Двуокись углерода имеет много полезных применений: при тушении пожаров, в пищевой промышленности, для просушивания литейных форм и других. Углекислотой заправляют многоразовые баллоны, которые доставляют потребителям. Чтобы их использовать, нужно знать, каким требованиям они должны соответствовать, какие правила использования такого оборудования существуют. Давление в баллоне с углекислотой должно точно соответствовать нормативам.
Физические и химические характеристики
При комнатных давлении и температуре это вещество является бесцветным газом. Оно имеет свой, немного кисловатый, запах. Если в баллоне углекислота находится в жидком состоянии, она должна находиться под давлением, которое не меньше, чем 5850 КПа.
При охлаждении до температуры -56 градусов и давлении 519 КПа углекислота переходит в твёрдое состояние. Такое вещество называют «сухой лёд». Давление углекислоты в баллоне нужно знать для того, чтобы быть уверенным в том, что вещество находится в нужном состоянии.
Виды продукции
Двуокись углерода производят в следующем виде:
- Сжиженный газ, который хранится под давлением 50 кг/кв.см. Для этого требуется обеспечить температуру воздуха, не превышающую 31 градуса.
- Жидкий углекислый газ для хранения в специальных термосах.
- В виде сухого льда.
После этого продукт помещают в чёрные резервуары с жёлтыми предупредительными надписями и доставляют потребителям для использования.
Как должен поступать потребитель
Если фирма использует углекислоту в своей работе, ей необходимо найти тех, кто организует поставку. Процедура получения выглядит таким образом:
- В компании, которая занимается поставками, оставляют заявку на получение определённого количества продукта.
- В назначенное время получить баллоны, заправленные газом.
- Вернуть те резервуары, углекислота из которых уже была использована.
Для заправки используются различные типы баллонов:
- 40-литровая ёмкость вмещает 24 килограмма газа. Баллон имеет диаметр 21,9 см, высоту 140 см.
- В 20-литровом диаметр 21,9 см — высота составляет 85 см. Здесь помещается вдвое меньше газа — 12 килограммов.
- 10-литровая ёмкость более миниатюрная. Диаметр равен 14 см, а высота — 86,5 см. Покупателю предоставляется 6 кг углекислого газа.
Существуют ещё несколько типов баллонов, для которых может быть выполнена заправка.
Ёмкости для газа
Они могут иметь объём от 0,4 до 50 л. Такие баллоны могут использоваться в течение десятков лет.
Эти ёмкости могут применяться не только для выдачи потребителям, но и для хранения или промежуточной транспортировки. Ёмкости в обязательном порядке должны соответствовать требованиям ГОСТа 949-73.
Для указанного использования применяются цельнолитые баллоны, имеющие в своём составе конструкционную сталь марки 45Д, а также легированную марки 40ХГСА. Каждая модель используется с условием, что давление газа не превысит предельную величину. При ёмкости не выше 20 л она составляет 20 МПа, для больших может достигать 20 МПа.
Толщина стенок баллона составляет 7 мм. Резервуары делают из трубчатых металлических заготовок, диаметр которых соответствует размеру баллона. С одной стороны, методом обжима делают сферическую поверхность, с другой — создают горловину, через которую будет поступать сжиженный газ. На неё необходимо напрессовать кольцо, которое позволит надёжно прикрепить вентиль. Колпак будет надет на него для того, чтобы защитить от механических повреждений.
Для баллонов предусмотрена специальная маркировка. Общий цвет является чёрным, для надписей применяется оранжевый цвет. Не ёмкостях должны быть надписи «Углекислота», «Двуокись углерода» или «CO2».
Устройство баллонов предусматривает наличие таких элементов:
- Для устойчивости в баллоне используется специальный башмак прямоугольной формы.
- Резервуар, в который закачивается сжиженный газ.
- Запорный латунный вентиль, использующий правую резьбу.
- Предохранительный стальной колпак.
- Кольца из резины, которые располагаются вдоль цилиндрической части резервуара.
Через каждые пять лет эксплуатации баллоны должны проходить осмотр и аттестацию, которая подтверждает исправность и пригодность для последующего использования. Дата последнего освидетельствования указывается на баллоне. Надпись помещают на зачищенную горловину и обводят кружком, нарисованным жёлтой краской.
Процедура зарядки
Перед тем, как производить заправку, нужно внимательно осмотреть резервуар. Даже незначительные повреждения могут привести к взрыву. Если баллон исправен, приступают к проведению заправки углекислым газом.
