Водород – все о газе и перспективах применения

Водород – все о газе и перспективах применения Кислород
Содержание
  1. В одном столбце приведенной ниже таблицы перечислены (под номерами 1—5) важнейшие области применения кислорода. во втором столбце таблицы буквами а—е обозначены свойства кислорода, лежащие в основе его применения. приведите в соответствие записи таблицы. применение кислорода свойства кислорода 1. в технике для резки и сварки металлов. 2. в медицине для облегчения дыхания больных. 3. в металлургии (кислородное дутье). 4. в химической промышленности для получения новых веществ. 5. в химических лабораториях для проведения реакций а. поддерживает дыхание. б. реагирует со многими простыми и сложными веществами, образуя оксиды. в. в реакциях с кислородом создаются высокие температуры. реакции экзотермичны. г. ускоряет процесс горения и окисления веществ. д. бесцветный газ, тяжелее воздуха. е. газ, плохо растворимый в воде, сжижается под давлением       3. допишите уравнения химических реакций:       а) … o2 cuo       б) fе o2 …       в) s …  so2       г) cus … so2 …       назовите полученные вещества.       4. допишите уравнения химических реакций, характеризующих химические свойства водорода:       укажите, окисляется или восстанавливается водород в этих реакциях.       5. 200 г 15%-ного раствора сахара упарили наполовину. какой стала после этого массовая доля сахара в растворе? — знания.org
  2. Что такое водород сегодня — применение водорода
  3. Биологическая роль
  4. Будущее водорода в мировой энергетике
  5. В каких отраслях промышленности применяют водород
  6. В медицине
  7. Востребованность водорода для промышленных целей
  8. Газ водород: «рождающий воду»
  9. Изотопы
  10. Использование водорода в металлургии
  11. Преимущества применения водорода
  12. Историческая справка
  13. История открытия
  14. Металлургия и металлообработка
  15. Нахождение в природе
  16. Области применения кислорода в промышленности и сельском хозяйстве
  17. Первое практическое применение водорода
  18. Получение
  19. Преимущества применения водорода
  20. Применение
  21. Происхождение названия
  22. Распространённость в природе.
  23. Свойства
  24. Способы получения водорода
  25. Физические свойства
  26. Физические свойства водорода
  27. Фториды кислорода
  28. Химические свойства

В одном столбце приведенной ниже таблицы перечислены (под номерами 1—5) важнейшие области применения кислорода. во втором столбце таблицы буквами а—е обозначены свойства кислорода, лежащие в основе его применения. приведите в соответствие записи таблицы. применение кислорода свойства кислорода 1. в технике для резки и сварки металлов. 2. в медицине для облегчения дыхания больных. 3. в металлургии (кислородное дутье). 4. в химической промышленности для получения новых веществ. 5. в химических лабораториях для проведения реакций а. поддерживает дыхание. б. реагирует со многими простыми и сложными веществами, образуя оксиды. в. в реакциях с кислородом создаются высокие температуры. реакции экзотермичны. г. ускоряет процесс горения и окисления веществ. д. бесцветный газ, тяжелее воздуха. е. газ, плохо растворимый в воде, сжижается под давлением       3. допишите уравнения химических реакций:       а) … o2 cuo       б) fе o2 …       в) s …  so2       г) cus … so2 …       назовите полученные вещества.       4. допишите уравнения химических реакций, характеризующих химические свойства водорода:       укажите, окисляется или восстанавливается водород в этих реакциях.       5. 200 г 15%-ного раствора сахара упарили наполовину. какой стала после этого массовая доля сахара в растворе? — знания.org

1—в,2-а,3-в так как кислород при дутье используется для повышения температуры, 4-б,5-б

2Cu O2 => 2CuO оксид меди 1

 3Fe 2O2 => Fe3O4 (железная окалина)

S O2 => SO2 сернистый газ или оксид серы 4

2CuS 3O2=> 2CuO оксид меди 2 2SO2 сернистый газ или оксид серы 4

4 водород реагирует

с простыми веществами

——-с неметаллами ( восстановитель, окисляется)

H2 S => H2S   ,     H2 CL2=> 2 HCl

———  с металлами ( окислитель, восстанавливается)

2Na H2 => 2NaH

со сложными веществами ( оксидами металлов -восстановитель,окисляется)

CuO H2 => Cu H2O

5/

было   

       mсахара                                                            W *mраствора       15% * 200г

W=—————* 100%     отсюда   m сахара = ———————- =———————  =  30 г

       mраствора                                                              100%                        100%

УПАРИЛИ….значит масса раствора стала в два раза меньше = 100г, а масса сахара НЕ изменилась.

                                                                                               30г

 находим новую массовую долю раствора  W =————— * 100% =  30%

                                                                                             100г

Что такое водород сегодня — применение водорода

С развитием технологий и возможностью получать газ в больших масштабах началось  широкое применение водорода в  самых разных областях:

  • химическая промышленность – синтез аммиака, метанола, углеводородов;
  • пищевая промышленность – получение пищевых белков;
  • операции нефтепереработки;
  • энергетика – экологически чистое топливо;
  • машиностроение – сварка металлов.

Есть и более бытовое применение, знакомое каждому – перекись водорода. Этот состав также используют при отбеливании.

Водород активно применяется в качестве защитного газа при сварке. Процесс сварки неотъемлемо связан с целым списком технических газов, в чем вы можете убедиться лично в статьях соответствующего раздела.

Как известно, кислород оказывает неблагоприятный эффект на сварной шов, понижая его прочность. Решением этой проблемы стали защитные газы, которые не допускают попадания воздуха в зону горения дуги. В число активных защитных газов как раз и входит водород.

