Формула кислорода — онлайн справочник для студентов

Формула кислорода - онлайн справочник для студентов Кислород

Горение и виды горючих веществ

Реакция, протекающая с участием кислорода и сопровождающаяся выделением большого количества света и тепла, называется горением.

В чистом кислороде, по сравнению с воздухом, вещества горят во много раз быстрее (рис. 22). В обоих случаях выделяется равное количество теплоты, но в кислороде этот процесс протекает быстрее и выделяющаяся теплота не расходуется, как в случае с воздухом, на нагревание азота.

Температура при горении в чистом кислороде выше, чем в воздухе. Опуская тлеющую лучину в сосуд с чистым кислородом, можно увидеть, как она сразу загорается. А в воздухе тлеющая лучина может вскоре и потухнуть. Если эта лучина зажжена, то она продолжает гореть на воздухе, потому что выделяющееся при горении тепло требует большей температуры, чем температура воспламенения лучины.

Рис. 22. Горение магния в чистом кислороде

Рис. 23. Тушение пламени

Температура, необходимая для поджигания вещества на воздухе, называегся температурой воспламенения.

Значит, для обеспечения горения веществ, нужно нагревать их до температуры воспламенения и подавать кислород в достаточном количестве.

Для того чтобы потушить пламя, необходимо ликвидировать факторы, обеспечивающие его появление, т.е. охладить вещество до температуры ниже температуры возгорания и прекратить подачу кислорода (рис. 23).

Чтобы потушить горящую вещь, сначала следует понизить температуру, используя невоспламеняющиеся средства, затем накрыть источник возгорания одеялом или брезентом, чтобы прекратить подачу воздуха.

В непредвиденных ситуациях для тушения пожара необходимо использовать специальные средства, а если их нет, то применять указанный выше способ.

Вообще процесс горения имеет огромное значение в промышленности и в повседневной жизни.Кислород как химический элемент в химии - формулы, определение с примерами

От твердого топлива остается минеральный осадок — пепел. Жидкое и газообразное топливо такого недостатка не имеет. Но любое топливо независимо от места добычи, промышленного объема, экономической эффективности имеет только свое место применения, и возможности по его взаимозамещению ограничены.

Неправильное сжигание топлива приносит вред народному хозяйству.

Топливо позволяет спокойно переносить холод, варить пищу, которая не употребляется в сыром виде, получать металлы из руд путем их выплавки, обеспечивать движение транспорта, получать другие виды энергии.

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

 2HgO →ot  2Hg O2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Как найти объемные отношения газов в смеси

В процессе вычисления объемных отношений газов, участвующих в химических реакциях, используют закон Гей-Люссака (химический закон объемных отношений). В англоязычной литературе данный закон можно встретить под названием закона Шарля.

Определение

Закон Гей-Люссака — закон, демонстрирующий пропорциональную зависимость между объемом газообразного вещества и абсолютной температурой при постоянном давлении (то есть в изобарном процессе).

Закон получил название в честь французского физика и химика Жозефа Луи Гей-Люссака.

Формула 

По итогам химических реакций атомы не исчезают и не возникают. В результате таких процессов происходит их перегруппировка. Количество атомов до реакции и после ее протекания не меняется, что отличает их от молекул. Данное условие учитывают, расставляя стехиометрические коэффициенты в уравнениях химических реакций.

Коэффициенты в уравнениях реакций демонстрируют числа объемов газов, которые реагируют и образовываются. К примеру, 2 объема водорода и 1 объем кислорода дают 2 объема пара воды:

2H2 O2=2H2O

В процессе, записанном в виде уравнения 3Н2 N2=2NH3, объемы азота и водорода, между которыми протекает реакция, и объем образовавшегося аммиака связаны между собой, что можно выразить с помощью следующего соотношения:

V(Н2):V(N2):V(NH3)=3:2:1

С другой стороны, данные соотношения справедливы лишь в случае веществ, которые участвуют в одной и той же химической реакции. Когда реагент принимает участие в двух параллельных реакциях, его химические количества в данных процессах не связаны и могут принимать любые значения.

