ЕГЭ–2022, химия: задания, ответы, решения. Обучающая система Дмитрия Гущина.

ЕГЭ–2022, химия: задания, ответы, решения. Обучающая система Дмитрия Гущина. Кислород

Основные страхи, связанные с кислородотерапией

Несмотря на то, что использование кислородных концентраторов на дому широко распространено, у многих людей остается страх, связанный с тем, что кислород взрывоопасен. Это действительно так, однако при соблюдении мер предосторожности этот риск сводится к нулю.  

Также многие думают, что человек «подсядет на кислород». На это я всегда отвечаю, что пациенту нужен кислород в силу его заболевания. И если потребность в кислороде растет, это значит, что заболевание прогрессирует. Если же симптомы дыхательной недостаточности полностью проходят, то кислородотерапию врач отменит. Однако отмена — редкое явление у паллиативных пациентов.

Таким образом, кислородотерапия — метод лечения, который помогает тогда, когда есть конкретные показания. Общее правило гласит: кислород не лечит одышку, он помогает справиться со сниженным содержанием кислорода в крови. Но нужна кислородотерапия или нет, должна она быть длительной или ситуационной — это должен определять только врач.

У пациентов паллиативного профиля показания к кислородотерапии чаще всего есть. И когда кислородный концентратор появляется у пациента дома, при условии соблюдений правил эксплуатации и правильной организации пространства, это значительно облегчает жизнь больному.

Расходные материалы для респираторной поддержки: как ухаживать за ними дома.Что можно обрабатывать, а что нельзя? Как и с помощью чего дезинфицировать многоразовые изделия, как часто менять одноразовые?

Портативные источники кислорода.Как использовать кислородные концентраторы и баллоны.

Все о масках для неинвазивной вентиляции легких (НИВЛ).Виды масок, правила подбора, проблемы и осложнения при использовании маски, уход за маской.

Рекомендации для пациентов, получающих респираторную поддержку дома во время пандемии COVID-19.Что делать, если установлена трахеостома, как часто обрабатывать и менять расходники для устройств искусственной вентиляции легких.

Материал подготовлен с использованием гранта Президента Российской Федерации, предоставленного Фондом президентских грантов.

Использовано стоковое изображение от Depositphotos.

Виды гипоксии

Гипоксия, в зависимости от механизма развития, подразделяется на:

  • Экзогенная гипоксия (гипоксическая гипоксия) –
    обусловлена факторами окружающей среды.
  • Эндогенная гипоксия – обусловлена различными
    заболеваниями или расстройствами,
    имеющимися у человека:
  • Дыхательная (респираторная, легочная) гипоксия.
  • Циркуляторная (сердечно-сосудистая) гипоксия: Ишемическая;
    Застойная.
  • Гемическая (кровяная) гипоксия: Анемическая; Обусловленная
    инактивацией гемоглобина.
  • Тканевая (гистотоксическая) гипоксия. Субстратная гипоксия.
  • Перегрузочная гипоксия. Смешанная гипоксия.

В зависимости от скорости развития и течения:

  • Молниеносная (мгновенная) – развивается в течение
    нескольких секунд (не дольше 2 – 3 минут);
  • Острая – развивается в течение нескольких десятков минут
    или часов (не дольше 2 часов);
  • Подострая – развивается в течение нескольких часов (не
    дольше 3-5 часов);
  • Хроническая – развивается и длится в течение недель,
    месяцев или лет.

В зависимости от распространенности кислородного голодания, гипоксию
подразделяют на общую и местную.

Гемическая (кровяная)
гипоксия

Гемическая (кровяная) гипоксия развивается при нарушении качественных характеристик или уменьшении количества гемоглобина крови. Гемическая гипоксия подразделяется на две формы – анемическую и обусловленную изменениями качества гемоглобина.

Гемическая (кровяная) гипоксия
гемическая гипоксия

Анемическая гемическая гипоксия обусловлена снижением количества гемоглобина в крови, то есть анемией любого происхождения или гидремией (разбавлением крови вследствие задержки жидкости в организме). При анемической гипоксии кислород нормально связывается и переносится кровью к органам и тканям.

Гипоксия, обусловленная
изменением качества гемоглобина, связана с отравлением различными ядовитыми
веществами, которые приводят к образованию форм гемоглобина, не способных
переносить кислород (метгемоглобина или карбоксигемоглобина). При изменении качеств гемоглобина его
количество остается нормальным, но он теряет способность переносить кислород.

Вследствие этого при прохождении через легкие гемоглобин не насыщается кислородом и ток крови не доставляет его к клеткам
всех органов и тканей.
Изменение качеств гемоглобина происходит при отравлении рядом химических
веществ, таких, как оксид углерода (угарный газ), сера, нитриты, нитраты и др.

Гипоксия миокарда

Гипоксия миокарда является одним из опаснейших заболеваний и характеризуется недостаточным снабжением кислородом сердечной мышцы.

Такое состояние возникает при внезапном снижении поступления кислорода к сердечной мышце. Клетки не успевают приспособиться к изменившимся условиям. В них продолжается обмен веществ, но он становится незавершенным, накапливаются недоокисленные метаболиты. При сохранении гипоксии ткани сердечной мышцы погибают.