Однако при водородной сварке предъявляются высокие требования к напряжению источника тока. Также применение водорода в качестве защитного газа может стать причиной появления пор в металле и холодных трещин. В плазменной сварке уже необходимо применение аргоно-водородной смеси с концентрацией последнего до 20%.

Баллоны с водородом изготавливают из углеродистой стали по ГОСТу 949 и окрашивают в зеленый цвет с красными надписями. Подробнее про металлические баллоны вы можете узнать здесь.

При работе с водородом необходимо особое внимание уделять герметичности оборудования. Как говорилось ранее, газ при контакте с воздухом образует взрывоопасную смесь. Пределы взрываемости колеблются от 4 до 75%. При высокой концентрации газ также способен вызвать удушье, поэтому перед началом работы необходимо ознакомиться с соответствующими правилами.

Биологическая роль

К. как в сво­бод­ном ви­де, так и в со­ста­ве разл. ве­ществ (напр., фер­мен­тов ок­си­даз и ок­си­до­ре­дук­таз) при­ни­ма­ет уча­стие во всех окис­лит. про­цес­сах, про­те­каю­щих в жи­вых ор­га­низ­мах. В ре­зуль­та­те вы­де­ля­ет­ся боль­шое ко­ли­че­ст­во энер­гии, рас­хо­дуе­мой в про­цес­се жиз­не­дея­тель­но­сти.

Будущее водорода в мировой энергетике

Проблемы экологии вынуждают исследователей искать альтернативные источники энергии. Один из самых животрепещущих вопросов последних лет – водород в качестве автомобильного топлива. Главный плюс – отсутствие выброса вредных газов в атмосферу. В цилиндр двигателя поступает водород и кислород, которые в ходе реакции создают небольшой взрыв и двигают поршни.

Крупные автопроизводители постепенно осваивают технологию на прототипах или тестовых машинах. Например,  уже были выпущены и протестированы такие модели, как BMWHydrogen 7, Mazda RX-8 Hydrogen RE, а также автобусы Ford E-450 для аэропортов.

Самым популярным и известным автомобилем на водороде можно назвать ToyotaMirai, которая активно продается на территории США, Канады и Японии.  Во многом популярность этой модели обоснована дотациями со стороны государства.

Видео о водородной энергетике

Схожие предложения есть и от других компаний — HondaClarity, HyundaiNexo, Mercedes—BenzGLC F-Cell, BMW X5i HydrogenNext.

Несмотря на все достоинства водородной технологии, есть несколько важных «но». Во-первых, имеется масса вопросов относительно безопасности водорода в автомобильном транспорте. В отличие от бензина, водород легко может взорваться при контакте с воздухом, поэтому даже незначительные ДТП на дороге представляют опасность.

Во-вторых, в мире образовалась проблема «яйца и курицы». Машины на водороде не появляются из-за отсутствия инфраструктуры, а ее не хотят возводить из-за небольшого количества машин. Разорвать этот замкнутый круг становится сложнее, учитывая конкуренцию со стороны электромобилей.

Несмотря на эти ограничения, многие уверены, что водород станет неотъемлемой частью энергетики будущего, так же, как он используется сейчас в пищевой и химической промышленности.

В каких отраслях промышленности применяют водород

Самое хаотическое вещество Вселенной

Согласно самой простой классификации, газы делятся на группы: газы-окислители, инертные и горючие газы.

Окислители сами по себе не горят, но в комбинации с другими веществами или газами, могут превратиться в легковоспламеняющуюся или даже взрывоопасную смесь. Достаточно вспомнить, как горит в кислороде дерево, или негорящий в обычном воздухе марганец. К газам этой группы относят двуокись азота NO2, окись азота NO, кислород, фтор и хлор.

Вторую группу составляют нейтральные, или инертные газы. Как и следует из самого слова, они никак не взаимодействуют с другими газами, не горят, и не поддерживают горение. В замкнутых пространствах такие газы могут даже замедлять горение и тушить огонь. Поэтому их можно использовать для ликвидации пожаров там, где невозможно тушить водой. Это азот, аргон, гелий, ксенон и неон.

Третья группа — самые активные, горючие газы, которые при взаимодействии с воздухом могут быть даже взрывоопасны — все зависит от концентрации смеси. Это аммиак, ацетилен, водород, бутан, метан, этан пропилен, этил и другие газы.;

И, наконец, четвертая группа – это газовые смеси для разных целей:

  • поверочные смеси для калибровки газоанализаторов и хроматографов,
  • технические смеси для решения самых разнообразных задач в хозяйстве и производстве.

Газовые смеси бывают многокомпонентные, когда в смеси присутствует больше двух газов, и бинарные, состоящие из двух газов. Например, смеси неорганических соединений и углеводородов в аргоне, азоте, воздухе, или гелии. Все газы из перечисленных групп широко применяются в хозяйственной деятельности. Поэтому вопрос хранения и транспортировки этих веществ очень актуален.

Многоуважаемый господин баллон!

Газовый баллон прост на вид. Нам всем приходилось иметь дело и с баллончиками для сифона, и с красными баллонами, в которых перевозят пропан для приготовления пищи. Кто-то видел возле строек синие кислородные и белые ацетиленовые баллоны.

При видимой простоте, баллон — это сумма высоких технологий, которые обеспечивают не только сохранность смеси газов, но и безопасность нашей жизни и работы.

Многообразие сосудов, с помощью которых перевозят, хранят и эксплуатируют различные газы, может потрясти воображение обычного человека. Специалист же, при беглом взгляде на баллон, моментально скажет, что за газ там прописан.

Технологии хранения газов маркировки баллонов — это целая наука.

