0,2

0,3

0,5

900

0,1

0,1

0,1

0,2

0,3

0,5

1000

0,1

0,1

0,1

0,1

0,3

0,5

Таблица 7. средние квадратические случайные погрешности расчетных значений энтропии

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], К

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], %, при 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], МПа

1

3

5

10

20

30

40

50

60

70

80

90

100

70

0,15

0,15

0,15

0,15

0,15

0,15

0,17

0,19

0,24

80

0,09

0,09

0,09

0,09

0,09

0,08

0,08

0,09

0,19

90

0,06

0,06

0,06

0,06

0,06

0,09

0,11

0,11

0,15

0,24

100

0,04

0,05

0,05

0,05

0,05

0,08

0,09

0,09

0,12

0,17

110

0,08

0,08

0,08

0,08

0,08

0,08

0,08

0,09

0,10

0,13

120

0,06

0,05

0,05

0,05

0,05

0,06

0,06

0,06

0,07

0,11

130

0,02

0,04

0,04

0,04

0,05

0,05

0,05

0,06

0,06

0,07

0,09

140

0,01

0,05

0,05

0,05

0,05

0,05

0,06

0,06

0,07

0,07

0,07

0,08

150

0,01

0,03

0,06

0,05

0,05

0,05

0,06

0,06

0,07

0,07

0,08

0,09

0,10

160

0,01

0,03

0,05

0,04

0,05

0,05

0,05

0,06

0,06

0,07

0,08

0,09

0,09

170

0,01

0,02

0,04

0,04

0,04

0,04

0,04

0,05

0,05

0,07

0,08

0,08

0,08

180

0,01

0,01

0,02

0,05

0,03

0,03

0,03

0,04

0,04

0,06

0,06

0,07

0,06

190

0,01

0,01

0,02

0,04

0,03

0,03

0,03

0,03

0,03

0,05

0,05

0,06

0,03

200

0,01

0,01

0,01

0,02

0,02

0,02

0,03

0,02

0,02

0,03

0,04

0,04

0,03

250

0,01

0,01

0,01

0,01

0,02

0,02

0,03

0,03

0,03

0,03

0,03

0,03

0,06

300

0,01

0,01

0,01

0,01

0,02

0,03

0,05

0,05

0,05

0,04

0,04

0,05

0,07

350

0,01

0,01

0,01

0,01

0,02

0,03

0,05

0,07

0,06

0,05

0,05

0,06

400

0,01

0,01

0,01

0,01

0,01

0,02

0,04

0,06

0,08

0,08

450

0,01

0,01

0,01

0,01

0,01

0,02

500

0,01

0,01

0,01

0,01

0,01

0,02

600

0,01

0,01

0,01

0,01

0,01

0,02

700

0,01

0,01

0,01

0,01

0,01

0,02

800

0,01

0,01

0,01

0,01

0,01

0,01

900

0,01

0,01

0,01

0,01

0,01

0,01

1000

0,01

0,01

0,01

0,01

0,01

0,01

Таблица 8. средние квадратические случайные погрешности расчетных значений изобарной теплоемкости

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], К

3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], %, при 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию], МПа

1

3

5

10

20

30

40

50

60

70

80

90

100

70

2,7

2,7

2,7

2,7

2,8

2,8

3,0

3,1

3,4

80

2,0

2,0

2,0

1,9

1,9

2,0

2,1

2,3

2,8

3,1

90

1,4

1,5

1,5

1,5

1,4

1,4

1,7

2,1

2,2

2,5

100

1,1

1,2

1,1

1,1

1,1

1,1

1,3

1,8

1,8

2,0

110

1,0

1,0

1,0

1,1

1,1

1,2

1,3

1,4

1,5

1,6

120

3,6

1,0

1,0

1,1

1,1

1,2

1,3

1,4

1,5

1,7

2,0

130

1,4

0,9

0,9

0,9

0,9

1,0

1,1

1,1

1,2

1,4

1,6

1,9

140

0,5

0,6

0,5

0,6

0,6

0,7

0,8

0,9

0,9

1,0

1,1

1,3

150

0,2

0,6

0,5

0,3

0,4

0,5

0,6

0,7

0,8

0,8

0,9

1,0

1,1

160

0,2

0,5

0,9

0,5

0,4

0,5

0,5

0,6

0,7

0,8

0,9

0,9

1,0

170

0,2

0,5

0,7

0,8

0,5

0,6

0,6

0,7

0,7

0,8

0,9

1,0

1,1

180

0,2

0,5

0,7

0,6

0,4

0,6

0,7

0,7

0,8

0,9

1,0

1,1

1,2

190

0,2

0,4

0,6

0,6

0,4

0,4

0,6

0,7

0,8

0,9

1,0

1,1

1,2

200

0,1

0,3

0,5

0,7

0,5

0,4

0,5

0,7

0,8

0,9

1,0

1,1

1,2

250

0,1

0,1

0,1

0,2

0,3

0,5

0,6

0,8

0,9

1,1

1,2

1,2

1,3

300

0,1

0,1

0,1

0,1

0,2

0,2

0,4

0,7

1,1

1,3

1,4

1,4

1,4

350

0,1

0,1

0,1

0,1

0,2

0,2

0,3

0,5

0,8

0,9

400

0,1

0,1

0,1

0,1

0,2

0,3

0,4

0,3

0,3

450

0,1

0,1

0,1

0,1

0,1

0,2

500

0,1

0,1

0,1

0,1

0,1

0,2

600

0,1

0,1

0,1

0,1

0,1

0,1

700

0,1

0,1

0,1

0,1

0,1

0,1

800

0,1

0,1

0,1

0,1

0,1

0,1

900

0,1

0,1

0,1

0,1

0,1

0,1

1000

0,1

0,1

0,1

0,1

0,1

0,1

Заметим, что уравнение состояния в вириальной форме, использованное при расчете настоящих таблиц, не отображает достоверно поведение термодинамических функций вблизи критической точки (при 3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию]3. Сжижение газов [1962 Андрлик К., Петру Ф. - Повторяем химию]

Подробные сведения об экспериментальных исследованиях термодинамических свойств кислорода и о точности усредненного уравнения состояния даны в [11]. В отличие от [11], в таблицах ССД не представлены значения для интервала температур 1050-1500 К и значения в ряде точек при температурах выше 300 К и давлениях выше 30 МПа, а также при температурах ниже 150 К и давлениях 70-100 МПа, что обусловлено отсутствием экспериментальных данных и ростом разброса расчетных значений термодинамических функций в этих областях параметров.

Оцените статью
Кислород
Добавить комментарий