Клинически такое состояние проявляется приступами боли в груди, увеличением их продолжительности и интенсивности. В дальнейшем развивается инфаркт миокарда – некроз сердечной мышцы с потерей ее сократительной функции.

Гипоксия миокарда может быть вызвана такими причинами:

  • низкое содержание кислорода в атмосферном воздухе;
  • заболевания легких с нарушением в них газообмена;
  • снижение количества крови, протекающей через участок миокарда, вследствие патологии коронарных артерий;
  • ухудшение способности крови переносить кислород, например, при отравлении угарным газом;
  • нарушение утилизации кислорода самими клетками, например, при отравлении цианидами, тяжелыми металлами.

Дополнительные исследования

Считается, что летальная концентрация CO-Hb находится в диапазоне > 40%. Младенцы, беременные и пожилые люди имеют более низкую толерантность к CO и могут иметь опасные для жизни отравления при более низких уровнях CO-Hb. Для хронических курильщиков это значение до 10%.

Проводимые исследования.

  1. Газы артериальной крови. PO2 в крови часто будет нормальным, потому что PO2 отражает O2, растворенный в крови, и CO не влияет на этот процесс.
  2. Кислотное состояние. Метаболический ацидоз возникает вторично по отношению к лактоацидозу в результате ишемии.
  3. ЭКГ показывает ишемические признаки и аритмии. Маркеры инфаркта берутся при подозрении на повреждение миокарда.
  4. Состояние крови, тропонин, креатинкиназа МБ, миоглобин, электролиты, глюкоза, печеночные пробы, уровень цианидов.

Помимо вышеперечисленного проводятся и другие исследования:

  1. Рентгенограмма грудной клетки. В случае неясной картины болезни исследование обычно нормальное.
  2. КТ головного мозга. Может иметь отношение к исключению дифференциальных диагнозов.
  3. Нейропсихиатрический тест.

Еще о кислороде в крови

По имеющимся данным, если у человека с COVID-19 развивается ОРДС, то обычно это происходит так: на шестой-седьмой день после появления симптомов возникает одышка, а на второй-третий день после этого — острый респираторный дистресс-синдром. Это происходит, по разным данным, в 3-17% случаев.

Риск, что пневмония закончится ОРДС, выше, если заболевший — человек старшего возраста, если он злоупотребляет алкоголем, курил раньше или курит сейчас, проходит химиотерапию или у него ожирение.

Правда, ОРДС возникает не только из-за пневмонии (хотя это основная причина), но и из-за других повреждений легких вплоть до тупой травмы груди. Такого рода состояние врачи стали замечать еще во времена Первой мировой войны, название у него появилось в 1967 году, а определение — только в 1994-м.

Главное, что человек чувствует при ОРДС, — одышка. Он не может договорить предложение без вдоха, ему не хватает воздуха. Но одышка часто бывает и при менее серьезных состояниях, которые, правда, могут постепенно достигнуть тяжести, которая будет определяться как ОРДС.

Почему этот синдром особенно часто встречается при COVID-19

Новый коронавирус умеет попадать в клетки дыхательных путей, альвеол, сосудов, сердца, почек и желудочно-кишечного тракта. Хотя легкие все же страдают больше всего. Пораженные клетки производят множество копий коронавируса и в итоге погибают. Все это запускает и поддерживает воспалительный ответ иммунной системы.

В норме сама иммунная система со временем подавляет это воспаление, и человек выздоравливает. Но при инфицировании коронавирусом чаще, чем во многих других случаях, бывает, что тормозящие механизмы иммунной системы не срабатывают как надо. В худшем варианте развития событий это приводит к состоянию под названием «цитокиновый шторм».

Тогда захватывается весь организм, и могут поражаться даже почки и сердце. И, конечно, кроме прочего, развивается ОРДС. Другими словами, в масштабных повреждениях может принимать участие уже не вирус, который запустил агрессивный ответ, а непосредственно иммунная система человека, которая вышла из-под контроля.

Задание 33

Навеску фосфора массой 31 г сожгли в некотором количестве кислорода. В результате была получена смесь из двух сложных веществ, которую затем растворили в воде. Определите массовую долю оксида фосфора (V) в продуктах сгорания фосфора, если полученный раствор может полностью обесцветить 63,2 г 5%-ного раствора перманганата калия, подкисленного серной кислотой.

Решение:

4P 5O2  → 2P2O5

4P 3O2  → 2P2O3

P2O5 3H2O → 2H3PO4

P2O3 3H2O → 2H3PO3

5H3PO3 2KMnO4 3H2SO4 → K2SO4 2MnSO4 5H3PO4 3H2O

Вычислим массу и количество вещества перманганата калия, вступившего в реакцию:m(KMnO4) = 63,2 г . 5%/100% = 3,16 г; n(KMnO4) = 3,16 г/158 г/моль = 0,02 моль.

С перманганатом калия реагирует только фосфористая кислота, по уравнению реакции n(H3PO3) : n(KMnO4) = 5 : 2, следовательно, n(H3PO3) = 0,05 моль, а  n(P2O3) = 0,025 моль.

Количество вещества фосфора, превратившегося в оксид фосфора (III): nI(P) = 0,05 моль.