Желтая надпись на черном баллоне недвусмысленно свидетельствует, что здесь — азот. Гелий, которым надувают воздушные шарики, перевозят в коричневых баллонах с белой надписью. «Враг озонового слоя» фреон транспортируют в серебристых баллонах. Однако внешних признаков отличия недостаточно. Каждый уважающий себя баллон должен иметь специальный паспорт. Как правило, это все необходимые сведения, которые выбиты на корпусе, возле горловины. Здесь указаны: дата производства, масса баллона, даты аттестаций. Вся информация, чтобы сделать вывод о пригодности баллона к эксплуатации. Если надпись не предусмотрена на корпусе, она выбивается на специальном металлическом шильдике, возле горловины. Баллоны бывают новые и переосвидетельствованные. Новые только что сошли с заводского конвейера, они не потребуют аттестации и проверки в течение ближайших пяти лет.

Считается, что при использовании и транспортировке газов в промышленных объемах, да и в быту, лучше использовать только новые баллоны. Но это спорная точка зрения. Конечно, у нового баллона в запасе еще 40 лет ресурса, они не загрязнены влагой, на них нет неровностей и ржавчины.Однако, новые баллоны дороже почти вдвое, чем их побывавшие в употреблении и прошедшие переосвидетельствование собратья. И цена превращается в главный аргумент. Даже вы закупили партию новых баллонов, не стоит забывать, что при перезаправке вы можете получить совершенно другие баллоны с нужным газом. Тогда зачем переплачивать?

И самое главное

Ремонтировать, окрашивать и наполнять газом баллоны имеют право только специализированные организации, у которых имеются документы, разрешающие ремонтные работы с сосудами, работающими под высоким давлением. Если вам впервые предстоит заключать контракт на поставку технических газов или поверочных газовых смесей, обязательно узнайте, есть ли у компании лицензия на проведение подобных работ, и какие конкретно виды деятельности в ней указаны.

В медицине

Основная статья: Кислородная терапия

Медицинский кислород хранится в металлических газовых баллонах высокого давления голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей.

Крупные медицинские учреждения могут использовать не сжатый кислород в баллонах, а сжиженный в сосуде Дьюара большой ёмкости. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки.

Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха.

Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм. Объём кислорода в этом случае равен 100 × 2 = 200 литров.

Востребованность водорода для промышленных целей

Водород требуется для получения аммиака, выступающим неотъемлемым компонентом для добычи удобрений азотного типа, производства пластмассы, волокон из синтетических материалов и лекарств. Сочетание его с хлором дает возможность получить хлороводород и соляную кислоту. Также благодаря нему изготавливается множество веществ, относящимся к органическим.

Для пищевой промышленности водород используется во время изготовления маргарина, состоящего из твердых жиров растительного происхождения. Гидрогенизация дает возможность жидкие растительные масла превратить в затверделый жир. Химический элемент может выступать как пропеллент — защитная среда упаковки с пищевыми продуктами.

Газ водород: «рождающий воду»

Поскольку как химический элемент водород был известен достаточно давно, то однозначного первооткрывателя установить невозможно. В истории сохранилось не так много записей и документов, которые могли бы дать ответ. Алхимики еще в 14-15 веках наблюдали в ходе определенных химических реакций выделение загадочного «горючего» газа, но еще не выделяли водород как отдельную составляющую.

Первые упоминания в научных работах датируются 1766 годом. Британский химик и физик Генри Кавендиш сумел выделить из кислот водород, после чего собрал газ в отдельной камере и поджег. В ходе этого эксперимента была получена вода.

Окончательное открытие признают за французом Антуаном Лавуазье, который с 1774 года также занимался исследованиями «горючего воздуха».  В ходе своих опытов ему удалось определить, что в ходе  синтеза водорода и кислорода получается именно вода, молекулярное соединение.

А вот русское название химическому элементу выдал Михаил Соловьёв в 1824 по аналогии с «кислород».

Изотопы

Основная статья: Изотопы кислорода

Кислород имеет три устойчивых изотопа: 16O, 17O и 18O, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16O связано с тем, что ядро атома 16O состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода с массовыми числами от 12O до 28O. Все радиоактивные изотопы кислорода имеют малый период полураспада, наиболее долгоживущий из них 15O с периодом полураспада ~120 секунд. Наиболее краткоживущий изотоп 12O имеет период полураспада 5,8⋅10−22 секунд.

Использование водорода в металлургии

С помощью водорода удается восстановить первоначальные свойства определенных металлов, состоящих из их оксидов (вольфрам). При его горении в кислороде достигается температура в среднем 3000 °C. Данные условия позволяют выполнять плавление и сваривание металлов тугоплавкого типа.

Использование водорода в промышленности можно наблюдать на примере металлургии. данной отрасли он задействуется с целью восстановительного процесса металлов из оксидов. В результате удается получить сплавы, относящиеся к тугоплавким.

Наша продукция

Смотреть каталог

Преимущества применения водорода

Водород, пребывающий в жидком состоянии, является отличным вариантом топлива для ракет. Также активно идет работа, чтобы в будущем использовать его в виде горючего для силового агрегата машин. Воплощение в жизнь данной идеи положительно скажется на экологической ситуации, так как при сгорании водорода в атмосферу не попадают опасные компоненты, наносящиеся непоправимый вред окружающей среде.

Одним из основных потребителем химического элемента являются предприятия, работающие в сфере нефтехимии и занимающиеся переработкой нефти. Здесь расход водорода, который добывается промышленным методом, достигает отметки 50% от общего числа. Большое количество полимеров, соединений углеводородного типа и масс, с пластическими свойствами, получают исключительно из водорода.

Газообразное вещество благодаря отличной теплопроводности и отсутствию в составе вредных компонентов оптимально подходит для снижения уровня нагрева турбогенераторов, характеризующихся высоким запасом мощности. В условиях повышенной температуры водород демонстрирует регенерацию, беря на себя атомы кислорода, находящиеся в оксидах металлов. Это дает возможность применять его для прямого восстановления руды.