Согласно первому следствию из закона Авогадро, при одинаковых условиях 1 моль любого газа занимает одинаковый объем. Объем газа количеством 1 моль в нормальных условиях носит название молярного объема и обозначается Vm. Таким образом:

n = V : Vm,

где V — объем газа,

n — количество газа.

Выразить молярный объем газов можно в л/моль:

Vm = 22,4 л/моль.

Коэффициенты для пересчета объемов газа из одних условий в другие

Температура и даление газа0 °С и 760 мм рт. ст.15 °С и 760 мм рт. ст.20 °С и 760 мм рт. ст.15 °С (288,16 °К) и 1 бар
0 °С и 760 мм рт. ст. (норм. условия)11,0551,0731,069
15 °С и 760 мм рт. ст. (в зар. литературе)0,94811,0191,013
20 °С и 760 мм рт. ст. (ст. условия)0,9320,98310,966
15 °С (288,16 °К) и 1 бар (СИ)0,9360,9871,0031

Для приведения объемов газа к 0 °С (273,16 °К) и 760 мм рт. ст. (1,033 кгс/см²), а также к 20 °С (293,16 °К) и 760 мм рт. ст. (1,033 кгс/см²) могут быть применены следующие формулы:

где V0 °С и 760 мм рт. ст.  — объем газа при 0 °С и 760 мм рт. ст., м³;V20° С и 760 мм рт. ст. — объем газа при 20 °С и 760 мм рт. ст., м³;VP — объем газа в рабочих условиях, м³;р — абсолютное давление газа в рабочих условиях, мм рт. ст.;Т — абсолютная температура газа в рабочих условиях, °К.

Пересчет объемов газа, приведенных к 0 °С и 760 мм рт. ст., а также к 20 °С и 760 мм рт. ст., в объемы при других (рабочих) условиях можно производить по формулам:

Любой газ способен расширяться. Следовательно, знание объема, который занимает газ, недостаточно для определения его массы, так как в любом объеме, целиком заполненном газом, его масса может быть различной.

Масса — это мера вещества какого-либо тела (жидкости, газа) в состоянии покоя; скалярная величина, характеризующая инерционные и гравитационные свойства тела. Единицы массы в СИ — килограмм (кг).

Плотность, или масса единицы объема, обозначаемая буквой p, — это отношение массы тела m, кг, к его объему, V, м³:

p = m/V

или с учетом химической формулы газа:

p = M/VМ = M/22,4,

где M — молекулярная масса,VМ — молярный объем.

Единица плотности в СИ — килограмм на кубический метр (кг/м³).

Зная состав газовой смеси и плотность ее компонентов, определяем по правилу смешения среднюю плотность смеси:

pсм = (p1V1  p2V2   …  pnVn)/100,

где p1, p2, …, pn — плотность компонентов газового топлива, кг/м³;V1, V2, …, Vn — содержание компонента, об. %.

Величину, обратную плотности, называют удельным, или массовым, объемом (ν) и измеряют в кубических метрах на килограмм (м³/кг).

Как правило, на практике, чтобы показать, на сколько 1 м³ газа легче или тяжелее 1 м³ воздуха, используют понятие относительная плотность d, которая представляет собой отношение плотности газа к плотности воздуха:

d = p/1,293

d = M/(22,4×1,293).

Нахождение в природе

Кислород

Накопление O

2

в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.

1

. (3,85—2,45 млрд лет назад) — O

Про кислород:  Что нужно для пайки медных труб и где его взять?

2

не производился

2

. (2,45—1,85 млрд лет назад) O

2

производился, но поглощался океаном и породами морского дна

3

. (1,85—0,85 млрд лет назад) O

2

выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя

4

. (0,85—0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление O

2

в атмосфере

5

. (0,54 млрд лет назад — по настоящее время) современный период, содержание O

2

в атмосфере стабилизировалось

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад, в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы).

