Вариант 30 Широкопояс Борисов ЕГЭ по химии.

Вариант 30 Широкопояс Борисов ЕГЭ по химии. Кислород
Содержание
  1. Реакции, взаимодействие алюминия с основаниями. уравнения реакции:
  2. Задание 30
  3. Задание 33
  4. Задание 34
  5. Оксид серы (iv)
  6. Оксид серы (vi)
  7. Оксиды серы. примеры заданий егэ по химии с объяснениями ✎
  8. Реакции, взаимодействие алюминия с неметаллами. уравнения реакции:
  9. Реакции, взаимодействие алюминия с оксидами. уравнения реакции:
  10. Реакции, взаимодействие алюминия с полуметаллами. уравнения реакции:
  11. Реакции, взаимодействие алюминия с солями. уравнения реакции:
  12. Реакции, взаимодействие алюминия. уравнения реакции алюминия с веществами.
  13. Соединения серы
  14. Соли серной кислоты – сульфаты
  15. Способы получения
  16. Способы получения сероводорода
  17. Способы получения серы
  18. Способы получения сульфидов
  19. Сульфиды
  20. Тест на свойства соединений кислорода и серы. часть 1.
  21. Физические свойства и нахождение в природе
  22. Химические свойства сероводорода
  23. Химические свойства серы
  24. Химические свойства сульфидов
  25. Электронное строение серы

Реакции, взаимодействие алюминия с основаниями. уравнения реакции:

1. Реакция взаимодействия алюминия, гидроксида натрия и воды:

2Al 6H2O 6NaOH → 2Na3[Al(OH)6] 3H2.

Реакция взаимодействия алюминия, гидроксида натрия и воды происходит с образованием гексагидроксоалюмината натрия и водорода. Реакция протекает в горячей воде и концентрированном растворе гидроксида натрия.

2. Реакция взаимодействия алюминия, гидроксида калия и воды:

2Al 2KOH 6H2O → 2K[Al(OH)4] 3H2.

Реакция взаимодействия алюминия, гидроксида калия и воды происходит с образованием тетрагидроксоалюмината калия и водорода. Реакция протекает в горячем концентрированном растворе гидроксида калия.

Задание 30

Вариант ответа:

Na2CO3  2HNO3 = 2NaNO3  CO2 H2O

2Na CO32-  2H   2NO3- = 2Na 2NO3- CO2 H2O

CO32-  2H  = CO2 H2O

*Вариант ответа, в котором в качестве исходного вещества фигурирует оксид, считать неверным, поскольку оксиды не относятся к электролитам, а реакциями ионного обмена называют реакции между электролитами в водном растворе.

См. официальный документ от ФИПИ «МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2022 года»: оксиды реакции ионного обмена

Задание 33

Алюминиевую пластинку поместили на некоторое время в 200 г 5%-ного раствора гидроксида натрия. После выделения 6,72 л (н.у.) газа пластинку извлекли, а через раствор пропустили избыток углекислого газа. Определите массовую долю соли в образовавшемся растворе.

Решение:

2Al 2NaOH 6H2O → 2Na[Al(OH)4] 3H2 (I)

Na[Al(OH)4] CO2 → NaHCO3 Al(OH)3 (II)

NaOH CO2 → NaHCO3 (III)

Вычислим массу и количество вещества гидроксида натрия в исходном растворе:mисх.(NaOH) = 200 г ⋅ 5%/100% = 10 г; nисх.(NaOH) = 10 г/40 г/моль = 0,25 моль.

Вычислим количество вещества и массу выделившегося водорода:n(H2) = V/Vm = 6,72 л/22,4 л/моль = 0,3 моль; m(H2) = n ⋅ M = 0,3 моль ⋅ 2 г/моль = 0,6 г.

Исходя из уравнения реакции (I), количество вещества и масса алюминия, вступившего в реакцию (I), равно:n(Al) = 2/3n(H2) = 2/3 ⋅ 0,3 моль = 0,2 моль; m(Al) = n ⋅ M = 0,2 моль ⋅ 27 г/моль = 5,4 г,

а количество прореагировавшего гидроксида натрия составляет:nреаг.(NaOH) = n(Al) = 0,2 моль.

Количество гидроксида натрия, оставшегося после реакции (I), будет равно:nост.(NaOH) = nисх.(NaOH) − nреаг.(NaOH)  = 0,25 моль − 0,2 моль = 0,05 моль.

Вычислим массу раствора, образовавшегося в результате реакции (I):mI(р-ра) = mр-ра(NaOH) m(Al) − m(H2) = 200 г 5,4 г − 0,6 г = 204,8 г.

Поскольку через образовавшийся раствор пропускают избыток углекислого газа, то в результате реакций (II) и (III) образуется кислая соль − гидрокарбонат натрия.

Количество вещества гидроксоалюмината натрия, образовавшегося в результате реакции (I) составляет:

n(Al) = n(Na[Al(OH)4]) = 0,2 моль, следовательно, в результате реакции (II) количество вещества и массы прореагировавшегося углекислого газа и образовавшихся гидрокарбоната натрия и гидроксида алюминия равны:

n(Na[Al(OH)4]) = nII(CO2) = n(Al(OH)3) = nII(NaHCO3) = 0,2 моль;mII(CO2) = M ⋅ n = 44 г/моль ⋅ 0,2 моль = 8,8 г;m(Al(OH)3) = M ⋅ n = 78 г/моль ⋅ 0,2 моль = 15,6 г;mII(NaHCO3) = M ⋅ n = 84 г/моль ⋅ 0,2 моль = 16,8 г.

Вычислим массу раствора, образовавшегося в результате реакции (II):mII(р-ра) = mI(р-ра) mII(CO2) − m(Al(OH)3) = 204,8 г 8,8 г − 15,6 г = 198 г.