В зависимости от отрасли газообразная консистенция выступает как основной элемент, дополнительный материал либо горючее.

Cогласно статистическим данным востребованность водорода стремительно растет и его использование каждые 15 лет удваивается в несколько раз.

Историческая справка

К. по­лу­чи­ли в 1774 не­за­ви­си­мо К. Шее­ле (пу­тём про­ка­ли­ва­ния нит­ра­тов ка­лия KNO3 и на­трия NaNO3, ди­ок­си­да мар­ган­ца MnO2 и др. ве­ществ) и Дж. При­стли (при на­гре­ва­нии тет­ра­ок­си­да свин­ца Pb3О4 и ок­си­да рту­ти HgО). Позд­нее, ко­гда бы­ло ус­та­нов­ле­но, что К. вхо­дит в со­став ки­слот, А. Ла­ву­а­зье пред­ло­жил назв. oxy­gène (от греч. ὀχύς – кис­лый и γεννάω – ро­ж­даю, от­сю­да и рус. назв. «К.»).

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

 2HgO →ot  2Hg O2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Металлургия и металлообработка

Металлургические комбинаты и заводы — едва ли не основной потребитель кислорода в производственных целях. Благодаря разделению воздуха развитие получила конверторная выплавка стали. Кроме того, кислород широко используют и для других технологических процессов:

  • удаления избыточного углерода при производстве стали и чугуна;
  • электросталеплавильного производства;
  • кислородного дутья в доменных печах;
  • выплавки цветных металлов (цирконий, свинец, цинк, никель);
  • интенсификации обжига;
  • прямого восстановления железа;
  • сварки, раскроя, напыления, пайки и наплавки металлов.

Нахождение в природе

Кислород

Накопление O

2

в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.

1

. (3,85—2,45 млрд лет назад) — O

2

не производился

2

. (2,45—1,85 млрд лет назад) O

2

производился, но поглощался океаном и породами морского дна

3

. (1,85—0,85 млрд лет назад) O

2

выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя

4

. (0,85—0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление O

2

в атмосфере

5

. (0,54 млрд лет назад — по настоящее время) современный период, содержание O

2

в атмосфере стабилизировалось

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад, в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы).

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

В 2022 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.

Области применения кислорода в промышленности и сельском хозяйстве

Водород – все о газе и перспективах применения

Области применения кислорода в промышленности и сельском хозяйстве

Кислород — одно из самых широко используемых веществ, которое находит применение практически во всех областях человеческой деятельности.

Металлургическая промышленность.

Именно высокая эффективность использования кислорода в металлургии стала толчком к развитию воздухоразделения. Металлургия и в настоящее время является основным потребителем кислорода в промышленности. Так, именно с кислородом связано развитие важнейшего направления в сталеплавлении – конвертерной выплавки стали.

Кислород применяется в процессах:

  • Производство чугуна и стали (удаление избытка углерода).

  • Конвертерное производство стали.

  • Электросталеплавильное производство.

  • Кислородное дутье в доменных печах.

  • Производство ферросплавов.

  • Выплавка никеля, цинка, свинца, циркония и других цветных металлов.

  • Интенсификация процессов обжига сырья в цветной металлургии.

  • Прямое восстановление железа.

Химическая и нефтехимическая промышленность.

Кислородное оборудование востребовано в химической промышленности, так как кислород необходим при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, перекисей металлов и др. химических продуктов. В нефтегазовой промышленности применяется для более эффективной работы НПЗ — для увеличения производительности заводов по крекингу нефти.

Энергетика.

Что касается энергетики, то здесь кислород необходим для газификации твердого топлива, сжатия твердо-угольной смеси, а также для того, чтобы обогащать воздух для промышленных котлов.

 В строительстве и машиностроении.

Кислородо-ацетиленовая газорезка и газосварка металлов, плазменный раскрой металлов и пайка, напыление и наплавка металлов – это одно из самых важных и распространенных областей применения кислорода с машиностроении и строительстве.

Золото- и нефтедобыча.

Добыча добыче драгоценных металлов из руд,  термическое бурение твердых пород, также кислород применяется при аффинаже золота. В нефтедобыче применяется закачка кислорода в пласт для увеличения энергии вытеснения, кроме того, для создания эффективно перемещающегося внутри пласта очага горения.

Стекольная промышленность.

Кислород позволяет повысить температуру в печах и улучшить процесс горения, уменьшить выбросы окислов азота и твердых частиц из стекловаренных печей, тем самым увеличить производительность производства.

При производстве стеклоизделий кислород подается на газовые горелки, которые используются для отрезания некондиционной части изделия, оплавления кромок и огневой полировки поверхности для оплавления микродефектов.

Кислород необходим при выдувке стекла, на фабриках медицинского и лабораторного стекла, при производстве электрических лампочек.

Экология.

Кислород применяется в процессах:

  • Для повышения эффективности работы озонаторных установок — озонирование для водоподготовки, очистки сточных вод, отбеливания целлюлозы и т. д.

  • Утилизация отходов- при обезвреживании (окислении) химически активных отходов в очистных установках в мусоросжигательных печах с кислородным дутьём.

  • При очистке питьевой воды.

  • При вторичной переработке металлов.

Сельское хозяйство.

Кислород используются в рыбных хозяйствах для увеличения выживаемости и выхода потомства при выращивании рыбы, раков, креветок, мидий.

Поделитесь

Первое практическое применение водорода

Уникальные свойства этого газа быстро  нашли применение в нескольких сферах, в частности, в военной.   В 18 веке воздушная техника сводилась к шарам и дирижаблям. Наполняли емкости горячим воздухом, благодаря которому вся конструкция могла взлетать. Проблемой было то, что воздух требовалось поддерживать горячим, иначе он терял свою подъемную способность.