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

В 2022 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.

Получение кислорода в лаборатории

Лабораторные методы получения кислорода основаны на химических реакциях.

Дж. Пристли получал этот газ из соединения, название которого — меркурийКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиРис. 54.Получение кислорода нагреванием меркурийКислород как химический элемент в химии - формулы, определение с примерами оксида

Соответствующее химическое уравнение:

Сейчас метод Пристли не используют, поскольку пары ртути токсичны. Кислород получают с помощью других реакций, подобных рассмотренной. Они, как правило, происходят при нагревании.

Реакции, при которых из одного вещества образуются несколько других, называют реакциями разложения.

Для получения кислорода в лаборатории используют такие оксигенсодержащие соединения:

Небольшое количество катализатора — манганКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиПолучение кислорода разложением гидроген пероксида Кислород как химический элемент в химии - формулы, определение с примерамиНалейте в пробирку 2 мл раствора гидроген пероксида (традиционное название этого вещества — перекись водорода). Зажгите длинную лучинку и погасите ее (как вы это делаете со спичкой), чтобы она едва тлела. Насыпьте в пробирку с раствором гидроген пероксида немного катализатора — черного порошка манганКислород как химический элемент в химии - формулы, определение с примерами

Составьте уравнение реакции разложения гидроген пероксида, если вторым продуктом реакции является вода

В лаборатории кислород можно также получить разложением натрий нитрата Кислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерами
Кислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерами
Кислород как химический элемент в химии - формулы, определение с примерамиселитры.Кислород вместе с водородом являются продуктами разложения воды под действием электрического тока:Кислород как химический элемент в химии - формулы, определение с примерами

Применение кислорода в сварке

Сам по себе O2 является негорючим газом, но из-за свойства активно поддерживать горение и увеличения интенсивности (интенсификации) горения газов и жидкого топлива его используют в ракетных энергетических установках и во всех процессах газопламенной обработки.

В таких процессах газопламенной обработки, как газовая сварка, поверхностная закалка высокая температура пламени достигается путем сжигания горючих газов в O2, а при газовой резке благодаря ему происходит окисление и сгорание разрезаемого металла.

При полуавтоматической сварке (MIG/MAG) кислород O2 используют как компонент защитных газовых смесей с аргоном (Ar) или углекислым газом (CO2).

Кислород добавляют в аргон при полуавтоматической сварке легированных сталей для обеспечения устойчивости горения дуги и струйного переноса расплавленного металла в сварочную ванну. Дело в том, что как поверхностно активный элемент он уменьшает поверхностное натяжение жидкого металла, способствуя образованию на конце электрода более мелких капель.

При сварке низколегированных и низкоуглеродистых сталей полуавтоматом O2 добавляют в углекислый газ для обеспечения глубокого проплавления и хорошего формирования сварного шва, а также для уменьшения разбрызгивания.

Чаще всего кислород используют в газообразном виде, а в виде жидкости используют только при его хранении и транспортировке от завода-изготовителя до потребителей.

Примеры решения задач

1 ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

1.1Параметры состояния тела

Примеры решения задач

1.Давлениевоздухапортутномубарометруравно770мм приС.Выразитьэто

давление в барах и Па.

Решение

1мм рт. ст. = 133,3 Па, 770 мм рт. ст. =102700 Па = 1,027 бар.

2. Определить абсолютное давление пара в котле, если манометрпоказывает Р= 1,3

бар, а атмосферное давление по ртутному барометру составляет 680 мм при t = 25° С.

Решение

Показание барометра получено при температуреt = 25°С. Это показание

необходимо привести к 0 ºС по уравнению (5):

Р

о

= Р

t

(1 — 0,000172 t) = 680 · 0,9957 = 677,1 мм рт. ст.