Вычислим количество вещества и массы реагирующего углекислого газа и образовавшегося гидрокарбоната натрия в результате реакции (III):nост.(NaOH) = nIII(NaHCO3) = nIII(CO2) = 0,05 моль, следовательно,mIII(CO2)

Общая масса гидрокарбоната натрия равна:mобщ.(NaHCO3) = mII(NaHCO3)  mIII(NaHCO3) = 16,8 г 4,2 г = 21 г.

Конечная масса раствора составляет:mконеч.(р-ра) = mII(р-ра) mIII(CO2) = 198 г 2,2 г = 200,2 г.

wконечн.(NaHCO3) = mобщ.(NaHCO3)/mконеч.(р-ра) ⋅ 100% = 21 г/200,2 г ⋅ 100% ≈ 10,5%.

Ответ: wконечн.(NaHCO3) = 10,5%

Задание 34

При полном сгорании неизвестного органического соединения А массой 1,98 г образовалось 2,016 л углекислого газа (н.у.) и 1,62 г воды. Известно, что в молекуле данного соединения все атомы углерода находятся в состоянии sp3-гибридизации, а получить его можно в одну стадию из вещества Б — продукта окисления некоторого алкена раствором перманганата калия.

Также известно то, что молекула вещества А содержит в два раза больше атомов углерода, чем молекула вещества Б. На основании данных условия задания:1) проведите необходимые вычисления (указывайте единицы измерения искомых физических величин) и установите молекулярную формулу исходного органического вещества;2) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи атомов в его молекуле;3) напишите уравнение получения А из вещества Б.

Решение:

n(CO2) = V/Vm = 2,016/22,4 = 0,09 моль, следовательно,  n(C) = n(CO2) = 0,9 моль, тогда, m(C) = n·M = 0,09·12 = 1,08 г,n(H2O) = m/M = 1,62/18 = 0,09 моль, следовательно, n(H) = 2n(H2O) = 2·0,09 = 0,18 моль, тогда m(H) = n·M = 0,18·1 = 0,18 г.

Проверим содержит ли искомое вещество кислород:m(O) = m(в-ва) — m(C) — m(H) = 1,98 г — 1,08 г — 0,18 г = 0,72 г. Как видим, m(O) не равно нулю, значит в состав искомого вещества входит кислород. Рассчитаем количество вещества кислорода в указанной в условии порции вещества:

n(O) = m(O)/M(O) = 0,72/16 = 0,045 моль.

Найдем простейшую формулу вещества:

n(C) : n(H) : n(O) = 0,09 : 0,18 : 0,045 = (0,09/0,045) : (0,18/0,045) : (0,045/0,045) = 2 : 4 : 1

Таким образом, простейшая формула искомого вещества А — C2H4O. Предположим, что простейшая формула совпадает с истинной молекулярной. Тогда искомым веществом А могли бы оказаться либо ацетальдегид, либо этиленоксид, однако, ни то, ни другое вещество не может быть получено из вещества с одним атомом углерода в молекуле, которое еще при этом было бы продуктом окисления раствором перманганата калия некоторого алкена (напомним, что по условию молекула вещества А содержит в два раза больше атомов углерода, чем молекула вещества Б).

Диоксан удовлетворяет всем требованиям задачи: может быть получен в одну стадию дегидратацией этилегликоля (вещества Б с вдвое меньшим числом атомов углерода в молекуле), а этиленгликоль (вещество Б) в свою очередь может  быть получен в одну стадию из этилена его окислением нейтральным холодным раствором перманганата калия.

3) уравнение получения вещества А из вещества Б:

Оксид серы (iv)

Оксид серы (IV) –  это кислотный оксид. Бесцветный газ с резким запахом, хорошо растворимый в воде.

Cпособы получения оксида серы (IV):

1.Сжигание серы на воздухе:

S      O2  →  SO2

2.Горение сульфидов и сероводорода:

2H2S      3O2  →   2SO2      2H2O

2CuS      3O2  →   2SO2      2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

Например, сульфит натрия взаимодействует с серной кислотой:

Na2SO3       H2SO4    →  Na2SO4      SO2       H2O

4.Обработка концентрированной серной кислотой неактивных металлов.

Например, взаимодействие меди с концентрированной серной кислотой:

Cu       2H2SO4   →   CuSO4      SO2      2H2O

Химические свойства оксида серы (IV):

Оксид серы (IV) – это типичный кислотныйоксид. За счет серы в степени окисления 4 проявляет свойства окислителяи восстановителя.

1. Как кислотный оксид, сернистый газ реагирует с щелочамии оксидами щелочных и щелочноземельных металлов.

Например, оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):

SO2       2NaOH(изб)   →   Na2SO3      H2O

SO2(изб)      NaOH  → NaHSO3

Еще пример: оксид серы (IV) реагирует с основным оксидом натрия:

SO2    Na2O   →  Na2SO3 

2. При взаимодействии с водой SO2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

SO2     H2O   ↔  H2SO3  

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Например, оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:

2SO2       O2    ↔  2SO3

Сернистый ангидрид обесцвечивает бромную воду:

SO2      Br2     2H2O   →  H2SO4    2HBr

Азотная кислота очень легко окисляет сернистый газ:

SO2      2HNO3   →  H2SO4      2NO2

Озон также окисляет оксид серы (IV):

SO2       O3  →   SO3    O2

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

5SO2      2H2O      2KMnO4  → 2H2SO4      2MnSO4      K2SO4    

Оксид свинца (IV) также окисляет сернистый газ:

SO2      PbO2  → PbSO4

4. В присутствии сильных восстановителей SO2  способен проявлять окислительные свойства.

Например, при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:

SO2       2Н2S    →    3S    2H2O

Оксид серы (IV) окисляет угарный газ и углерод:

SO2        2CO    →   2СО2        S 

SO2      С  →   S    СO2

Оксид серы (vi)

Оксид серы (VI) –  это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.

Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.

2SO2       O2    ↔   2SO3

Сернистый газ окисляют и другие окислители, например, озон или оксид азота (IV):

SO2       O3  →   SO3       O2

SO2       NO2  →   SO3      NO

Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):

Fe2(SO4)3    →   Fe2O3      3SO3

Химические свойства оксида серы (VI)

1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:

SO3     H2O  →  H2SO4 

2. Серный ангидрид является типичным кислотным оксидом, взаимодействует с щелочами и основными оксидами.

Например, оксид серы (VI) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

SO3    2NaOH(избыток)  →   Na2SO4      H2O

SO3(избыток)      NaOH → NaHSO4

Еще пример: оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):

SO3    MgO   →  MgSO4 

3. Серный ангидрид – очень сильный окислитель, так как сера в нем имеет максимальную степень окисления ( 6). Он энергично взаимодействует с такими восстановителями, как иодид калия, сероводород или фосфор:

SO3       2KI   →   I2       K2SO3

3SO3       H2S   →   4SO2         H2O

5SO3         2P   →    P2O5         5SO2

4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.

Оксиды серы. примеры заданий егэ по химии с объяснениями ✎

Оксиды серы. Примеры заданий ЕГЭ по химии с объяснениями

Задание 1:

Установите соответствие между формулой вещества и реагентами, с каждым из которых это вещество может взаимодействовать: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Формула вещества

А) Ba

Б) Ba(OH)2

В) SO2

Г) FeS


Реагенты

1) H2O, HBr, Mg

2) P2O5, CrO3, Li2SO4

3) NaOH, H2O, O2

4) CO, K3PO4, H2

5) HCl, O2, HNO3.

Решение:

  • Начнем с бария — это активный щелочно — земельный металл, который реагирует

— с неметаллами (очевидно);

— с кислотами;

— со сложными веществами, в состав которых входит металл, слабее бария (см. ряд активности металлов)

— с водой;

— с кислородом.

Из перечисленных ответов нам подходит 5.

  • Далее идет гидроксид бария, это растворимое основание, которое как и все аналогичные гидроксиды реагирует

— с кислотами;

— с кислотными оксидами;

— с солями (если образуется осадок);

— с амфотерными соединениями (оксидами и гидроксидами).

К этому варианту подходит ответ 2.

  • Третий реагент — оксид серы (IV) — это кислотный оксид, который отображает классические свойства кислотных оксидов, то есть реагирует

— с основаниями (щелочи);

— основными оксидами;

— с солями (более слабых летучих кислот);

— с некоторыми кислотами (азотной, сероводородной, йодоводородной);

— с кислородом;

— с водой.

В данном варианте подходящий ответ — 3.

  • И, последнее вещество — сульфид железа (II).

Это средняя соль, которая реагирует

— с соляной кислотой;

— с азотной кислотой;

— с кислородом.

Стоит знать, что FeS с кислородом реагирует по разному, в зависимости от условий:

4FeS 7O2 = 2Fe2O3 4SO2 (t)
FeS (влажный) 2O2 = FeSO4 (t)

Очевидный ответ из приведенных — 5.

Итак, ответ 5235.

Задание 2

Уставите соответствие между реагирующими веществами и продуктом (-ами), который (-е) образуется (-ются) при взаимодействии этих веществ: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Реагирующие вещества:

А) Ca и H2SO4 (конц.)

Б) CaO и SO3

В) Ca и H2SO4 (р-р)

Г) CaO и H2SO4

Продукты взаимодействия:

1) CaSO3

2) CaSO4, H2S и H2O

3) CaSO3и H2O

4) CaSO4

5) CaSO4 и H2

6) CaSO4 и H2O.

Решение:

Это достаточно простой вопрос, но здесь есть свои нюансы, при незнании которых можно допустить массу ошибок.

  • Итак, при взаимодействии кальция с концентрированной серной кислотой всегда образуются сульфат кальция, вода и сернистый газ, — ответ 2.
  • Второй ряд веществ — оксид кальция и серный ангидрид, как ты знаешь, это реакция присоединения с образованием сульфита кальция, ответ1.
  • Следующие реагенты — кальций и разбавленная серная кислота, это реакция замещения: выделяется водород и сульфат кальция, ответ 5.
  • Четвертый ряд веществ — оксид кальция и серная кислота: это реакция обмена, в результате образуется соль и вода, то есть сульфат кальция и вода; ответ 6.

Ответ: 2156.

Задание 3:

Установите соответствие между формулой вещества и реагентами, с каждым из которых это вещество может взаимодействовать: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Формула вещества:

А) Al(OH)3

Б) SO3

В) O2

Г) AlI3 (раствор)

Реагенты:

1) S, C, H2

2) LiOH, HBr, H2SO4

3) H2O, CaO, NaOH

4) CuO, Ba(NO3)2, H3PO4

5) AgNO3, Br2, K3PO4.

Решение:

  • Первое вещество — гидроксид алюминия, это амфотерное нерастворимое основание, которое реагирует

— с щелочами (с образованием комплексных соединений типа тетрагидроксоалюминат натрия);

— с кислотами;

— с основными оксидами.

Самый очевидный ответ — 2.

  • Следующее вещество — оксид серы (VI), серный ангидрид. Это кислотный солеобразующий оксид, который проявляет типичные свойства таких оксидов, а именно реагирует

— с основными оксидами;

— с основаниями (растворимыми);

— с амфотерными оксидами;

— с водой;

— с солями (фториды, йодиды, сульфиды);

— с некоторыми неметаллами (фосфор, углерод);

Здесь подходит вариант 3.

Кислород является важнейшим окислителем, в данном случае ищем те реагенты, в которых присутствуют химические элементы, способные увеличить свою степень окисления, это

— сера;

— углерод;

— водород.

