Азот. Химия азота и его соединений

Амины — органические соединения, продукты замещения атомов водорода в аммиаке NH3 различными углеводородными радикалами. Функциональная
группой аминов является аминогруппа — NH2.

Азот. Химия азота и его соединений

Классификация аминов

По числу углеводородных радикалов амины подразделяются на первичные, вторичные и третичные.

Азот. Химия азота и его соединений

Запомните, что основные свойства аминов выражены тем сильнее, чем больше электронной плотности присутствует на атоме азота. Однако, у третичных аминов три углеводородных радикала создают значительные затруднения для химических реакций.

Азот. Химия азота и его соединений

Номенклатура и изомерия аминов

Названия аминов формируются путем добавления суффикса «амин» к названию соответствующего углеводородного радикала: метиламин, этиламин,
пропиламин, изопропиламин, бутиламин и т.д. В случае если радикалов несколько, их перечисляют в алфавитном порядке.

Общая формула предельных аминов CnH2n+3N. Атомы углерода находятся в sp3 гибридизации.

Азот. Химия азота и его соединений

Для аминов характерна структурная изомерия: углеродного скелета, положения функциональной группы и изомерия аминогруппы.

Азот. Химия азота и его соединений

Получение

В основе этой реакции лежит замещение атома галогена в галогеналканах на аминогруппу, при этом образуются амин и соль аммония.

Азот. Химия азота и его соединений

При такой реакции нитрогруппа превращается в аминогруппу, образуется вода.

Азот. Химия азота и его соединений

Знаменитой является предложенная в 1842 году Н.Н. Зининым реакция получения аминов восстановления ароматических нитросоединений (анилина
и других). Она возможна в нескольких вариантах, главное, чтобы в начале реакции выделился водород.

Азот. Химия азота и его соединений

Реакция сопровождается разрушением карбонильной группы и отщеплении ее от молекулы амида в виде воды.

Азот. Химия азота и его соединений

Этим способом в промышленности получают гексаметилендиамин, используемый в изготовлении волокна — нейлон.

Азот. Химия азота и его соединений

В промышленности амины получают реакцией аммиака со спиртами, в ходе которой происходит замещение гидроксогруппы на аминогруппу.

Азот. Химия азота и его соединений

В ходе реакции галогеналканов с аммиаком, аминами, становится возможным получение первичных, вторичных и третичных аминов.

Азот. Химия азота и его соединений

Азот. Химия азота и его соединений

Химические свойства аминов

Как и аммиак, амины обладают основными свойствами, их растворы окрашивают лакмусовую бумажку в синий цвет.

В реакции с водой амины образуют гидроксиды алкиламмония, которые аналогичны гидроксиду аммония. Анилин с водой не реагирует, так как является слабым основанием.

Азот. Химия азота и его соединений

Как основания, амины вступают в реакции с различными кислотами и образуют соли алкиламмония.

Азот. Химия азота и его соединений

Данная реакция помогает различить первичные, вторичные и третичные амины, которые по-разному с ней взаимодействуют.

Азот. Химия азота и его соединений

При конденсации первичных аминов с альдегидами и кетонами получают основания Шиффа, соединения, которые содержат фрагмент «N=C».

Азот. Химия азота и его соединений

Соли аминов легко разлагаются щелочами (растворимыми основаниями). В результате образуется исходный амин, соль кислоты и вода.

Азот. Химия азота и его соединений

При горении аминов азот чаще всего выделяется в молекулярном виде, так как для реакции азота с кислородом необходима очень высокая
температура. Выделение углекислого газа и воды обыкновенно при горении органических веществ.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Азотная кислота является одной из самых сильных минеральных кислот, в концентрированном виде выделяет пары
желтого цвета с резким запахом. За исключением золота и платины растворяет все металлы.

Применяют азотную кислоту для получения красителей, удобрений, органических нитропродуктов, серной и фосфорной
кислот. В результате ожога азотной кислотой образуется сухой струп желто-зеленого цвета.

Азот. Химия азота и его соединений

В промышленности азотную кислоту получают в результате окисления аммиака на платино-родиевых катализаторах.

Чистая азотная кислота впервые была получена действием на селитру концентрированной серной кислоты:

Является одноосновной сильной кислотой, вступает в реакции с основными оксидами, основаниями. С солями реагирует при условии
выпадения осадка, выделения газа или образования слабого электролита.

Азот. Химия азота и его соединений

При нагревании азотная кислота распадается. На свету (hv) также происходит подобная реакция, поэтому азотную кислоту следует хранить в
темном месте.

Азотная кислота способна окислить все неметаллы, при этом, если кислота концентрированная, азот обычно восстанавливается до NO2,
если разбавленная — до NO.

Азот. Химия азота и его соединений

В любой концентрации азотная кислота проявляет свойства окислителя, при этом азот восстанавливается до степени окисления от +5 до -3. На какой
именно степени окисления остановится азот, зависит от активности металла и концентрации азотной кислоты.

Для малоактивных металлов (стоящих в ряду напряжений после водорода) реакция с концентрированной азотной кислотой происходит с образованием
нитрата и преимущественно NO2.