Абсолютное давление пара в котле по формуле (3) равно

Р

абс

= 130000 677,1 * 133,3 = 0,22 МПа.

3.ДавлениевпаровомкотлеР=0,4барприбарометрическомдавлении725ммрт.

ст.Чему будетравно избыточное давлениев котле, если показаниебарометра повысится до

785 ммрт.ст.,асостояниепаравкотлеостанетсяпрежним?Барометрическоедавление

приведено к 0 °С.

Решение

Абсолютное давление в котле

Р

абс

= 400000 725 * 133,3 = 136642 Па

Избыточное давление при показании барометра 785 мм рт. ст.

Р

изб

= 136642 – 785 * 133,3 = 32000 Па.

4. Ртутный вакуумметр, присоединенный к сосуду, показывает разрежение 420 мм при

температуре ртути в вакуумметре t = 20 °С. Давление атмосферы по ртутному барометру 768

мм при температуре t = 18 °С. Определить абсолютное давление в сосуде.

Решение

Приводимпоказаниявакуумметраибарометрактемпературертути0°С(уравнение

5):

Р

вак

= 420 (1—0,000172 * 20) = 418,5 мм рт. ст.

Р

атм

= 768 (1—0,000172 * 18) = 765,6 мм рт. ст.

Абсолютное давление в сосуде по формуле (4)

Рабс = 765,6 – 418,5 = 347,1 мм рт. ст. = 46,3 кПа.

5.Водянойпарперегретна45°С.Чемусоответствуетэтотперегревпотермометру

Фаренгейта?

Решение

Припереводеразноститемператур,выраженнойградусамишкалыЦельсия,в

градусыФаренгейтаинаоборотнадоисходитьтолькоизценыделениятогоидругого

термометров. Поэтому формула (8) принимает следующий вид:

Производство кислорода из воздуха

В промышленности технически чистый кислород получают двумя способами:

  • из воздуха – методом глубоко охлаждения;
  • из воды – путем электролиза.

Способ производства кислорода из воздуха более экономичный: на 1 м3 кислорода расходуется 0,5–1,6 кВт/ч электроэнергии. Чтобы получить 1 м3 кислорода путем электролиза воды требуется 10–21 кВт/ч.

Атмосферный осушенный воздух представляет собой смесь, содержащую 20,93 % кислорода и 78,03 % азота, остальное – инертные газы, углекислый газ и пр. Содержание водяных паров в воздухе может изменяться в зависимости от температуры и степени их насыщения.

Для получения технически чистого кислорода воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при нормальном атмосферном давлении –194,5 °С). Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах.

Воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, затем проходит последовательно ступени компрессора. За каждой ступенью компрессора давление воздуха возрастает и достигает 5–22 МПа в зависимости от системы установки и стадии производства.

Сжатый воздух из компрессора проходит через осушительную батарею из баллонов, заполненных кусками едкого натра, поглощающего влагу и остатки углекислоты. Затем сжатый воздух поступает в кислородный аппарат, где происходит охлаждение, сжижение и ректификация (разделением на кислород и азот). Газообразный азот применяют как защитный газ для сварки меди.

Кислород направляется в газгольдер и подается для наполнения кислородных баллонов под давлением до 16,5 МПа; масса 1 м3 кислорода при нормальном атмосферном давлении (0,1 МПа) и 0 °С составляет 1,43 кг, при 20 °С – 1,31 кг; масса 1 л жидкого кислорода равна 1,13 кг; в результате испарения образуется 0,79 м3 газообразного кислорода (при 0 °С и нормальном атмосферном давлении);

Про кислород:  Оксид серебра I,III

Распространенность оксигена в природе

Оксиген — один из самых распространенных элементов на нашей планете. В земной коре его атомов больше, чем атомов любого другого элемента (§ 6). Атомы Оксигена содержатся в песке, глине, известняке, многих минералах. Оксиген — второй по распространенности в атмосфере (после Нитрогена) и в гидросфере (после Гидрогена).