В баллон заливают сжиженный газ. Для этого нужно создать разность давлений. Ёмкость нужно заполнить только на 80%. Оставшаяся часть отводится для газообразной части. Если этого не сделать, давление в баллоне может превысить норму.
Вес баллона
При использовании, транспортировке и зарядке необходимо контролировать наличие в баллоне углекислого газа. Для этой цели применяется взвешивание. Из полного веса нужно вычесть массу следующих деталей:
- Сосуд, где содержится сжиженный газ.
- Вентиль, через который производится зарядка.
- Защитный колпак.
- Предохранительные железные кольца.
- Если используется, должно быть учтено то, сколько весит башмак.
Производится взвешивание всей конструкции, затем вычитается масса перечисленных деталей. Оставшаяся часть говорит о том, сколько осталось внутри углекислого газа. Средний вес этих узлов равен:
- Вес кольца составляет 300 г.
- Масса металлического колпака достигает 1,8 кг.
- Башмак обычно весит 5,2 кг.
Вес баллона различается в зависимости от его ёмкости и предельно допустимого давления. Например, при давлении до 150 атм он составит 73 кг, а при 200 — 88 кг.
Сферы использования
Углекислый газ имеет много различных способов применения. Наиболее известными являются следующие:
- В медицинских целях для сохранения тканей может потребоваться заморозка. Для этой цели может использоваться сжиженная углекислота. Если её выпустить в условиях комнатной температуры и давления, то она принимает вид белых хлопьев забирая много тепла.
- В парфюмерной промышленности сжиженный углекислый газ помогает получать духи с насыщенным запахом. Такая технология позволяет избежать неприятного специфического запаха, который может появляться в некоторых случаях при таких процедурах.
- Углекислота позволяет создавать освежающие газированные напитки. Она также используется в качестве важного компонента при составлении некоторых коктейлей.
- Когда производится ремонт или осуществляются строительные работы, часто требуется выполнение сварочных работ. Углекислота позволяет выполнять их без образования дополнительного нагара, что существенно улучшает результат работы.
- Углекислотные огнетушители отличаются высокой эффективностью при тушении пожара. Их важным достоинством является возможность применять при тушении электрооборудования, так как в этом случае исключён риск возникновения короткого замыкания. Если производится тушение предметов, которые при тушении водой могут испортиться, то в этом случае углекислотные огнетушители будут хорошим выбором.
- Использование сухих углекислых ванн является эффективной медицинской процедурой. Газ способствует расширению пор и регенерации клеток кожи. Процедура практически не имеет противопоказаний. Она может применяться даже после инфаркта, так как не создаёт чрезмерной нагрузки на организм.
Баллоны принято делить на категории в соответствии с их объёмом. Те, которые имеют не больше 20 л, считаются малыми, от 20 до 40 — средними, а превышающие 40 л считаются большими.
Самостоятельная работа
Не всегда есть возможность производить промышленную заправку у производителей. В таких случаях стоит её делать самостоятельно. При этом нужно учитывать следующее:
- Для заправки малого баллона с помощью большого необходимо использовать шланг высокого давления. При проведении этой процедуры нужно тщательно соблюдать требования техники безопасности. В противном случае может возникнуть аварийная ситуация.
- Если используемые ёмкости в течение более 5 лет не были аттестованы, необходимо перед заправкой исполнить этот недочёт. Только после аттестации можно продолжить работу с ними.
Приобретать такое оборудование нужно только у надёжных поставщиков. В противном случае возрастает риск возникновения аварийных ситуаций. Такие поставщики содержат в порядке необходимую документацию, смогут предоставить нужные сертификаты и акты проведения испытаний.
Если газобаллонное оборудование неисправно. Оно подлежит обязательной выбраковке. Для этого могут иметь место следующие причины:
- Наличие трещин в металле повышает риск взрыва ёмкости.
- Резьба горловины повреждена или изношена.
- Запорный вентиль неисправен и не может выполнять свои функции.
- Башмак, применяемый для устойчивости, имеет существенные повреждения или установлен косо.
- На резервуаре видны вмятины или в некоторых местах выпучен металл.
- На баллоне можно увидеть вмятины, глубина которых превышает десятую часть толщины оболочки.
- Если надпись, свидетельствующую о дате аттестации оборудования, обвели с неправильным образом.
- Видны проявления коррозии, имеющие значительную площадь и глубину.
- Не в порядке документы: отсутствует часть данных в техническом паспорте, отсутствует запись об освидетельствовании в положенные сроки.
Если общий срок эксплуатации баллона превышает сорокалетний срок, то он не может использоваться дальше. Освидетельствование ёмкости или ремонт вентиля может проводить только уполномоченная организация.