Ответ — 1.

  • И, напоследок, средняя соль — йодид алюминия.

Это растворимая соль, для которой подходит вариант 5 — взаимодействие

— с нитратом серебра (образуется осадок желтого цвета — AgI);

— с бромом (реакция замещения, бром вытесняет йод из соли);

— с ортофосфатом калия (образуется студенистый осадок AlPO4).

Ответ на это задание: 2315.

Задание 4:

Карбид алюминия полностью растворили в бромоводородной кислоте. К полученному раствору добавили раствор сульфита калия, при этом наблюдали образование белого осадка и выделение бесцветного газа. Газ поглотили раствором дихромата калия в присутствии серной кислоты. Образовавшуюся соль хрома выделили и добавили к раствору нитрата бария, наблюдали выделение осадка.

Напишите уравнения четырех описанных реакций.

Решение:

Итак, необходимо проанализировать каждую химическую реакцию.

  • Карбид алюминия растворили в бромоводородной кислоте: это обычная реакция обмена, здесь образуется бромид алюминия и выделяется метан:

Al4C3 12HBr = 4AlBr3 3CH4

  • К полученному раствору добавили раствор сульфита калия, при этом
    наблюдали образование белого осадка и выделение бесцветного газа — это значит, что к бромиду алюминия добавили раствор сульфита калия, ключевое слово — раствор, то есть добавляем еще и воду, это реакция ОВР, пишем:

2AlBr3 3K2SO3 3H2O = 2Al(OH)3↓ 3SO2↑ 6KBr

  • Газ поглотили раствором дихромата калия в присутствии серной кислоты — газ, полученный в предыдущей реакции — сернистый:

3SO2 K2Cr2O7 H2SO4 = Cr2(SO4)3 K2SO4 H2O

  • Образовавшуюся соль хрома выделили и добавили к раствору нитрата бария, наблюдали выделение осадка:

Cr2(SO4)3 3Ba(NO3)2 = 3BaSO4↓ 2Cr(NO3)3

Незабываем про то, что нужно уравнивать все реакции в ЕГЭ по химии.

Пример выполнен.

Задание 5

Для выполнения заданий 30, 31 используйте следующий перечень веществ: перманганат калия, сульфат марганца (II), сернистый газ, гидроксид калия, сульфид серебра. Допустимо использование водных растворов веществ.

Из предложенного перечня выберите вещества, между которыми окислительно — восстановительная реакция протекает с обесцвечиванием раствора. Образование осадка или газа в ходе этой реакции не наблюдается. В ответе запишите уравнение только одной из возможных окислительно — восстановительных реакций с участием выбранных веществ. Составьте электронный баланс, укажите окислитель и восстановитель.

Решение:

Из данного списка мы сразу можем выделить наиболее частый окислитель — перманганат калия.

Теперь ищем вещество с переменной степенью окисления в составе, это вопрос посложнее.

Рассмотрим каждое из веществ:

  • сульфат марганца (MnSO4) — это белый порошок, кристаллогидрат (марганцовый купорос) имеет красно — розовый цвет. При взаимодействии с перманганатом калия в водной среде образуется оксид марганца (II) — это осадок зеленого цвета, нерастворимый в воде.

Однако, в этой реакции образуется серная кислота, которая растворяет данный осадок, но в условии этого не сказано, а значит, этот вариант нам не подходит;

  • гидроксид калия — это щелочь, которая с перманганатом калия дает выделяет кислород, а у нас газ не образуется, значит, тоже не подходит;
  • сульфид серебра (Ag2S) — это средняя соль, нерастворимое в воде соединение серо — черного цвета, реагирует с азотной кислотой, кислородом, цианидом калия (конц.). С перманганатом не реагирует.

сернистый газ (SO2) — этот газ в водном растворе реагирует с KMnO4 без образования осадка и газа, но с обесцвечиванием раствора:

SO2 KMnO4 H2O = MnSO4 K2SO4 H2SO4

Теперь нужно составить уравнение электронного баланса:

Mn 7 5e → Mn 2 │2 процесс восстановления

S 4 -2e → S 6 │5 процесс окисления

С учетом расстановки коэффициентов:

5SO2 2KMnO4 2H2O = 2MnSO4 K2SO4 2H2SO4

Все уравнено. В конце этого задания необходимо указать окислитель и восстановитель:

  • Mn в степени окисления 7 является окислителем;
  • S в степени окисления 4 является восстановителем.

Теперь это задание выполнено правильно.

Задание 6:

Установите соответствие между веществом и способом его получения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

Вещество:

А) сернистый газ;

Б) анилин;

В) натрий.

Способ получения:

1) электролиз расплава поваренной соли;

2) обжиг пирита в «кипящем слое»;

3) восстановление нитробензола;

4) электролиз раствора хлорида натрия.

Решение:

  • 1) Сернистый газ (SO2) — одним из способов получения сернистого газа является обжиг пирита в кипящем слое:

4FeS 7O2 = 2Fe2O3 4SO2 (t), ответ 2.

  • 2) Анилин — способ получения этого ароматического амина является реакция Николая Зинина, который осуществил ее в 1842 году.

Данная реакция представляет собой восстановление (водородом) нитробензола, ответ 3.

  • 3) Натрий — это активный щелочной металл, который можно получить в чистом виде электролизом расплава поваренной соли, ответ 1.

Ответ: 231.

На сегодня все)

Реакции, взаимодействие алюминия с неметаллами. уравнения реакции:

1. Реакция взаимодействия алюминия и серы:

2Al 3S → Al2S3 (t = 150-200 °C).

Реакция взаимодействия алюминия и серы происходит с образованием сульфида алюминия.

2. Реакция взаимодействия алюминия и фосфора:

4Al P4 → 4AlP (t = 500-800 °C).