Вычислим общее количество вещества фосфора, сожженного в кислороде: nобщ.(P) = 31 г/31 г/моль = 1 моль.

Тогда количество фосфора, превратившегося в оксид фосфора (V): nII(P) = 1 моль − 0,05 моль = 0,95 моль, а n(P2O5) = 0,475 моль.

Массы образующихся оксидов фосфора (III) и (V) равны:m(P2O3) = 0,025 моль . 110 г/моль = 2,75 г;m(P2O5) = 0,475 моль . 142 г/моль = 67,45 г.

Массовая доля оксида фосфора (V) в продуктах сгорания фосфора равна:w(P2O5) = 67,45 г/(67,45 г 2,75 г) . 100% = 96,1%.

Ответ: w(P2O5) = 96,1%

Задание 34

Неизвестное органическое вещество содержит 13,11% кислорода, 9,02% водорода и 18,86% натрия по массе. Известно, что вещество содержит только вторичные углеродные атомы и реагирует с водой.На основании данных условия задания:1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу исходного органического вещества;2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи атомов в его молекуле;3) напишите уравнение реакции искомого соединения с соляной кислотой.

Решение:

1) w(O) = 13,11%, w(H) = 9,02%, w(Na) = 18,86%, следовательно, w(C) = 100% − 13,11% − 9,02% − 18,86% = 59,01%.

Пусть мы имеем 100 г искомого органического соединения. Тогда массы элементов в порции вещества этой массы будут численно совпадать с массовыми долями в %.

Обозначим искомое органическое соединение в виде CxHyOzNak, тогда x : y : z : k = m(C)/M(C) : m(H)/M(H) : m(O)/M(O) : m(Na)/M(Na) = 59,01/12 : 9,02/1 : 13,11/16 : 18,86/23 = 4,92 : 9,02 : 0,82 : 0,82 = 6 : 11 : 1 : 1.

Простейшая формула искомого соединения C6H11ONa.

2) Поскольку исходное органическое соединение реагирует с водой, этим соединением является циклогексанолят натрия, структурная формула которого:

Тогда уравнение его взаимодействия с соляной кислотой будет записываться следующим образом:

Как выбрать кислородный концентратор

Сначала нужно определиться, есть ли у пациента необходимость перемещаться по улице, используя кислородотерапию. Или пациент лежачий и за пределы квартиры не перемещается. В первом случае можно использовать портативные кислородные концентраторы.

Они легкие и удобные. Однако необходимо помнить, что, во-первых, в них, как правило, не используется увлажнитель, а сухим воздухом дышать долго нельзя. Во-вторых, при максимальном потоке кислорода 5 л/мин они держат заряд максимум час, если нет дополнительной батареи. 

Портативные кислородные концентраторы различаются по потоку кислородной смеси: бывают аппараты с импульсным и постоянным потоком. В портативных концентраторах с постоянным потоком кислород поступает из аппарата постоянно, в импульсных — короткими «пшиками».

Стационарные кислородные концентраторы — массивные, тяжелые, все они — с постоянным потоком кислородной смеси. В составе всегда есть увлажнитель. Если пациент не мобилен, это идеальный вариант для него. 

Стационарные кислородные концентраторы бывают на 5 и 10 литров. 

Клинические данные

Клинические проявления отравления угарным газом обычно ограничиваются изменениями психического статуса при отсутствии других травм или ожогов:

· Пациент может находиться в состоянии от легкого замешательства до комы.

· Тяжелое отравление угарным газом вызывает неврологические симптомы, такие как судороги, обмороки или кому.

· Сердечно-сосудистые и метаболические проявления, такие как ишемия миокарда, желудочковые аритмии, отек легких и выраженный лактат-ацидоз.

Важно знать о возможности острого повреждения миокарда и отсроченных неврологических последствиях.

Примерно у 40% пациентов со значительным воздействием СО наблюдается состояние с задержкой нервно-психического синдрома. Они могут возникать через 3–240 дней после выздоровления пациента.

Состояние характеризуется:

· Различной степенью когнитивной недостаточности.

· Изменениями личности.

· Двигательными расстройствами.

· Потерей сознания.

· Очаговыми неврологическими последствиями.

Синдром обычно возникает в течение 20 дней после отравления угарным газом, и результаты могут наблюдаться в течение года. Развитие синдрома плохо коррелирует с уровнями CO-Hb, хотя большинство случаев связано с этим.

Когда противопоказан кислород

При нейромышечных заболеваниях кислород противопоказан. Рассмотрим причину этого на примере бокового амиотрофического склероза. 

Это заболевание, при котором поражается нервная система (так называемый двигательный нейрон), что ведет к нарушению работы важнейших систем организма, в том числе и к ослаблению дыхания. Оно становится более поверхностным, вследствие чего часто снижается сатурация. Но несмотря на это кислород назначать нельзя. 

Что организм делает, когда понимает, что дыхание стало поверхностным, а значит, и кислорода для организма мало? Конечно, мы начинаем чаще дышать. Хоть и поверхностно. Такая одышка позволяет организму жить и при сниженных цифрах сатурации. Если же назначается кислородотерапия, организм отменяет этот защитный механизм — одышку.

В любом случае показания и противопоказания к кислородотерапии определяет врач. 