Газ водород в этом плане был намного выгоднее – он всегда оставался легче воздуха, но наоборот требовал повышенной защиты от огня. Почему не использовали гелий? На тот момент производство этого газа было непомерно дорогим, поэтому о наполнении таких больших объемов как в дирижаблях речи не шло. Сегодня же гелий куда более доступный и активно используется в самых разных сферах.

История дирижаблей на водороде ассоциируется с именем Фердинанда фон Цеппелина, который создал модели LZ-1, LZ-2 и LZ-3. Последнюю заметили военные, после чего эти воздушные суда начали активно использоваться в военных действиях в ходе Первой мировой войны, а также в пассажирских перевозках. Дирижабли без особых проблем могли совершать длительные полеты, в том числе через Атлантический океан.

Водород не только подарил новую жизнь воздушным судам, но и стал причинной их гибели. Газ легко воспламенялся, из-за чего каждый дирижабль фактически становился потенциальной бомбой. Конец эры этих монстров датируется 1937 годом,  когда в США загорелся и рухнул дирижабль «Гинденбург».

Получение

В пром. мас­шта­бах К. про­из­во­дят пу­тём сжи­же­ния и фрак­ци­он­ной пе­ре­гон­ки воз­ду­ха (см. в ст. Воз­ду­ха раз­де­ле­ние), а так­же элек­тро­ли­зом во­ды. В ла­бо­ра­тор­ных ус­ло­ви­ях К. по­лу­ча­ют раз­ло­же­ни­ем при на­гре­ва­нии пе­рок­си­да во­до­ро­да (2Н2О2=2О О2), ок­си­дов ме­тал­лов (напр., ок­си­да рту­ти: 2HgO=2Hg O2), со­лей ки­сло­род­со­дер­жа­щих ки­слот-окис­ли­те­лей (напр., хло­ра­та ка­лия: 2KClO3=2KCl 3O2, пер­ман­га­на­та ка­лия: 2KMnO4=K2MnO4 MnO2 O2), элек­тро­ли­зом вод­но­го рас­тво­ра NaOH. Га­зо­об­раз­ный К. хра­нят и транс­пор­ти­ру­ют в сталь­ных бал­ло­нах, ок­ра­шен­ных в го­лу­бой цвет, при дав­ле­нии 15 и 42 МПа, жид­кий К. – в ме­тал­лич. со­су­дах Дьюа­ра или в спец. цис­тер­нах-тан­ках.

Преимущества применения водорода

Водород, пребывающий в жидком состоянии, является отличным вариантом топлива для ракет. Также активно идет работа, чтобы в будущем использовать его в виде горючего для силового агрегата машин. Воплощение в жизнь данной идеи положительно скажется на экологической ситуации, так как при сгорании водорода в атмосферу не попадают опасные компоненты, наносящиеся непоправимый вред окружающей среде.

Одним из основных потребителем химического элемента являются предприятия, работающие в сфере нефтехимии и занимающиеся переработкой нефти. Здесь расход водорода, который добывается промышленным методом, достигает отметки 50% от общего числа.

Газообразное вещество благодаря отличной теплопроводности и отсутствию в составе вредных компонентов оптимально подходит для снижения уровня нагрева турбогенераторов, характеризующихся высоким запасом мощности. В условиях повышенной температуры водород демонстрирует регенерацию, беря на себя атомы кислорода, находящиеся в оксидах металлов. Это дает возможность применять его для прямого восстановления руды.

В зависимости от отрасли газообразная консистенция выступает как основной элемент, дополнительный материал либо горючее.

Cогласно статистическим данным востребованность водорода стремительно растет и его использование каждые 15 лет удваивается в несколько раз.

Применение

Тех­нич. К. ис­поль­зу­ют как окис­ли­тель в ме­тал­лур­гии (см., напр., Ки­сло­род­но-кон­вер­тер­ный про­цесс), при га­зопла­мен­ной об­ра­бот­ке ме­тал­лов (см., напр., Ки­сло­род­ная рез­ка), в хи­мич. пром-сти при по­лу­че­нии ис­кусств. жид­ко­го то­п­ли­ва, сма­зоч­ных ма­сел, азот­ной и сер­ной ки­слот, ме­та­но­ла, ам­миа­ка и ам­ми­ач­ных удоб­ре­ний, пе­рок­си­дов ме­тал­лов и др. Чис­тый К. ис­поль­зу­ют в ки­сло­род­но-ды­ха­тель­ных ап­па­ра­тах на кос­мич. ко­раб­лях, под­вод­ных лод­ках, при подъ­ё­ме на боль­шие вы­со­ты, про­ве­де­нии под­вод­ных ра­бот, в ле­чеб­ных це­лях в ме­ди­ци­не (см. в ст. Ок­си­ге­но­те­ра­пия). Жид­кий К. при­ме­ня­ют как окис­ли­тель ра­кет­ных то­п­лив, при взрыв­ных ра­бо­тах. Вод­ные эмуль­сии рас­тво­ров га­зо­об­раз­но­го К. в не­ко­то­рых фто­рор­га­нич. рас­тво­ри­те­лях пред­ло­же­но ис­поль­зо­вать в ка­че­ст­ве ис­кусств. кро­ве­за­ме­ни­те­лей (напр., пер­фто­ран).

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygene), предложенного А.

Лавуазье (от др.-греч. ὀξύς — «кислый» и γεννάω — «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его — «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

Распространённость в природе.