С разбавленной азотной кислотой газообразным продуктом преимущественно является NO.

В реакциях с металлами, стоящими левее водорода в ряду напряжений, возможны самые разные газообразные (и не газообразные) продукты: бурый газ NO2,
NO, N2O, атмосферный газ N2, NH4NO3.

Помните о закономерности: чем более разбавлена кислота и активен металл, тем сильнее восстанавливается азот. Ниже представлены реакции цинка
с азотной кислотой в различных концентрациях.

Азот. Химия азота и его соединений

Посмотрите на таблицу ниже, в которой также отражены изученные нами закономерности.

Про кислород:  ТОП-20: Заправка газовых баллонов в Воскресенске - адреса, телефоны, отзывы

Азот. Химия азота и его соединений

Концентрированная холодная азотная кислота пассивирует хром, железо, алюминий, никель, свинец и бериллий. Это происходит
за счет оксидной пленки, которой покрыты данные металлы.

Al + HNO3(конц.) ⇸ (реакция не идет)

При нагревании или амальгамировании (покрытие ртутью) перечисленных металлов реакция с азотной кислотой идет, так
как оксидная пленка на поверхности металлов разрушается.

Соли азотной кислоты — нитраты NO3-

Получают нитраты в ходе реакции азотной кислоты с металлами, их оксидами и основаниями.

В реакциях с оксидами и основаниями газообразный продукт обычно не выделяется.

Азот. Химия азота и его соединений

Нитрат аммония получают реакция аммиака с азотной кислотой.

Обратите внимание на следующую закономерность: концентрированная азотная кислота, как правило, окисляет железо и хром до +3. Разбавленная
кислота — до +2.

Как и для всех солей, из нитратов можно вытеснить металл другим более активным. Соли реагируют с основаниями и кислотами, если в результате
реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

Азот. Химия азота и его соединений

Нитраты разлагаются в зависимости от активности металла, входящего в их состав.

Азот. Химия азота и его соединений

Азот. Химия азота и его соединений

Строение молекулы и физические свойства

В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентными полярными связями с атомами водорода:

Азот. Химия азота и его соединений

Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3о:

Азот. Химия азота и его соединений

У атома азота в аммиаке на внешнем энергетическом уровне остается одна неподеленная электронная пара. Эта электронная пара оказывает значительное влиение на свойства аммиака, а также на его структуру. Электронная структура аммиака — тетраэдр , с атомом азота в центре:

Азот. Химия азота и его соединений

– бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поскольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

, аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один способ получения аммиака – гидролиз нитридов.

, гидролиз нитрида кальция:

аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

N2    +   3Н2    ⇄    2NH3

Процесс проводят при температуре 500-550оС и в присутствии катализатора.  Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Химические свойства аммиака

В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H+), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

:NH3   +   H2O    ⇄    NH4+   +   OH–

Азот. Химия азота и его соединений

Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – . При 20 градусах один объем воды поглощает до 700 объемов аммиака.

растворения аммиака в воде можно посмотреть здесь.

Как основание, аммиак взаимодействует в растворе и в газовой фазе с образованием солей аммония.

, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

Еще один : аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть  здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.

взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.

, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – аминокомплексы.

, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

Гидроксид меди (II) растворяется в избытке аммиака:

Аммиак , образуя азот и воду:

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

Про кислород:  Самые лучшие препараты нового поколения для сосудов головы

За счет атомов водорода в степени окисления +1 аммиак может выступать в роли , например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.

, жидкий аммиак реагирует с натрием с образованием амида натрия:

Также возможно образование Na2NH,  Na3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

, аммиак окисляется хлором до молекулярного азота:

Пероксид водорода также окисляет аммиак до азота:

, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

, оксид меди (II) окисляет аммиак:

Мягкий серебристо-белый металл

Темно-коричневое аморфное вещество

Прозрачный (алмаз) / черный (графит) минерал

Коричневый порошок / минерал

Белый минерал / красный порошок

Серебристый металл с желтым отливом

Хрупкий серебристо-белый металл

Белый металл с голубоватым оттенком

Хрупкий черный минерал

Красно-бурая едкая жидкость

Блестящий серебристый металл

Синтетический радиоактивный металл

Серебристый блестящий полуметалл

Мягкий серебристо-желтый металл

Светло-серый радиоактивный металл

Серебристый металл с голубоватым оттенком

Мягкий блестящий желтый металл

Жидкий серебристо-белый металл

Серый металл с синеватым оттенком

Нестабильный элемент, отсутствует в природе

Серебристо-белый радиоактивный металл

Серый мягкий металл

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Получение и свойства

Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3 о :

Аммиак – бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи. При этом аммиак очень хорошо растворим в воде, т.к. молекулы аммиака образуют водородные связи с молекулами воды.

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторный способ получения аммиака – гидролиз нитридов.

Например , гидролиз нитрида кальция:

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

1. В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание . При 20 градусах один объем воды поглощает до 700 объемов аммиака.

Видеоопыт растворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Например , аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

Еще один пример : аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

Видеоопыт взаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.