Должны выполняться требования к технике безопасности, связанные с транспортировкой и складированием рассматриваемых ёмкостей:
- При перевозке баллоны должны находиться в горизонтальном положении.
- Нельзя при хранении допускать попадание прямых солнечных лучей.
- Запрещено размещать ёмкости в непосредственной близости от нагревательных приборов.
Тщательное соблюдение правил исключит риск возникновения аварийной ситуации.
Меры безопасности
Углекислота приносит большую пользу, однако не стоит забывать, что одновременно это вещество является опасным и может нанести вред человеку. Чтобы избежать этого, нужно больше знать о его особенностях и соблюдать меры безопасности при использовании.
Углекислота не является ядовитой и не может взорваться. Однако она способна незаметно накапливаться и увеличивать свою концентрацию в определённом месте. При превышении 5% она уже представляет серьёзную опасность. В закрытом помещении это может привести к удушью.
Опасность могут представлять охлаждающие свойства углекислоты. Если обращаться с ней неаккуратно, это может привести к образованию ожогов от замораживания. Этот эффект особенно опасен при попадании очень охлаждённого материала на слизистую оболочку глаза. Чтобы избежать такого риска, с углекислотой работают в маске, очках и одев перчатки.
Поступление газа из баллона
При поступлении газа из баллона необходимо учитывать следующее:
- После открытия вентиля давление углекислоты приводит к резкому расширению газа, приводящему к его сильному охлаждению. В выходящем газе присутствует небольшое количество водяного пара, который может превратиться в кристаллы льда и закупорить отверстие.
- Обычно на выходе из вентиля устанавливают редуктор, который снижает перепад давления.
- Чтобы лёд не закупорил редуктор, между ним и вентиле ставят подогреватель газа, который уменьшает снижение температуры углекислоты.
- Используется осушитель газа, который представляет собой небольшую ёмкость, заполненную адсорбирующим веществом. Используются два типа осушителей. Тот, который предназначен для работы в условиях высокого давления, находится между вентилем и редуктором. Осушитель низкого давления расположен после редуктора.
Применение этих узлов позволяет сделать работу с углекислотой более безопасной и эффективной.
Проверка баллона
После истечения пятилетнего срока баллоны для углекислого газа должны проходить проверку. Без её прохождения дальнейшее использование ёмкости невозможно. Освидетельствование может проводить только уполномоченная организация.
Процедура предусматривает проверку состояния оборудования. При этом обращают внимание на следующее:
- Выполняется тщательный осмотр внешнего вида. Не должно присутствовать повреждений или обширных и глубоких следов ржавчины.
- Производится полное удаление углекислого газа из обследуемой ёмкости. Это делают с использованием инертных газов.
- Проверяется исправность работы вентиля.
- Выполняется оценка толщины стенок баллона. Для этого производится его взвешивание. Результат покажет, насколько уменьшился его вес и, соответственно, истончились стенки.
- Гидравлические испытания показывают исправность работы оборудования.
- После проверки выполняется просушка. Это делают с помощью прогретого воздуха.
- При необходимости может производиться замена вентиля или выполняться покраска резервуара.
После того, как проверка окончена, с помощью специального клейма ставят дату проведения и обводят овальной линией. На баллоне должен присутствовать его технический паспорт. В нём содержится такая информация: заводской номер, вместимость в литрах воды, масса при изготовлении, рабочее и проверочное давление в атмосферах, клеймо завода, проводившего переаттестацию.
Вместимость в литрах воды увеличилась, это говорит о возможности образования внутренних трещин или изменении геометрии ёмкости. Если возрастание превысило 1,5%, то это считается признаком неисправности оборудования.
Заключение
Баллоны с углекислотой используются во многих сферах человеческой деятельности. Для того, чтобы их использовать, нужно знать правила техники безопасности, физико-химические свойства вещества, особенности использования. Углекислый газ при хранении находится под высоким давлением, его применение требует соблюдения строгих требований, о которых необходимо знать.
Народ подскажите плизз — купит полуавтомат ТЕМП 180А 11 ступеней тока и привез первый баллон углекислоты. На пункте просто обменяли мне на пустой кислородный баллон. Так вот повесил на баллон редуктор Питерский при максимальном откручивании вентиля редуктор показывает давление в баллоне примерно 3-3,5 МПа — не могу понять — полный баллон или нет — как определить? просто максимально на циферблате число 16 и по логике мне кажеться, что стрелка должна быть в районе конца, а не начала??? Что касается подачи на полуавтомат — то тут своя история — шланг прикрутил к штуцеру — все ок. Далее подаю давление на полуавтомат по звуку сопла не большое — жму кнопку подача проволоки и газа идет — отпускаю отсечка газа идет — чуть чуть добавляю на редукторе — на полуавтомате стоит какой то балончик и 2 трубки слышен звук то бульканье то шипение — короче травит — если при этом жать на кнопку подачи проволоки то газ идет и отсечка не срабатывает — травит иными словами в пост режиме.