Реакция взаимодействия алюминия и фосфора происходит с образованием фосфида алюминия. Реакция протекает в атмосфере водорода.

3. Реакция взаимодействия алюминия и селена:

3Se 2Al → Al2Se3 (t = 600-650 °C).

Реакция взаимодействия алюминия и селена происходит с образованием селенида алюминия.

4. Реакция взаимодействия алюминия и кислорода:

4Al 3O2 → 2Al2O3 (t°).

Реакция взаимодействия алюминия и кислорода происходит с образованием оксида алюминия. Реакция представляет собой сгорание порошка алюминия на воздухе.

5. Реакция взаимодействия алюминия и углерода:

4Al 3C → Al4C3 (t = 1500-1700 °C).

Реакция взаимодействия алюминия и углерода происходит с образованием карбида алюминия.

6. Реакция взаимодействия алюминия и фтора:

2Al 3F2 → 2AlF3 (t = 600 °C).

Реакция взаимодействия алюминия и фтора происходит с образованием фторида алюминия.

7. Реакция взаимодействия алюминия и хлора:

2Al 3Cl2 → 2AlCl3.

Реакция взаимодействия алюминия и хлора происходит с образованием хлорида алюминия.

8. Реакция взаимодействия алюминия и брома:

2Al 3Br2 → 2AlBr3.

Реакция взаимодействия алюминия и брома происходит с образованием бромида алюминия.

9. Реакция взаимодействия алюминия и йода:

2Al 3I2 → 2AlI3 (kat = капля H2O).

Реакция взаимодействия алюминия и йода происходит с образованием йодида алюминия.

10. Реакция взаимодействия алюминия и азота:

2Al N2 → 2AlN (t = 800-1200 °C).

Реакция взаимодействия алюминия и азота происходит с образованием нитрида алюминия.

Реакции, взаимодействие алюминия с оксидами. уравнения реакции:

1. Реакция взаимодействия алюминия и воды:

2Al 6H2O → 2Al(OH)3  3H2.

Реакция взаимодействия алюминия и воды происходит с образованием гидроксида алюминия и водорода. Реакция протекает при условии отсутствия оксидной пленки на алюминии.

2. Реакция взаимодействия алюминия и оксида алюминия:

4Al Al2O3 ⇄ 3Al2O (t = 1450 °C).

Реакция взаимодействия алюминия и оксида алюминия происходит с образованием оксида алюминия (I).

3. Реакция взаимодействия алюминия и оксида железа (III):

Fe2O3  2Al → 2Fe Al2O3 (t°).

Реакция взаимодействия алюминия и оксида железа (III) происходит с образованием железа и оксида алюминия.

4. Реакция взаимодействия алюминия и оксида хрома:

Cr2O3  2Al → 2Cr Al2O3 (t = 800 °C).

Реакция взаимодействия алюминия и оксида хрома происходит с образованием хрома и оксида алюминия.

5. Реакция взаимодействия алюминия и оксида марганца:

Mn2O3  2Al → Al2O3  2Mn (t = 800 °C),

3MnO 2Al → 3Mn Al2O3 (t = 800 °C).

Реакция взаимодействия алюминия и оксида марганца происходит с образованием марганца и оксида алюминия.

6. Реакция взаимодействия алюминия и оксида лития:

3Li2O 2Al → 6Li Al2O3 (t > 1000 °C).

Реакция взаимодействия алюминия и оксида лития происходит с образованием лития и оксида алюминия.

7. Реакция взаимодействия алюминия и оксида меди:

3CuO 2Al → 3Cu Al2O3 (t = 1000-1100 °C).

Реакция взаимодействия алюминия и оксида меди происходит с образованием меди и оксида алюминия.

8. Реакция взаимодействия алюминия и оксида бария:

3BaO 2Al → 3Ba Al2O3 (t = 1200 °C).

Реакция взаимодействия алюминия и оксида бария происходит с образованием бария и оксида алюминия. Реакция протекает в вакууме.

9. Реакция взаимодействия алюминия и оксида кальция:

2Al 6CaO → 3CaO•Al2O3  3Ca или 2Al 6CaO → Ca3Al2O6  3Ca (t°),

4CaO 2Al → 3Ca Ca(AlO2)2 (t = 1200 °C).

Реакция взаимодействия алюминия и оксида кальция происходит с образованием в первом случае – оксида алюминия-кальция (алюмината трикальция) и кальция, во втором – кальция и алюмината кальция.

10. Реакция взаимодействия алюминия и оксида бора:

B2O3  2Al → Al2O3  2B (t = 800-900 °C).

Реакция взаимодействия алюминия и оксида бора происходит с образованием оксида алюминия и бора.

Реакции, взаимодействие алюминия с полуметаллами. уравнения реакции:

1. Реакция взаимодействия алюминия и сурьмы:

Sb Al → AlSb (t°).

Реакция взаимодействия алюминия и сурьмы происходит с образованием стибида алюминия.

2. Реакция взаимодействия алюминия и теллура:

3Te 2Al → Al2Te3 (t > 500 °C).

Реакция взаимодействия алюминия и теллура происходит с образованием теллурида алюминия. Реакция протекает в атмосфере аргона.

Реакции, взаимодействие алюминия с солями. уравнения реакции:

1. Реакция взаимодействия алюминия и карбоната лития:

3Li2CO3  2Al → 6Li Al2O3  3CO2 (t = 550-600 °C).

Реакция взаимодействия карбоната лития и алюминия происходит с образованием лития, оксида алюминия и оксида углерода.

2. Реакция взаимодействия алюминия и бромида циркония (IV):

3ZrBr4  Al → 3ZrBr3  AlBr3.

Реакция взаимодействия бромида циркония (IV) и алюминия происходит с образованием бромида циркония (III) и бромида алюминия.