Видеоопыт взаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов , образуя нерастворимые гидроксиды.

Например , водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – аминокомплексы.

Например , хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

5. Аммиак горит на воздухе , образуя азот и воду:

6. За счет атомов водорода в степени окисления +1 аммиак может выступать в роли окислителя , например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием . С металлами реагирует только жидкий аммиак.

Про кислород:  Armed концентратор кислорода 8f-1/белый - цена 19852 руб., купить в интернет аптеке в Москве Armed концентратор кислорода 8f-1/белый, инструкция по применению

Например , жидкий аммиак реагирует с натрием с образованием амида натрия:

Также возможно образование Na2NH, Na3N.

7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

Например , аммиак окисляется хлором до молекулярного азота:

Оксиды металлов , которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

Например , оксид меди (II) окисляет аммиак:

Уравнение химической реакции аммиака и азотной кислоты

16 лет успешной работы в сфере подготовки к ЕГЭ и ОГЭ!

1602 поступивших (100%) в лучшие вузы Москвы

Азот. Химия азота и его соединений

Подготовка к ЕГЭ, ОГЭ и предметным Олимпиадам в Москве

  • home
  • map
  • mail

У Вас возникли вопросы?Мы обязательно Вам перезвоним:

Азот. Химия азота и его соединений

Данный видеоопыт по химии подробно рассказывает о взаимодействии таких веществ, как хлорид аммония, серная кислота и нитрат аммония.

Данный видеоопыт по химии показывает, как раствор аммиака реагирует с концентрированными кислотами (соляной, азотной и серной) с образованием аммонийных солей этих кислот.

В три стакана с концентрированным раствором аммиака добавляем в каждый соляную, азотную и серную кислоту.

При добавлении к раствору аммиака соляной кислоты образуется соль хлорид аммония в виде густого белого дыма:

Азотная кислота, вступая в реакцию с аммиаком во втором стакане, тоже образует соль, которая выделяется в виде белого дыма – это нитрат аммония:

В третьем стакане аммиак взаимодействует с серной кислотой с образованием белых кристаллов сульфата аммония:

Раствор аммиака в воде — это NH4OH, поэтому он имеет щелочную реакцию. При взаимодействии NH4 + с кислотами получается соль и вода (реакция нейтрализации).

Все соли аммония представляют собой твердые кристаллические вещества, которые хорошо растворяются воде и имеют все свойства солей, обусловленные наличием кислотных остатков. Например, взаимодействие хлорида аммония с серной кислотой и нитратом аммония с кислотой приводит к образованию соли аммония и кислоты:

Также аммонийные соли при нагревании могут реагировать со щелочами, выделяя аммиак.

Азотная кислота

Азотная кислота является одной из самых сильных минеральных кислот, в концентрированном виде выделяет пары желтого цвета с резким запахом. За исключением золота и платины растворяет все металлы.

Применяют азотную кислоту для получения красителей, удобрений, органических нитропродуктов, серной и фосфорной кислот. В результате ожога азотной кислотой образуется сухой струп желто-зеленого цвета.

Является одноосновной сильной кислотой, вступает в реакции с основными оксидами, основаниями. С солями реагирует при условии выпадения осадка, выделения газа или образования слабого электролита.

При нагревании азотная кислота распадается. На свету (hv) также происходит подобная реакция, поэтому азотную кислоту следует хранить в темном месте.

Реакции с неметаллами

Азотная кислота способна окислить все неметаллы, при этом, если кислота концентрированная, азот обычно восстанавливается до NO2, если разбавленная — до NO.

В любой концентрации азотная кислота проявляет свойства окислителя, при этом азот восстанавливается до степени окисления от +5 до -3. На какой именно степени окисления остановится азот, зависит от активности металла и концентрации азотной кислоты.

Для малоактивных металлов (стоящих в ряду напряжений после водорода) реакция с концентрированной азотной кислотой происходит с образованием нитрата и преимущественно NO2.

В реакциях с металлами, стоящими левее водорода в ряду напряжений, возможны самые разные газообразные (и не газообразные) продукты: бурый газ NO2, NO, N2O, атмосферный газ N2, NH4NO3.

Помните о закономерности: чем более разбавлена кислота и активен металл, тем сильнее восстанавливается азот. Ниже представлены реакции цинка с азотной кислотой в различных концентрациях.

Концентрированная холодная азотная кислота пассивирует хром, железо, алюминий, никель, свинец и бериллий. Это происходит за счет оксидной пленки, которой покрыты данные металлы.

При нагревании или амальгамировании (покрытие ртутью) перечисленных металлов реакция с азотной кислотой идет, так как оксидная пленка на поверхности металлов разрушается.

Соли азотной кислоты — нитраты NO3 —

Обратите внимание на следующую закономерность: концентрированная азотная кислота, как правило, окисляет железо и хром до +3. Разбавленная кислота — до +2.

Как и для всех солей, из нитратов можно вытеснить металл другим более активным. Соли реагируют с основаниями и кислотами, если в результате реакции выпадает осадок, выделяется газ или образуется слабый электролит (вода).

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Оцените статью
Кислород