Исходя из этого:
1.Не пинайте ногами я нуб в этом деле, но есть желание научиться и зарабатывать на хлеб.
2.Че может быть с полуавтоматом и как мне поступить (вернуть, обменять??) — брал его на местном рынке — печать в сервисной мужик поставил — знаю, что он перекупщик и я ему переплатил на 300 грн за то, что если гарантийный случай он мне по месту и быстро делает аппарат и я не заморачиваюсь с пересылкой на Харьков.
3.Какое давление должно быть на манометре выходном???? И кстати редуктор замерз после 10-15 мин работы с перекурами — температура 1-3 градуса+ — Определил, что замерз глядя на манометр который показывает давление в баллоне — перекрыл баллон, а стрелка так и осталась в положении 35 и осталась в положении 35
Как известно: CO2, или диоксид углерода (углекислый газ, двуокись углерода, оксид углерода, угольный ангидрид) — это бесцветный газ (в нормальных условиях), без запаха, со слегка кисловатым вкусом. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.
Перекапывая информацию по баллонам СО2, я неоднократно натыкался на всякие графики указывающие на зависимости давления в баллоне или плотности сжиженного СО2 от температуры. Но собрать всё в кучу как-то не сильно получалось.
Лишь отрывками мелькали фразы:- заправлять СО2 надо по весу и только из расчёта 0.7 кг на 1л баллона.- в баллоне обязательно должна находится газовая подушка иначе баллон может взорваться при нагреве- если прикрутили редуктор и манометры показали более 7 МПа значит вам баллон заправили под самый вентиль (перелили) и это чревато взрывом, срочно надо стравить лишнее.
Заправка баллонов СО2 по весу
Как довод приводилась диаграмма агрегатных состояний СО2:
Рис. 2. Зависимость плотности жидкого СО2 от температуры
Эта зависимость только объясняла почему при росте температуры растёт давление. А вот каково это давление будет и почему нормальной заправкой считается 700г/л никак ответа не давала.
При дальнейших поисках информации о том что бывает в баллонах при температурах свыше 31*С, всплыло понятие «закретический флюид». Это, типа, ещё одно агрегатное состояние вещества, или нечто среднее между жидкостью и газом. Он достаточно хорошо сжимаем и при дальнейшем росте температуры баллона этот флюид за счёт своей сжимаемости не даёт давлению резко скакануть.Наиболее информативный график, который связывает все процессы в баллоне CO2, встретился на забугорных сайтах. Форумчанин перевел единицы измерения на привычные нам.Вот что получилось:
Рис. 3. Почему при росте температуры растёт давление. Заправка баллонов СО2 по весу
Горизонтальная чёрная шкала графика указывает количество CO2 в баллоне, за 100% принято значение 7/18 унций на кубический дюйм или 673г/л. Красная горизонтальная это привычные нам граммы на литр.
Вертикальная шкала — это давление в баллоне в фунтах на квадратный дюйм (черная) и в атмосферах (красная).На графике построено несколько кривых для фиксированных температур.Черта указывающая на пороговое давление построена на уровне 2200psi или 150атм. Это максимальное рабочее давление для баллонов СО2.
У баллона залитого из расчёта 800г/л газовая подушка исчезнет при 17*С. А максимально допустимое значение давления будет при 35*С.Баллон залитый по 900г/л может рвануть уже при комнатной температуре.
Если пользоваться графиком наоборот.Принесли домой из заправочной станции баллон. Он прогрелся до 21*С и на манометре стрелка показала слишком много, например 100атм. Сколько ж залили на станции? По графику выходит 860г/л. И такой баллон может бахнуть при 25*С.
Или ситуация — газ заканчивается, стрелка поползла вниз. Сколько осталось? Например при 21*С 40атм. По графику выходит где-то 180г/л.В общем, график достаточно удобен для понимания и знания теории процессов со сжатым СО2.Ну, а на практике — не превышайте норму заправки в 700г/л и не выжимайте последние «бульбышки» из пустого баллона.