К. – са­мый рас­про­стра­нён­ный хи­мич. эле­мент на Зем­ле: со­дер­жа­ние хи­ми­че­ски свя­зан­но­го К. в гид­ро­сфе­ре со­став­ля­ет 85,82% (гл. обр. в ви­де во­ды), в зем­ной ко­ре – 49% по мас­се. Из­вест­но бо­лее 1400 ми­не­ра­лов, в со­став ко­то­рых вхо­дит К. Сре­ди них пре­об­ла­да­ют ми­не­ра­лы, об­ра­зо­ван­ные со­ля­ми ки­сло­род­со­дер­жа­щих ки­слот (важ­ней­шие клас­сы – кар­бо­на­ты при­род­ные, си­ли­ка­ты при­род­ные, суль­фа­ты при­род­ные, фос­фа­ты при­род­ные), и гор­ные по­ро­ды на их ос­но­ве (напр., из­вест­няк, мра­мор), а так­же разл. ок­си­ды при­род­ные, гид­ро­кси­ды при­род­ные и гор­ные по­ро­ды (напр., ба­зальт). Мо­ле­ку­ляр­ный К. со­став­ля­ет 20,95% по объ­ё­му (23,10% по мас­се) зем­ной ат­мо­сфе­ры. К. ат­мо­сфе­ры име­ет био­ло­гич. про­ис­хо­ж­де­ние и об­ра­зу­ет­ся в зе­лё­ных рас­те­ни­ях, со­дер­жа­щих хло­ро­филл, из во­ды и ди­ок­си­да уг­ле­ро­да при фо­то­син­те­зе. Ко­ли­че­ст­во К., вы­де­ляе­мое рас­те­ния­ми, ком­пен­си­ру­ет ко­ли­че­ст­во К., рас­хо­дуе­мое в про­цес­сах гние­ния, го­ре­ния, ды­ха­ния. К. – био­ген­ный эле­мент – вхо­дит в со­став важ­ней­ших клас­сов при­род­ных ор­га­нич. со­еди­не­ний (бел­ков, жи­ров, нук­леи­но­вых ки­слот, уг­ле­во­дов и др.) и в со­став не­ор­га­нич. со­еди­не­ний ске­ле­та.

Свойства

Строе­ние внеш­ней элек­трон­ной обо­лоч­ки ато­ма К. 2s22p4; в со­еди­не­ни­ях про­яв­ля­ет сте­пе­ни окис­ле­ния –2, –1, ред­ко 1, 2; элек­тро­от­ри­ца­тель­ность по По­лин­гу 3,44 (наи­бо­лее элек­тро­от­ри­ца­тель­ный эле­мент по­сле фто­ра); атом­ный ра­ди­ус 60 пм; ра­ди­ус ио­на О2– 121 пм (ко­ор­ди­нац. чис­ло 2). В га­зо­об­раз­ном, жид­ком и твёр­дом состояни­ях К. су­ще­ст­ву­ет в ви­де двух­атом­ных мо­ле­кул О2. Мо­ле­ку­лы О2 па­ра­маг­нит­ны. Су­ще­ст­ву­ет так­же ал­ло­троп­ная мо­ди­фи­ка­ция К. – озон, со­стоя­щая из трёх­атом­ных мо­ле­кул О3.

В осн. со­стоя­нии атом К. име­ет чёт­ное чис­ло ва­лент­ных элек­тро­нов, два из ко­то­рых не спа­ре­ны. По­это­му К., не имею­щий низ­кой по энер­гии ва­кант­ной d-ор­би­та­ли, в боль­шин­ст­ве хи­мич. со­еди­не­ний двух­ва­лен­тен. В за­ви­си­мо­сти от ха­рак­те­ра хи­мич. свя­зи и ти­па кри­стал­лич. струк­ту­ры со­еди­не­ния ко­ор­ди­нац. чис­ло К. мо­жет быть раз­ным: 0 (ато­мар­ный К.), 1 (напр., О2, СО2), 2 (напр., Н2О, Н2О2), 3 (напр., Н3О ), 4 (напр., ок­со­аце­та­ты Ве и Zn), 6 (напр., MgO, CdO), 8 (напр., Na2O, Cs2O). За счёт не­боль­шо­го ра­диу­са ато­ма К. спо­со­бен об­ра­зо­вы­вать проч­ные π-свя­зи с др. ато­ма­ми, напр. с ато­ма­ми К. (О2, О3), уг­ле­ро­да, азо­та, се­ры, фос­фо­ра. По­это­му для К. од­на двой­ная связь (494 кДж/моль) энер­ге­ти­че­ски бо­лее вы­год­на, чем две про­стые (146 кДж/моль).

Па­ра­маг­не­тизм мо­ле­кул О2 объ­яс­ня­ет­ся на­ли­чи­ем двух не­спа­рен­ных элек­тро­нов с па­рал­лель­ны­ми спи­на­ми на два­ж­ды вы­ро­ж­ден­ных раз­рых­ляю­щих π*-ор­би­та­лях. По­сколь­ку на свя­зы­ваю­щих ор­би­та­лях мо­ле­ку­лы на­хо­дит­ся на че­ты­ре элек­тро­на боль­ше, чем на раз­рых­ляю­щих, по­ря­док свя­зи в О2 ра­вен 2, т. е. связь ме­ж­ду ато­ма­ми К. двой­ная. Ес­ли при фо­то­хи­мич. или хи­мич. воз­дей­ст­вии на од­ной π*-ор­би­та­ли ока­зы­ва­ют­ся два элек­тро­на с про­ти­во­по­лож­ны­ми спи­на­ми, воз­ни­ка­ет пер­вое воз­бу­ж­дён­ное со­стоя­ние, по энер­гии рас­по­ло­жен­ное на 92 кДж/моль вы­ше ос­нов­но­го. Ес­ли при воз­бу­ж­де­нии ато­ма К. два элек­тро­на за­ни­ма­ют две раз­ные π*-ор­би­та­ли и име­ют про­ти­во­по­лож­ные спи­ны, воз­ни­ка­ет вто­рое воз­бу­ж­дён­ное со­стоя­ние, энер­гия ко­то­ро­го на 155 кДж/моль боль­ше, чем ос­нов­но­го. Воз­бу­ж­де­ние со­про­во­ж­да­ет­ся уве­ли­че­ни­ем меж­атом­ных рас­стоя­ний О–О: от 120,74 пм в осн. со­стоя­нии до 121,55 пм для пер­во­го и до 122,77 пм для вто­ро­го воз­бу­ж­дён­но­го со­стоя­ния, что, в свою оче­редь, при­во­дит к ос­лаб­ле­нию свя­зи О–О и к уси­ле­нию хи­мич. ак­тив­но­сти К. Оба воз­бу­ж­дён­ных со­стоя­ния мо­ле­ку­лы О2 иг­ра­ют важ­ную роль в ре­ак­ци­ях окис­ле­ния в га­зо­вой фа­зе.