Лечение
кислородного голодания

На
практике обычно развиваются смешанные формы гипоксии,
вследствие чего лечение дефицита кислорода во всех случаях должно быть
комплексным, направленным одновременно на устранение причинного фактора и на
поддержание адекватного снабжения клеток различных органов и тканей кислородом.

Для поддержания нормального уровня снабжения клеток
кислородом при любом виде гипоксии применяется гипербарическая оксигенация (ГБО)
– баротерапия. При баротерапии применяются барокамеры, в которых человек
находится под повышенным давлением с высоким содержанием кислорода.

Благодаря
повышенному давлению, кислород дополнительно растворяется непосредственно в плазме
крови, не связываясь с эритроцитами, что и позволяет осуществить его доставку к
органам и тканям в необходимом количестве вне зависимости от активности и
функциональной полноценности гемоглобина.

Дополнительно к гипербарической оксигенации, при
циркуляторной гипоксии применяют сердечные препараты и средства, повышающие
артериальное давление. При необходимости производят переливание крови (если
произошла кровопотеря, не совместимая с жизнью).

При гемической гипоксии, дополнительно к гипербарической
оксигенации, проводят следующие лечебные мероприятия:

  • Переливание крови или эритроцитарной массы;
  • Введение переносчиков кислорода (Перфторана и др.);
  • Гемосорбция и плазмаферез с целью удаления из крови
    отравляющих продуктов обмена веществ;
  • Введение веществ, способных выполнять функции ферментов
    дыхательной цепи (витамин С, метиленовая синька и т.д.);
  • Введение глюкозы в качестве основного вещества, дающего
    клеткам энергию для осуществления процессов жизнедеятельности;
  • Введение стероидных гормонов для устранения выраженного
    кислородного голодания тканей.

Определение наличия дыхательной недостаточности

При дыхательной недостаточности пациент будет испытывать трудности с вдохом или выдохом, учащенное дыхание, утомляемость, тревогу, сердцебиение. Может отмечаться синюшность или гиперемия лица, синюшность конечностей. 

Существуют специальные анализы крови, которые показывают снижение уровня кислорода или повышение содержания углекислого газа, а также — насколько хорошо организм компенсирует дыхательную недостаточность, что называется, «своими силами». Более доступным и неинвазивным методом диагностики является пульсоксиметрия, то есть определение насыщения крови кислородом (или сатурации).

Причем измерять сатурацию необходимо и в покое, и при физической нагрузке. Почему?

Представьте себе ситуацию, когда вы утром спешите на работу, увидели на остановке автобус и бежите к нему, чтобы успеть сесть. Зайдя в автобус, вы будете часто дышать, ведь при беге организм интенсивней, чем обычно, потреблял кислород, возник его дефицит — надо его восполнить, насытить организм кислородом.

Вскоре ваше дыхание нормализуется, уровень кислорода в крови восстановится. А как будет обстоять дело у человека с дыхательной недостаточностью в аналогичной ситуации? Он также будет тяжело дышать, однако ему потребуется гораздо больше кислорода, чем вам.

Даже если у такого человека сатурация в покое нормальная, обязательно нужно измерить ее после посильной для него физической нагрузки. Если выяснится, что после нагрузки сатурация серьезно падает, понадобится так называемая ситуационная кислородотерапия, то есть дополнительный кислород нужен на какую-то ситуацию, например, при нагрузке или во время сна.

Однако бывает и так, что дополнительное количество кислорода человеку нужно постоянно. Тогда ему показана длительная кислородотерапия (более 15 часов в день).

Я уже упоминала о том, что нормальные показатели сатурации — 95-99%. Это называется целевая сатурация. Однако надо учитывать, что при некоторых заболеваниях целевая сатурация будет другой. Когда у пациента есть риск гиперкапнии (то есть избыточного скопления углекислого газа в крови), целевая сатурация — 88-92%.

Последствия
гипоксии

Последствия гипоксии могут быть различными, и зависят от
того, в какой период времени кислородное голодание было ликвидировано и сколько
оно продолжалось. Если гипоксия была устранения в период, когда компенсаторные
механизмы не были истощены, то никаких негативных последствий не будет, через
некоторое время органы и ткани полностью вернутся к обычному режиму работы.

Но
если гипоксия была устранения в период декомпенсации, когда компенсаторные
механизмы были истощены, то последствия зависят от длительности кислородного
голодания. Чем длительнее оказался период гипоксии на фоне декомпенсации
приспособительных механизмов – тем сильнее и глубже повреждения различных
органов и систем. Более того, чем дольше длится гипоксия – тем большее
количество органов повреждается.

При гипоксии наиболее сильно страдает головной мозг,
поскольку он может выдержать без кислорода
3-4 минуты, а с 5 минуты в тканях уже начнут образовываться некрозы. Сердечная мышца,
почки и печень способны перенести промежуток полного отсутствия кислорода в
течение 30-40 минут.

Последствия гипоксии всегда обусловлены тем, что в
клетках при отсутствии кислорода начинается процесс бескислородного окисления
жиров и глюкозы, что приводит к образованию молочной кислоты и других
токсических продуктов обмена веществ, которые накапливаются и в конечном итоге
повреждают мембрану клетки, приводя к ее гибели.