3. Реакция взаимодействия алюминия и хлорида циркония (IV):

3ZrCl4  Al → 3ZrCl3  AlCl3 (t = 230-270 °C).

Реакция взаимодействия хлорида циркония (IV) и алюминия происходит с образованием хлорида циркония (III) и хлорида алюминия.

4. Реакция взаимодействия алюминия и хлорида кальция:

3CaCl2  2Al → 3Ca 2AlCl3 (t = 600-700 °C).

Реакция взаимодействия хлорида кальция и алюминия происходит с образованием кальция и хлорида алюминия.

5. Реакция взаимодействия алюминия и йодида циркония (IV):

3ZrI4  Al → 3ZrI3  AlI3 (t = 310 °C).

Реакция взаимодействия йодида циркония (IV) и алюминия происходит с образованием йодида циркония (III) и йодида алюминия.

6. Реакция взаимодействия алюминия, ортофосфата натрия и воды:

2Al 2Na3PO4  8H2O → 2Na[Al(OH)4] 2Na2HPO4  3H2 (t°).

Реакция взаимодействия алюминия, ортофосфата натрия и воды происходит с образованием тетрагидроксоалюмината натрия, гидроортофосфата натрия и водорода. В ходе реакции используется концентрированный раствор ортофосфата натрия. Реакция протекает при кипении.

7. Реакция взаимодействия алюминия и хлорида железа:

Al FeCl3 → Fe AlCl3 (t = 200 °C).

Реакция взаимодействия хлорида железа и алюминия происходит с образованием хлорида алюминия и железа.

8. Реакция взаимодействия алюминия и хлорида меди:

3CuCl2  2Al → 2AlCl3  3Cu.

Реакция взаимодействия хлорида меди и алюминия происходит с образованием хлорида алюминия и меди.

9. Реакция взаимодействия алюминия и хлорида алюминия:

2Al AlCl3 ⇄ 3AlCl (t > 800 °C).

Реакция взаимодействия хлорида алюминия и алюминия происходит с образованием монохлорида алюминия.

Реакции, взаимодействие алюминия. уравнения реакции алюминия с веществами.

Алюминий реагирует, взаимодействует с неметаллами, металлами, полуметаллами, оксидами, кислотами, основаниями, солями и пр. веществами.

Реакции, взаимодействие алюминия с неметаллами

Реакции, взаимодействие алюминия с полуметаллами

Реакции, взаимодействие алюминия с оксидами

Реакции, взаимодействие алюминия с солями

Реакции, взаимодействие алюминия с кислотами

Реакции, взаимодействие алюминия с основаниями

Реакции, взаимодействие алюминия с водородсодержащими соединениями

Соединения серы

Типичные соединения серы:

Степень окисления Типичные соединения
6 Оксид серы(VI) SO3

Серная кислота H2SO4

Сульфаты MeSO4

Галогенангидриды: SО2Cl2

4 Оксид серы (IV) SO2

Сернистая кислота H2SO3

Сульфиты MeSO3

Гидросульфиты MeHSO3

Галогенангидриды: SOCl2

–2 Сероводород H2S

Сульфиды металлов MeS

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 Na2SO4  →   BaSO4↓  2NaCl

Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe  подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

2CuSO4  →   2CuO      SO2      O2     (SO3)

2Al2(SO4)3    →  2Al2O3      6SO2      3O2

2ZnSO4  →   2ZnO      SO2      O2

2Cr2(SO4)3   →    2Cr2O3      6SO2      3O2

При разложении сульфата железа (II) в FeSO4 Fe (II)  окисляется до Fe (III)

4FeSO4    →  2Fe2O3      4SO2      O2  

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления 6 сульфаты проявляют окислительныесвойстваи могут взаимодействовать с восстановителями.

Например, сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:

CaSO4   4C   →   CaS     4CO

4.Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова соль

CaSO4 ∙ 2H2O − гипс

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Способы получения

1. Серную кислоту в промышленностипроизводят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Аппарат Назначение и уравненяи реакций
Печь для обжига 4FeS2 11O2 → 2Fe2O3 8SO2 Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС

Циклон  Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр  Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня  Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник  Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат  2SO2 O2 ↔ 2SO3 Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  •  температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500оС. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  •  давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня  Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

nSO3 H2SO4  →  H2SO4·nSO3

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Способы получения сероводорода

В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например, при действии соляной кислоты на сульфид железа (II):

FeS     2HCl   →   FeCl2     H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

S    H2  →  H2S

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопытполучения и обнаружения сероводорода можно посмотреть здесь.

Способы получения серы

1. В промышленных масштабах серу получают открытым способом на месторождениях самородной серы, либо из вулканов. Из серной руды серу получают также пароводяными, фильтрационными, термическими, центрифугальными и экстракционными методами. Пароводяной метод —  это выплавление из руды с помощью водяного пара.

2. Способ получения серы в лаборатории – неполное окисление сероводорода.

2H2S      O2    →   2S        2H2O

3. Еще один способ получения серы – взаимодействие сероводорода с оксидом серы (IV):

2H2S    SO2   →   3S     2H2O

Способы получения сульфидов

1.Сульфиды получают при взаимодействии серы с металлами. При этом сера проявляет свойства окислителя.

Например, сера взаимодействует с магнием и кальцием:

S      Mg   →   MgS

S       Ca   →   CaS

Сера взаимодействует с натрием:

S      2Na   →  Na2S

2. Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей.

Например, гидроксида калия с сероводородом:

H2S    2KOH  →   K2S    2H2O

3. Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями (любые сульфиды) или взаимодействием сероводорода с солями (только черные сульфиды).