К. – газ без цве­та, за­па­ха и вку­са; tпл –218,3 °C, tкип –182,9 °C, плот­ность га­зо­об­раз­но­го К. 1428,97 кг/дм3 (при 0 °C и нор­маль­ном дав­ле­нии). Жид­кий К. – блед­но-го­лу­бая жид­кость, твёр­дый К. – си­нее кри­стал­лич. ве­ще­ст­во. При 0 °C те­п­ло­про­вод­ность 24,65·103 Вт/(м·К), мо­ляр­ная те­п­ло­ём­кость при по­сто­ян­ном дав­ле­нии 29,27 Дж/(моль·К), ди­элек­трич. про­ни­цае­мость га­зо­об­раз­но­го К. 1,000547, жид­ко­го 1,491. К. пло­хо рас­тво­рим в во­де (3,1% К. по объ­ё­му при 20 °C), хо­ро­шо рас­тво­рим в не­ко­то­рых фто­рор­га­нич. рас­тво­ри­те­лях, напр. пер­фтор­де­ка­ли­не (4500% К. по объ­ё­му при 0 °C). Зна­чит. ко­ли­че­ст­во К. рас­тво­ря­ют бла­го­род­ные ме­тал­лы: се­реб­ро, зо­ло­то и пла­ти­на. Рас­тво­ри­мость га­за в рас­плав­лен­ном се­реб­ре (2200% по объ­ё­му при 962 °C) рез­ко по­ни­жа­ет­ся с умень­ше­ни­ем темп-ры, по­это­му при ох­ла­ж­де­нии на воз­ду­хе рас­плав се­реб­ра «за­ки­па­ет» и раз­брыз­ги­ва­ет­ся вслед­ст­вие ин­тен­сив­но­го вы­де­ле­ния рас­тво­рён­но­го ки­сло­ро­да.

К. об­ла­да­ет вы­со­кой ре­ак­ци­он­ной спо­соб­но­стью, силь­ный окис­ли­тель: взаи­мо­дей­ст­ву­ет с боль­шин­ст­вом про­стых ве­ществ при нор­маль­ных ус­ло­ви­ях, в осн. с об­ра­зо­ва­ни­ем со­от­вет­ст­вую­щих ок­си­дов (мн. ре­ак­ции, про­те­каю­щие мед­лен­но при ком­нат­ной и бо­лее низ­ких темп-рах, при на­гре­ва­нии со­про­во­ж­да­ют­ся взры­вом и вы­де­ле­ни­ем боль­шо­го ко­ли­че­ст­ва те­п­ло­ты). К. взаи­мо­дей­ст­ву­ет при нор­маль­ных ус­ло­ви­ях с во­до­ро­дом (об­ра­зу­ет­ся во­да Н2О; сме­си К. с во­до­ро­дом взры­во­опас­ны – см. Гре­му­чий газ), при на­гре­ва­нии – с се­рой (се­ры ди­ок­сид SO2 и се­ры три­ок­сид SO3), уг­ле­ро­дом (уг­ле­ро­да ок­сид СО, уг­ле­ро­да ди­ок­сид СО2), фос­фо­ром (фос­фо­ра ок­си­ды), мн. ме­тал­ла­ми (ок­си­ды ме­тал­лов), осо­бен­но лег­ко со ще­лоч­ны­ми и щё­лоч­но­зе­мель­ны­ми (в осн. пе­рок­си­ды и над­пе­рок­си­ды ме­тал­лов, напр. пе­рок­сид ба­рия BaO2, над­пе­рок­сид ка­лия KO2). С азо­том К. взаи­мо­дей­ст­ву­ет при темп-ре вы­ше 1200 °C или при воз­дей­ст­вии элек­трич. раз­ря­да (об­ра­зу­ет­ся мо­но­ок­сид азо­та NO). Со­еди­не­ния К. с ксе­но­ном, крип­то­ном, га­ло­ге­на­ми, зо­ло­том и пла­ти­ной по­лу­ча­ют кос­вен­ным пу­тём. К. не об­ра­зу­ет хи­мич. со­еди­не­ний с ге­ли­ем, не­оном и ар­го­ном. Жид­кий К. так­же яв­ля­ет­ся силь­ным окис­ли­те­лем: про­пи­тан­ная им ва­та при под­жи­га­нии мгно­вен­но сго­ра­ет, не­ко­то­рые ле­ту­чие ор­га­нич. ве­ще­ст­ва спо­соб­ны са­мо­вос­пла­ме­нять­ся, ко­гда на­хо­дят­ся на рас­стоя­нии не­сколь­ких мет­ров от от­кры­то­го со­су­да с жид­ким ки­сло­ро­дом.