Когда гипоксия длится
достаточно долго от ядовитых продуктов неправильного обмена веществ, гибнет
большое количество клеток в различных органах, образуя целые участки отмерших
тканей. Такие участки резко ухудшают функционирование органа, что проявляется
соответствующей симптоматикой, а в будущем даже при восстановлении притока
кислорода приведет к стойкому ухудшению работы пораженных тканей.

Основные последствия гипоксии
всегда обусловлены нарушением работы центральной нервной системы, поскольку
именно мозг страдает в первую очередь от дефицита кислорода. Поэтому
последствия гипоксии часто выражаются в развитии нейропсихического синдрома,
включающего в себя паркинсонизм, психоз и слабоумие.

В 50-70% случаев
нейропсихический синдром можно излечить. Кроме того, последствием гипоксии
является непереносимость физических нагрузок, когда при минимальном напряжении
у человека появляются сердцебиение, одышка, слабость, головная боль, головокружение
и боль в области сердца.

Также последствиями гипоксии могут стать кровоизлияния
в различных органах и жировое перерождение клеток мышц, миокарда и печени, что
приведет к нарушениям их функционирования с клинической симптоматикой
недостаточности того или иного органа, которую уже невозможно будет устранить в будущем.

При гидролизе 7,28 фосфида кальция образовался газ который сожгли в избытке кислорода. полученный оксид растворили в — знания.site

Найдем количество вещества фосфида кальция Ca3P2.

n

n = m : M.                              

n

M(Ca3P2) = 182 г/моль.

n

n = 7,28 г : 182 г/моль = 0,04 моль.

n

Ca3P2 6 Н2О = 2 Са(ОН)2 2 РН3

n

По уравнению реакции на 1 моль  Ca3P2  приходится  2 моль PН3.  Вещества находятся в количественных соотношениях 1 : 2.

n

n (Ca3P2) = 2n(PН3)   = 0,04 × 2 = 0,08 моль.

n

2 PН3 4 О2 =  Р2О52О.

n

n (P2О5) = ½ n(PН3)   = 0,08 : 2 = 0,04 моль.

n

Найдем массу раствора гидроксида калия КОН.

n

m = Vp.

n

m = 41.65 мл × 1,21 г/мл = 50,4 г.

n

Найдем массу КОН в растворе.

n

W = m (вещества) : m (раствора)  × 100%,

n

m (вещества) = (m (раствора) × W) : 100%.

n

m (КОН) = (50,4 г  × 20 %) : 100% = 10,08 г.

n

Найдем количество вещества  КОН.

n

М(КОН) = 56г/моль.

n

n = 10,08 г : 56 г/моль = 0,18 моль.       

n

6 КОН Р2О5 = 2 К3РО42О.

n

Найдем какое вещество находится в недостатке.

n

n (P2О5) = 0,04 моль.

n

n (КОН) = 0,18 моль.

n

На 1 моль P2О5 приходится 6 моль КОН, тогда n (КОН) должно быть равно 0,04 моль × 6 = 0,24 моль.

n

Следовательно, КОН находится в недостатке ( 0,18 моль).

n

Если кислотного оксида избыток, тогда должна получиться кислая соль.

n

Найдем соотношение количеств веществ КОН и P2О5.

n

n (КОН) : n (P2О5) = 0,18 : 0,04 = 4 : 1.

n

4КОН Р2О5 = 2 К2НРО4 Н2О.

n

n (КОН) = 0,18 (избыток, так как  n (P2О5) = 0,04 моль , тогда 

n

n (КОН) = 0,04 моль × 4 = 0,16 моль, отсюда  0,02 моль  избытка : 0,018 – 0,016 = 0,02 моль).

n

n (К2НРО4)  = 2 n (P2О5) = 0,04 × 2 = 0,08  моль.

n

Оставшийся в растворе КОН продолжит реагировать с К2НРО4.

n

К2НРО4 КОН = К3РО42О

n

n (К2НРО4)  = n (КОН) — n (К2НРО4) = 0,08 – 0,02 =  0,06 моль (осталось в растворе).

n

n (К3РО4) = 0,02 моль.

n

Найдем массу  К2НРО4.

n

М(К2НРО4) = 174 г/моль.

n

m (К2НРО4) = 174 г/моль × 0,02 моль = 10,44 г.

n

Найдем массу К3РО4.

n

М(К3РО4) = 212 г/моль.

n

m (К3РО4) = 212 г/моль × 0,02 моль = 4,24 г.

n

Ответ: 10,44 г; 4,24 г.

n

Причинами различных видов эндогенной гипоксии могут быть
следующие факторы:

  • Заболевания органов дыхания (пневмония, пневмоторакс, гидроторакс,
    гемоторакс, разрушение сурфактанта альвеол, отек легких, тромбоэмболия легочной
    артерии, трахеиты, бронхиты, эмфизема, саркоидоз, асбестоз, бронхоспазм и
    т.д.);
  • Инородные тела в бронхах (например, случайное
    заглатывание детьми различных предметов, подавливание и т.д.);
  • Асфиксия любого происхождения (например, при сдавлении
    шеи и т.д.);
  • Врожденные и приобретенные пороки сердца (незаращение
    овального отверстия или Баталова протока сердца, ревматизм и т.д.);
  • Повреждение дыхательного центра ЦНС при травмах, опухолях
    и других заболеваниях мозга, а также при его угнетении отравляющими веществами;
  • Нарушение механики акта дыхания вследствие переломов и
    смещений костей грудной клетки, повреждения диафрагмы или спазмах мускулатуры;
  • Нарушения работы сердца, спровоцированные различными
    заболеваниями и патологиями сердца (инфаркт, кардиосклероз, сердечная
    недостаточность, нарушение баланса электролитов, тампонада сердца, облитерация
    перикарда, блокада проведения электрических импульсов в сердце и т.д.);
  • Резкое сужение кровеносных сосудов в различных органах;
  • Артериовенозное шунтирование (перенос артериальной крови
    в вены по сосудистым шунтам до того, как она дойдет до органов и тканей и
    отдаст кислород клеткам);
  • Застой крови в системе нижней или верхней полой вены;
  • Тромбозы;
  • Отравление химическими веществами, вызывающими
    образование неактивного гемоглобина (например, цианидами, угарным газом,
    люизитом и т.д.);
  • Анемия;
  • Острая кровопотеря;
  • Синдром диссеминированного внутрисосудистого свертывания (ДВС-синдром);
  • Нарушение обмена углеводов и жиров (например, при сахарном диабете, ожирении
    и т.д.);
  • Шок и кома;
  • Чрезмерные физические нагрузки;
  • Злокачественные опухоли любой локализации;
  • Хронические заболевания почек и крови (например, лейкозы, анемии и т.д.);
  • Дефицит витаминов РР, В1, В2 и В5;
  • Заболевания щитовидной железы;
  • Повреждение клеток радиационным излучением, продуктами
    распада тканей при кахексии, тяжелых инфекциях или уремии;
  • Злоупотребление наркотиками и алкоголем;
  • Длительное голодание.

Решу егэ

Решение.

Вариант ответа.

1) Определена простейшая формула вещества X:

nurm (CO_2) = 22,4 : 22,4 = 1,0 моль;

nurm (C) = nurm (CO_2) = 1,0 моль;

nurm (H_2O) = 18,0 : 18 = 1,0 моль;

nurm (H) = 2nurm (H_2O) = 2,0 моль;

it mrm (O) = 20,4 минус it mrm (C) минус it mrm (H) = 20,4 минус 1,0 умножить на 12 минус 2,0 умножить на 1 = 6,4 г;

nurm (O) = 6,4 : 16 = 0,4 моль;

nurm (C) : nurm (H) : nurm (O) = 1,0 : 2,0 : 0,4 = 5 : 10 : 2

.

Простейшая формула — C$_5$H$_10$O$_2$.

2) Поскольку вещество получено мягким окислением углеводорода, то оно представляет собой двухатомный спирт и формула вещества X совпадает с простейшей — C$_5$H$_10$O$_2$.

В этой формуле на два атома H$ меньше, чем в гомологическом ряду предельных двухатомных спиртов, но при этом кратных связей нет, так как вещество получено по реакции с избытком окислителя. Следовательно, это — циклический двухатомный спирт. Углеродный скелет, по условию, неразветвлённый, следовательно, в основе — пятичленный цикл, X — циклопентандиол-1,2:ЕГЭ–2022, химия: задания, ответы, решения. Обучающая система Дмитрия Гущина.

3) Уравнение реакции образования вещества X: ЕГЭ–2022, химия: задания, ответы, решения. Обучающая система Дмитрия Гущина.

Химические свойства

При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

1. Кислород проявляет свойства окислителя(с большинством химических элементов) и свойства восстановителя(только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами, и с неметаллами. Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

O2   2F2  →  2OF2

С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

1.2. Кислород реагирует с серой и кремниемс образованием оксидов:

S O2 → SO2

  Si O2 → SiO2

1.3.Фосфоргорит в кислороде с образованием оксидов:

При недостатке кислорода возможно образование оксида фосфора (III):

4P      3O2  →   2P2O3

Но чаще фосфор сгорает до оксида фосфора (V):

4P      5O2  →   2P2O5

1.4.С азотомкислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000оС), образуя оксид азота (II):

    N2  O2→  2NO

1.5. В реакциях с щелочноземельными металлами, литием  и алюминием кислород  также проявляет свойства окислителя. При этом образуются оксиды:

2Ca       O2 → 2CaO

Однако при горении натрияв кислороде преимущественно образуется пероксид натрия:

    2Na O2→  Na2O2

А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

    K O2→  KO2

Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

Цинк окисляется до оксида цинка (II):

2Zn O2→  2ZnO

Железо, в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

2Fe O2→  2FeO

4Fe 3O2→  2Fe2O3

3Fe 2O2→  Fe3O4

1.6. При нагревании с избытком кислорода графит горит, образуя оксид углерода (IV):

C     O2  →  CO2

 при недостатке кислорода образуется угарный газ СО:

2C     O2  →  2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Графит также горит, например, в жидком кислороде:

Графитовые стержни под напряжением:

2. Кислород взаимодействует со сложными веществами:

2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды. При этом образуются оксиды:

4FeS 7O2→  2Fe2O3 4SO2

Al4C3 6O2→  2Al2O3 3CO2

Ca3P2 4O2→  3CaO P2O5

2.2. Кислород окисляет бинарные соединения неметаллов:

  • летучие водородные соединения (сероводород, аммиак, метан, силан гидриды. При этом также образуются оксиды: 

2H2S 3O2→  2H2O 2SO2

Аммиакгорит с образованием простого вещества, азота:

4NH3 3O2→  2N2 6H2O

Аммиакокисляется на катализаторе (например, губчатое железо) до оксида азота (II):

4NH3 5O2→  4NO 6H2O

  • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора (сероуглерод, сульфид фосфора и др.):

CS2 3O2→  CO2 2SO2

  • некоторые оксиды элементов в промежуточных степенях окисления (оксид углерода (II), оксид железа (II) и др.):

2CO O2→  2CO2

2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

Например, кислород окисляет гидроксид железа (II):

4Fe(OH)2 O2 2H2O → 4Fe(OH)3

Кислород окисляет азотистую кислоту:

2HNO2 O2 → 2HNO3

2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

CH4 2O2→  CO2 2H2O

2CH4 3O2→  2CO 4H2O

CH4 O2→  C  2H2O

Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

2CH2=CH2 O2 → 2CH3-CH=O

Циркуляторная
(сердечно-сосудистая) гипоксия

Циркуляторная (сердечно-сосудистая) гипоксия
циркуляторная гипоксия

Циркуляторная (сердечно-сосудистая) гипоксия развивается на фоне различных расстройств кровообращения (например, снижения тонуса сосудов, уменьшения общего объема крови после кровопотери или обезвоживания, повышения вязкости крови, усиления свертываемости, централизации кровообращения, венозного застоя и т.д.).

При циркуляторной гипоксии
через легкие в кровь поступает нормальное количество кислорода, но из-за
нарушения кровообращения он с опозданием доставляется к органам и тканям,
вследствие чего в последних возникает кислородное голодание.

По механизму развития циркуляторная гипоксия бывает ишемической и застойной. Ишемическая форма гипоксии развивается при уменьшении объема крови, проходящего через органы или ткани в единицу времени. Такая форма гипоксии может возникать при левожелудочковой сердечной недостаточности, инфаркте, кардиосклерозе, шоке, коллапсе, сужении сосудов некоторых органов и других ситуациях.

Застойная форма гипоксии развивается при уменьшении скорости движения крови по венам — при тромбофлебитах ног, правожелудочковой сердечной недостаточности, повышенном внутригрудном давлении и других ситуациях, когда в венозном русле возникает застой крови.

Чем опасен дефицит кислорода и как с ним справиться: статьи общества ➕1, 25.08.2021

Дыхание — ключевой процесс в организме. Если без воды и еды человек может обходиться несколько дней, то без дыхания — всего несколько минут. К уровню кислорода чувствительны все клетки нашего организма, кислород для них — главный источник энергии. Красные кровяные тельца (эритроциты) забирают кислород из легких и переносят его к каждой клетке, доставляя обратно углекислый газ. Хроническая гипоксия организма чаще всего развивается у жителей городов с очень грязным воздухом. Особенно внимательно к проблеме нехватки кислорода следует относиться в период пандемии COVID-19, поражающего дыхательные пути.

Хроническое кислородное голодание может развиваться по многим причинам:

Напрямую зависят от степени нехватки кислорода. Острая гипоксия развивается в течение нескольких минут либо часов под воздействием одной из названных выше причин и имеет ярко выраженные симптомы (например, при аллергическом отеке легких). Такая форма требует немедленной медицинской помощи, так как несет необратимые последствия для организма. А вот хроническая гипоксия может незаметно развиваться месяцами, иметь невыраженные симптомы. Она не менее опасна для организма! Как понять, что не хватает кислорода? Стоит быть внимательнее к своему организму и обязательно обратиться к врачу, если продолжительное время у вас наблюдается больше двух следующих симптомов:

Обратите внимание на свои руки. При хронической гипоксии ногти приобретают округлую форму, а фаланги пальцев утолщаются.

Быстро понять, связано ли плохое самочувствие с дефицитом кислорода, можно с помощью прибора — пульсоксиметра. Внешне он похож на прищепку. Наденьте пульсоксиметр на палец — и через несколько секунд на экране прибора появится показатель насыщения крови кислородом. В норме он не должен быть ниже 95%. Принцип работы прибора основан на способности гемоглобина, связанного с кислородом, поглощать больше инфракрасного излучения, чем гемоглобин без кислорода. Это и позволяет определить кислородное голодание благодаря контакту устройства с кожей.

Если на протяжении долгого времени у вас мало кислорода в организме, то нарушается работа всех его систем. Без устранения причины патологические изменения станут необратимыми. Гипоксия организма значительно ухудшает качество жизни, повышает риски инфарктов, инсультов, развития деменции и других повреждений нервной системы.

При недостаточном поступлении кислорода человек испытывает постоянную усталость, даже после продолжительного сна. Может наблюдаться саркопения — истощение мышечной массы, тело становится дряблым и слабым независимо от количества походов в спортзал. Причина кроется в нарушении работы митохондрий. Эти органеллы, находящиеся внутри клетки, — одни из самых важных ее составляющих: они производят энергию для всех процессов, протекающих в организме. Для полноценной работы этим маленьким энергетическим станциям требуется кислород. Митохондрии потребляют до 80% вдыхаемого кислорода, даже незначительное снижение его уровня нарушает процесс выработки энергии.