Например, при взаимодействии нитрата меди и сероводорода:

Pb(NO3)2     Н2S    →   2НNO3      PbS

Еще пример: взаимодействие сульфата цинка с сульфидом натрия:

ZnSO4     Na2S    →   Na2SO4      ZnS

Сульфиды

Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Растворимые в воде Нерастворимые в воде, но растворимые в минеральных кислотах Нерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.) Разлагаемые водой, в растворе не существуют
Сульфиды щелочных металлов и аммония Сульфиды прочих металлов, расположенных  до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS) Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS) Сульфиды трехвалентных металлов (алюминия и хрома (III))
Реагируют с минеральными кислотами с образованием сероводорода Не реагируют с минеральными кислотами, сероводород получить напрямую нельзя

Разлагаются водой

ZnS     2HCl   →   ZnCl2     H2S

Al2S 6H2O → 2Al(OH) 3H2S

Тест на свойства соединений кислорода и серы. часть 1.

Задание №78

Установите соответствие между формулой/названием вещества и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 312

Задание №79

Установите соответствие между формулой/названием вещества и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 241

Задание №80

Установите соответствие между формулой/названием вещества и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 421

Задание №81

Установите соответствие между формулой/названием вещества и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 321

Задание №82

Установите соответствие между формулой/названием вещества и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 241

Задание №90

Навеску сульфида цинка подвергли обжигу в токе кислорода, при этом образовалось 1,12 л газа. Определите массу 10% раствора гидроксида натрия, в котором можно полностью растворить полученный твердый остаток. Ответ укажите в граммах и округлите до целых.

Решение

Ответ: 40 г

Пояснение:

Уравнение реакции:

2ZnS 3O2 = 2ZnO 2SO2

2NaOH ZnO H2O = Na2[Zn(OH)4]

ν(SO2) = 1,12/22,4 = 0,05 моль

ν(NaOH) = 2ν(SO2) = 2⋅0,05 = 0,1 моль

m(NaOH) = M⋅n = 40⋅0,1 = 4 г

mр-ра(NaOH) = 4 г/0,1 = 40 г

Задание №94

При взаимодействии 100 г раствора хлорида железа(III) с избытком сульфида калия выпало 4,16 г осадка. Вычислите массовую долю соли в исходном растворе. Ответ укажите в процентах и округлите до десятых.

Решение

Ответ: 6,5

Пояснение:

Запишем уравнение реакции:

2FeCl3 3K2S = 2FeS S 6KCl

Как видно из уравнения осадок представляет из себя смесь сульфида железа (II) и серы.

Пусть

ν(S) = x моль, тогда

ν(FeS) = 2ν(S) = 2x моль, а

масса серы будет равна:

m(S) = ν(S)⋅M(S) = 32x г, а масса m(FeS) = ν(FeS)⋅M(FeS) = 88⋅2x = 176x г, а суммарная масса осадка:

m(S FeS) = 32x 176x = 208x г

В то же время из условия m(S FeS) = 4,16 г

Тогда,

208x = 4,16

x = 0,02

Тогда

ν(FeCl3) = 2ν(S) = 2⋅0,02 = 0,04 моль

m(FeCl3) = M⋅n = 162 ⋅ 0,04 = 6,48 г

ω(FeCl3) = 100% ⋅ m(FeCl3)/ m(р-ра) = 100% ⋅ 6,48 / 100 ≈ 6,5 %

Задание №97

Рассчитайте массу осадка, который можно получить при взаимодействии 10 мл 5% раствора нитрата серебра (плотность 1,05 г/см3) и 20 мл 1% раствора сульфида лития (плотность 1,0 г/см3). Ответ укажите в граммах и и округлите до десятых.

Решение

Ответ: 0,4

Пояснение:

mр-ра(AgNO3) = Vр-ра(AgNO3)⋅ρ(р-ра(AgNO3) = 10 мл⋅1,05 г/мл = 10,5 г

m(AgNO3) = mр-ра(AgNO3)⋅ω(AgNO3)/100% = 10,5 г⋅0,05 = 0,525 г

ν(AgNO3) = m(AgNO3)/M(AgNO3) = 0,525 г/170 г/моль = 0,0031 моль

mр-ра(Li2S) = Vр-ра(Li2S)⋅ρ р-ра(Li2S) = 20 мл ⋅ 1,0 г/мл = 20 г

m(Li2S) = mрра(Li2S) ⋅ ω(Li2S) / 100% = 20 г ⋅ 0,01 = 0,2 г

ν(Li2S) = m(Li2S) / M(Li2S) = 0,2 г / 46 г/моль = 0,00435 моль

Li2S 2AgNO3 = Ag2S 2LiNO3

Найдем избыток и недостаток

ν(AgNO3)/2 = 0,00155  <  ν(Li2S)/1 = 0,00435 моль

т.е. в недостатке у нас нитрат серебра, расчет ведем по нему

ν(Ag2S) = ν(AgNO3)/2 = 0,00155 моль

m(Ag2S) = M(Ag2S) ⋅ ν(Ag2S) = 248 г/моль ⋅ 0,00155 моль ≈ 0,4 г

Физические свойства и нахождение в природе

Сера образует различные простые вещества (аллотропные модификации).

Наиболее устойчивая модификация серы – ромбическая сера S8. Это хрупкое вещество желтого цвета. 

Моноклинная сера – это аллотропная модификация серы, в которой атомы соединены в циклы в виде «короны». Это твердое вещество, состоящее из темно-желтых игл, устойчивое при температуре более 96оС, а при обычной температуре превращающееся в ромбическую серу. 

Пластическая сера – это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.