К. об­ра­зу­ет три ион­ные фор­мы, ка­ж­дая из ко­то­рых оп­ре­де­ля­ет свой­ст­ва отд. клас­са хи­мич. со­еди­не­ний: $ce{O2^-}$су­пер­ок­си­дов (фор­маль­ная сте­пень окис­ле­ния ато­ма К. –0,5),  $ce{O2^2^-}$пе­рок­сид­ных со­еди­не­ний (сте­пень окис­ле­ния ато­ма К. –1, напр. во­до­ро­да пе­рок­сид Н2О2), О2– – ок­си­дов (сте­пень окис­ле­ния ато­ма К. –2). По­ло­жи­тель­ные сте­пе­ни окис­ле­ния 1 и 2 К. про­яв­ля­ет во фто­ри­дах O2F2 и ОF2 со­от­вет­ст­вен­но. Фто­ри­ды К. не­ус­той­чи­вы, яв­ля­ют­ся силь­ны­ми окис­ли­те­ля­ми и фто­ри­рую­щи­ми реа­ген­та­ми.

Мо­ле­ку­ляр­ный К. яв­ля­ет­ся сла­бым ли­ган­дом и при­сое­ди­ня­ет­ся к не­ко­то­рым ком­плек­сам Fe, Co, Mn, Cu. Сре­ди та­ких ком­плек­сов наи­бо­лее ва­жен же­ле­зо­пор­фи­рин, вхо­дя­щий в со­став ге­мо­гло­би­на – бел­ка, ко­то­рый осу­ще­ст­в­ля­ет пе­ре­нос К. в ор­га­низ­ме те­п­ло­кров­ных.

Способы получения водорода

В космосе над всеми элементами преобладает водород, однако на Земле встретить его в свободном виде практически невозможно.  В связи с этим существует несколько разнообразных технологий получения этого газа, каждая из которых имеет свои особенности.

В лабораторных условиях нередко пользуются древним способом – получая газ из кислот.  Пример, взаимодействие серной кислоты и цинка, в ходе которого выделяется H2. В качестве металлов могут подойти  и другие, например, алюминий. Однако полученный газ требуется еще дополнительно очистить.

В промышленных масштабах часто используется метод паровой конверсии с метаном или природным газом. В ходе сложных контролируемых химических реакций удается получить относительно чистый газ водород. После с помощью угольных фильтров достигается концентрация в 99,9%. Такой подход требует наличия крупных установок, но считается одним из самых эффективных.

В местах с дешевым электричеством может использоваться электролиз – разложение воды на водород и кислород. В воду добавляется небольшое количество солей, чтобы жидкость смогла проводить электричество. Технология позволяет получить не только водород, но и кислород, который также имеет большое значение в промышленном производстве. Единственный недостаток – большие затраты электроэнергии.

Среди других методов стоит отметить газификацию угля. Методика из-за доступности сырья успешно конкурирует с другими способами, но вызывает вопросы с точки зрения экологичности. Газификация сопровождается ощутимыми выбросами углекислого газа, из-за чего производства могут попадать под санкции.

Нередко можно встретить разработки по получению водорода в ходе разложения органических или неорганических веществ. Например, компания Ways2H предлагает специальную технологию утилизации бытовых отходов, в ходе которой без сгорания можно получить водород.

Физические свойства

При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Хорошо растворяется в перфторированных углеводородах (20-40 об/об %).

Межатомное расстояние — 0,12074 нм. Является парамагнетиком. В жидком виде притягивается магнитом.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

Твёрдый кислород (температура плавления −218,35 °C) — синие кристаллы. Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

  • α-O2 — существует при температуре ниже 23,65 K; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.
  • β-O2 — существует в интервале температур от 23,65 до 43,65 K; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°.
  • γ-O2 — существует при температурах от 43,65 до 54,21 K; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

Физические свойства водорода

Что такое водород — это самый легкий элемент в химической таблице, поэтому занимает почетное первое место. Его ядро включает всего один протон и один нейтрон. Несмотря на повсеместное распространение во вселенной, в земной коре содержится всего около 1%.

Встречается элемент на Земле чаще всего в виде соединений с другими элементами. Реже в виде двухатомного газа H2, состоящего из пары атомов. В обычных условиях – это бесцветный, нетоксичный газ без какого-либо цвета и вкуса. В смесях с воздухом, кислородом, хлором или фтором при определенной концентрации может быть взрывоопасен.

Температура кипения составляет -252,87°С, а при -259,14°С происходит плавление. Наиболее распространенные соединения с водородом – это вода (Н2О), аммиак (NH3), сероводород (Н2S), метан (CH4), гидриды металлов и некоторые органические соединения.

Фториды кислорода

 2F2 2NaOH → 2NaF H2O OF2
 F2 O2 → O2F2

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3.

Химические свойства

Сильный окислитель, самый активный неметалл после фтора, образует бинарные соединения (оксиды) со всеми элементами, кроме гелия, неона, аргона. Наиболее распространённая степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

 4Li O2 → 2Li2O
 2Sr O2 → 2SrO

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

 2NO O2 → 2NO2

Окисляет большинство органических соединений в реакциях горения:

 2C6H6 15O2 → 12CO2 6H2O
 CH3CH2OH 3O2 → 2CO2 3H2O

При определённых условиях можно провести мягкое окисление органического соединения:

 CH3CH2OH O2 → CH3COOH H2O

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета.

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

 2Na O2 → Na2O2
 2BaO O2 → 2BaO2
 H2 O2 → H2O2
 Na2O2 O2 → 2NaO2
 K O2 → KO2
 3KOH 3O3 → 2KO3 KOH ∗ H2O 2O2
 PtF6 O2 → O2PtF6

В этой реакции, кислород проявляет восстановительные свойства.

Оцените статью
Кислород
Добавить комментарий