При нехватке кислорода организм начинает вырабатывать энергию из глюкозы. Мозг требует углеводов — появляется неконтролируемая тяга к сладкому и перекусам. Вероятность набрать лишний вес при хронической гипоксии очень высока.

Она страдает одной из первых. Головной мозг нуждается в 20% всего поступающего в организм кислорода. Поэтому даже при незначительном снижении его уровня в крови сразу проявляются такие симптомы, как головная боль, сонливость, заторможенность, нарушение внимания. Более тяжелая форма гипоксии ведет к дезориентации, нарушению работы сознания, отеку головного мозга и даже смерти.

Кислород — окислитель, сжигающий поступающие в организм вещества, также он нужен и для устранения вредных продуктов их распада и токсинов. Нехватка кислорода нарушает процессы детоксикации. Организм запускает альтернативную программу получения энергии — анаэробный гликолиз (расщепление углеводов без участия кислорода). В результате организм закисляется, накапливаются молочная кислота и другие опасные продукты, которые разрушают наши клетки.

Для кислородного голодания характерны не только мигрени. При гипоксии распространены и мышечные ноющие боли из-за скопления молочной кислоты в тканях.

При отсутствии кислорода сердечная мышца (миокард) ослабевает, плохо качает кровь, со временем возникает хроническая сердечная недостаточность. Длительный недостаток кислорода может стать причиной инфаркта.

Лучшая профилактика — здоровый образ жизни. Постарайтесь свести к минимуму воздействие негативных внешних и внутренних факторов, мешающих хорошему усвоению кислорода.

Прежде всего — наладьте питание. Чтобы обеспечить кровь качественными эритроцитами, необходимо регулярное поступление витаминов и минералов. Помните о правиле «радуга на тарелке»: съедайте за день пять-семь разных видов фруктов и овощей, старайтесь подбирать овощи разного цвета. Для хорошего усвоения кислорода в легких в рационе должны присутствовать жиры. Их недостаток вызывает нехватку сурфактанта — вещества, которое не дает слипаться альвеолам. Именно жиры являются источником энергии при гипоксии. Разумеется, речь не идет о вредных трансжирах — забудьте о зажаренном до хрустящей корочки стейке. Добавьте в ежедневный рацион продукты, богатые полезными жирами, — рыбу, оливки, орехи и семена, яйца, растительные нерафинированные масла.

Помните о негативном влиянии алкоголя и табака на ваши легкие. Лучше отказаться от них вообще либо свести их употребление к минимуму. Умеренные физические нагрузки помогают восполнить уровень кислорода в крови. 10 тыс. шагов в день — самый простой рецепт здоровья. Включите в ежедневную программу аэробные упражнения: бег, плавание, танцы, велосипед, скандинавская ходьба. Не зря же их называют «кислородной тренировкой»!

Дыхательная гимнастика в хорошо проветренном помещении или на свежем воздухе увеличит поступление кислорода в считанные минуты. Утром такая практика бодрит не хуже чашки кофе. В течение дня можно совершать пятиминутные сессии диафрагмального дыхания. Сядьте на стул, сделайте глубокий вдох, медленно выдохните, втянув живот и задержав дыхание (выдох должен быть дольше, чем вдох!). Так мы искусственно вызываем короткую гипоксию, после которой организм, испугавшись отсутствия воздуха, усваивает в несколько раз больше кислорода, чем обычно.

Подписывайтесь на наш канал в Яндекс.Дзен.

Этиология и патогенез

Первая помощь должна быть оказана максимально оперативно, так как угарный газ быстро диффундирует через легочную капиллярную мембрану и связывается с железной частью гемма. Это происходит с примерно в 240 раз большей аффинностью, чем с кислородом.

Степень гемоглобинемии окиси углерода (CO-Hb) является функцией относительного количества СО и кислорода в воздухе, продолжительности воздействия и объема дыхания в минуту.

Некурящие могут иметь до 3% СО в крови, в то время как курильщики имеют уровни 10-15%.

Когда СО связывается с гемом, способность выделять кислород непосредственно в периферическую ткань организма снижается. Таким образом, дефицит кислорода происходит в тканях. CO влияет на периферическое потребление кислорода несколькими способами.

Концентрация СО в атмосфере обычно ниже 0,001%, но она выше в городских районах и в закрытых помещениях.

Большинство смертельных отравлений угарным газом происходит из-за пожаров, утечек в печах, портативных источников питания, работающих на бензине, гриля в помещении, выхлопных газов автомобилей. Угарный газ быстро всасывается в легкие. Выделение зависит от степени оксигенации и, в меньшей степени, минутного объема.

· Период полувыведения СО, когда человек дышит обычным воздухом, составляет около 300 минут.

· Если вы дышите богатым кислородом воздухом через маску, которая фильтрует выдыхаемый воздух, период полураспада составляет около 90 минут.

· При 100% гипербарическом кислороде это около 30 минут.

Вероятность смертельного исхода отравления возрастает при отсутствии своевременной помощи.

Оцените статью
Кислород
Добавить комментарий