Свой на Aqa.ru, Советник
Итак, на станциях в баллон заливается жидкая углекислота. После его закупоривания часть этой углекислоты испаряется внутри и переходит в парообразное состояние, нашим языком выражаясь – в углекислый газ. Деваться ему из закрытого баллона некуда, часть его молекул возвращается обратно в жидкость, на их место вылетают новые. В результате довольно скоро устанавливается равновесие между количеством парообразного и жидкого СО2. Количество молекул в паре определяет давление внутри баллона. Которое естественно именуется «равновесным давлением паров». Понятно, что чем выше температура баллона, тем больше молекул вырываются в пар и тем выше будет это равновесное давление. Таким образом, в нашем баллоне одновременно сосуществуют жидкая и парообразная фазы углекислоты, находящейся под равновесным при данной температуре давлении.
Наглядно зависимости равновесных давлений от температуры изображают в виде фазовых диаграмм. Такая диаграмма для СО2 приведена рис.1.
В ходе обсуждения этих драматических событий у нас мелькнули понятия «мало» и «много» жидкости. Причем мелькнули при обсуждении ключевого момента: сколько же надо заливать углекислоты, чтоб не бегать на заправку каждые две недели или, наоборот, не испытывать баллон и свою нервную систему на прочность. Чтоб она вся там не превратилась в газ или, наоборот, в задавленную избыточным давлением жидкость. Для того, чтобы это прикинуть, проще всего (не слишком греша против истины) воспользоваться данными по плотностям (или если угодно – удельному весу) жидкого СО2, находящегося под давлением равновесных паров (ведь мы уже поняли, что именно красная равновесная кривая на рис.1 и обеспечивает необходимые нам условия одновременного сосуществования в баллоне и жидкости, и газа). Такие данные имеются в литературе, на рис.2 приведена зависимость плотности от температуры в интересующем нас температурном диапазоне от 0 до 31 градуса (очевидно, что плотность жидкости будет зависеть от температуры).
Несколько обещанных слов по поводу закритической области (хотя к нашему вопросу это может иметь отношение лишь при температурах выше 31 градуса). При давлениях и температурах, превышающих определенные значения, именуемые критической точкой, ни пара, ни жидкости в привычном понимании уже не существует. Образуется некая однородная фаза, именуемая флюидом, сочетающая признаки как одного, так и другого. Например, плотность флюида может приближаться к плотности жидкости при сохранении типично газовой сжимаемости. Для наших дел это означает, что если есть вероятность того, что баллон будет перегреваться выше 31 градуса (критическая температура), то при расчете заполнения надо брать значение критической плотности, равное 468 г/л. Понятно, что максимальное заполнение при этом сильно упадет (аж до 890 г. для 2-литрового баллона), но зато при возможном дальнейшем перегреве давление будет развиваться не столь драматически (американское словечко!
), а существенно более плавно. Приблизительно в соответствии с данными, приведёнными ранее АлександЭром (понятно, что эти цифры, начиная с 40 градусов относятся именно ко флюиду, ибо превышают критические значения как по температуре, так и по давлению). Ремарка в сторону: мне приходилось наблюдать этот самый флюид вживую – в своей лабораторной установке с сапфировым окном. На практике это выглядело так: в окошко видно, как плещется жидкая углекислота (заполняли установку, ессно, не под завязку). Поднимаешь потихоньку температурку, ничего не изменяется, кроме показаний манометра, и вдруг внезапно жидкость вспучивается, газ над ней как будто густеет и стремительно струится вниз («пало небо на воды!»
), через мгновение все заволакивает плотным туманом, а потом резко проясняется. И перед глазами возникает прозрачно-однородное колышущееся марево, примерно как над разогретым по лету асфальтом. Так что закритическое состояние вещества – не досужая выдумка теоретиков, а вполне реальная реалия, пригодная к наблюдению воочию
Выводы.
1). Как уже отмечалось, углекислоту заправляют в баллоны по весу.
2). На станциях у операторов имеются таблички, указывающие, в какой баллон «скока точно в граммах вешать»
3). На случай, если у оператора скакнет глаз или дрогнет рука, или еще чего окажется не так, с помощью данных по плотности можно всегда проверить, правильно ли баллон заправлен.
4). Формула для расчета максимального заполнения баллона: вес = плотность х объем х 0,95 (вес — в граммах, плотность — в г/л, объем баллона — в литрах). Данные по плотности снимаем с кривой на рис.2, отталкиваясь от температуры, при которой баллон будет находиться в комнате.
5). Вооруженность приведенными выше сведениями безусловно должна способствовать более спокойному сну счастливого баллонообладателя