В природе сера встречается:

  • в самородном виде;
  • в составе сульфидов (сульфид цинка ZnS, пирит FeS2, сульфид ртути HgS — киноварь и др.)
  • в составе сульфатов (CaSO4·2H2O гипс, Na2SO4·10H2O — глауберова соль)

Химические свойства сероводорода

1.В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например, сероводород реагирует с гидроксидом натрия:

H2S    2NaOH  →   Na2S    2H2OH2S    NaOH → NaНS    H2O

2.Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

2H2S      O2    →   2S        2H2O

В избытке кислорода:

2H2S      3O2  →   2SO2     2H2O           

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S    Br2   →  2HBr     S↓

H2S    Cl2   →  2HCl     S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H2S     4Cl2      4H2O →  H2SO4    8HCl

Например, азотная кислота окисляет сероводород до молекулярной серы:

H2S    2HNO3(конц.)  →  S    2NO2    2H2O

При кипячении сера окисляется до серной кислоты:

H2S     8HNO3(конц.)  →  H2SO4    8NO2      4H2O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например, оксид серы (IV) окисляет сероводород:

2H2S    SO2  →  3S     2H2O

Соединения железа (III) также окисляют сероводород:

H2S    2FeCl3  →  2FeCl2    S    2HCl

Бихроматы, хроматы и прочие окислители также  окисляют сероводород до молекулярной серы:

3H2S      K2Cr2O7       4H2SO4    →   3S       Cr2(SO4)3      K2SO4      7H2O

2H2S      4Ag    O2  →  2Ag2S    2H2O

Серная кислота окисляет сероводород либо до молекулярной серы:

H2S      H2SO4(конц.)  →  S      SO2      2H2O

Либо до оксида серы (IV):

H2S      3H2SO4(конц.)  →  4SO2     4H2O

4.Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H2S     Pb(NO3)2   →  PbS     2HNO3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопытвзаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1. Сера проявляет свойства окислителя(при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя(с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами.

1.1. При горениисеры на воздухе образуется оксид серы (IV):

S    O2  →  SO2

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода)образуются галогениды серы:

S      Cl2  →  SCl2   (S2Cl2)

S     3F2  →   SF6

1.3. При взаимодействии фосфора иуглерода с серой образуются сульфиды фосфора и сероуглерод:

2P       3S   →   P2S3

2P       5S   →   P2S5

2S     C   →   CS2

1.4. При взаимодействии с металламисера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

Например, железо и ртуть реагируют с серой с образованием сульфидов железа (II)  и ртути:

S      Fe   →  FeS

S     Hg   →  HgS

Еще пример: алюминий взаимодействует с серой с образованием сульфида алюминия:

3S     2Al   →  Al2S3

1.5. С водородомсера взаимодействует при нагревании с образованием сероводорода:

S    H2  →  H2S

2.Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителямисера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Например, азотная кислота окисляет серу до серной кислоты:

S      6HNO3   →  H2SO4    6NO2      2H2O

Серная кислотатакже окисляет серу. Но, поскольку S 6 не может окислить серу же до степени окисления 6, образуется оксид серы (IV):

S        2H2SO4   →   3SO2      2H2O

Соединения хлора, например, бертолетова соль,  также окисляют серу до 4:

S     2KClO3  →   3SO2      2KCl

Взаимодействие серы с сульфитами(при кипячении) приводит к образованию тиосульфатов:

S      Na2SO3  →   Na2S2O3

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

Например, сера реагирует с гидроксидом натрия:

S       6NaOH   →  Na2SO3      2Na2S      3H2O

При взаимодействии с перегретым паром сера диспропорционирует:

3S      2H2O (пар)   →  2H2S      SO2

Химические свойства сульфидов

1. Растворимые сульфиды гидролизуютсяпо аниону, среда водных растворов сульфидов щелочная:

K2S   H2O  ⇄  KHS    KOHS2–   H2O  ⇄  HS–   OH–

2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.

Например, сульфид кальция растворяется в соляной кислоте:

CaS    2HCl →  CaCl2    H2S

А сульфид никеля, например, не растворяется:

NiS     HСl   ≠

3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.

Например, сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:

CuS      8HNO3  →   CuSO4      8NO2     4H2O

или горячей концентрированной серной кислоте:

CuS      4H2SO4(конц. гор.)  →   CuSO4      4SO2        4H2O

4.Сульфиды проявляют восстановительныесвойства и окисляются пероксидом водорода, хлором и другими окислителями.

Например, сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):

PbS 4H2O2    →   PbSO4 4H2O

Еще пример: сульфид меди (II) окисляется хлором:

СuS      Cl2  → CuCl2      S

5.Сульфиды горят(обжиг сульфидов). При этом образуются оксиды металла и серы (IV).

Например, сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):

2CuS      3O2  →   2CuO      2SO2

Аналогично сульфид хрома (III) и сульфид цинка:

2Cr2S3      9O2  →   2Cr2O3      6SO2

2ZnS       3O2  →   2SO2     ZnO

6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественныена ион S2−.

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

Na2S       Pb(NO3)2    →   PbS↓      2NaNO3

Na2S       2AgNO3    →   Ag2S↓      2NaNO3

Na2S       Cu(NO3)2    →   CuS↓      2NaNO3

7.Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).

Например, сульфид алюминия разлагается до гидроксида алюминия и сероводорода:

Al2S3  6H2O → 2Al(OH)3  3H2S

Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

Например, сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:

3Na2S 2AlCl3 6H2O → 2Al(OH)3  3H2S 6NaCl

Электронное строение серы

Электронная конфигурация  серы в основном состоянии:

Атом серы содержит на внешнем энергетическом уровне 2 неспаренных электрона и две неподеленные электронные пары в основном энергетическом состоянии. Следовательно, атом серы может образовывать 2 связи по обменному механизму, как и кислород.

Электронная конфигурация  серы во втором возбужденном состоянии:

Таким образом, максимальная валентность серы в соединениях равна VI (в отличие от кислорода). Также для серы характерна валентность — IV.

Степени окисления атома серы – от -2 до 4. Характерные степени окисления -2, 0, 4, 6.

Оцените статью
Кислород
Добавить комментарий