Атомы Оксигена входят в состав молекул многих веществ, находящихся в живых организмах (белков, жиров, крахмала и пр.). В теле взрослого человека массовая доля этого элемента составляет примерно 65 %.

Кислород. Важнейшее простое вещество Оксигена — кислород. Этот газ необходим для дыхания; он поддерживает горение.

Формула кислорода вам известна — Кислород как химический элемент в химии - формулы, определение с примерами

Молекула кислорода достаточно устойчива. Но под действием электрического разряда или ультрафиолетовых лучей, а также при температуре свыше 2000 °С она распадается на атомы:

Кислород — компонент воздуха, природной смеси газов. На него приходится приблизительно 1/5

Атомы Оксигена входят в состав молекул многих веществ, находящихся в живых организмах (белков, жиров, крахмала и пр.). В теле взрослого человека массовая доля этого элемента составляет примерно 65 %.

Кислород. Важнейшее простое вещество Оксигена — кислород. Этот газ необходим для дыхания; он поддерживает горение.

Формула кислорода вам известна — 02. Это вещество содержит молекулы, состоящие из двух атомов Оксигена.

Молекула кислорода достаточно устойчива. Но под действием электрического разряда или ультрафиолетовых лучей, а также при температуре свыше 2000 °С она распадается на атомы:

02 = 20.

Кислород — компонент воздуха, природной смеси газов. На него приходится приблизительно 1/5 объема воздуха. Состав сухого воздухаКислород как химический элемент в химии - формулы, определение с примерами

Организм взрослого мужчины ежесуточно потребляет приблизительно 900 г кислорода, а женщины — 600 г.

Состав воздуха:

Газ компонент воздуха       Доля воздуха в%

НазваниеФормулаобъемная*массовая
АзотКислород как химический элемент в химии - формулы, определение с примерами78,0975,51
КислородКислород как химический элемент в химии - формулы, определение с примерами20,9523,15
АргонКислород как химический элемент в химии - формулы, определение с примерами0,931,28
углекислый газКислород как химический элемент в химии - формулы, определение с примерами0,0370,056
Другие газыменее 0,002менее 0,003

* Объемная доля вещества в смеси — отношение объема вещества к объему смеси. Объемную долю обозначают греческой буквой Кислород как химический элемент в химии - формулы, определение с примерами

Определить объемную долю кислорода в воздухе можно экспериментально. Для этого нужны стеклянная бутылка без дна с пробкой и кристаллизатор с водой. В пробку вставляют ложку для сжигания, в которую набрано немного красного фосфора. Его поджигают, быстро вносят в бутылку и плотно I закрывают ее пробкой (рис. 52).

Кислород содержится не только в атмосфере. Небольшое его количество вместе с другими газами воздуха растворено в природной воде.

Существует еще одно простое вещество Оксигена — озон Кислород как химический элемент в химии - формулы, определение с примерами Это бесцветный сильнотоксичный газ с резким запахом. Он очень неустойчив и постепенно превращается в кислород: Кислород как химический элемент в химии - формулы, определение с примерами

Озон содержится в атмосфере в незначительном количестве; его объемная доля не превышает

Определение объемной доли кислорода в воздухе сжиганием фосфора:

а — начало опыта;

б — окончание опыта

 Кислород как химический элемент в химии - формулы, определение с примерами

1 0,0004 %. Распадаясь, он поглощает часть ультрафиолетовых лучей солнечного света, вредную для растений и животных, и тем самым оберегает природу.

Расчет объема газообразного кислорода в баллоне

Объем газообразного кислорода в баллоне (V) в кубических метрах при нормальных условиях вычисляют по формуле:

где

Vбвместимость баллона, дм3. В расчетах принимают среднюю статистическую величину вместимости баллонов не менее чем из 100 шт.;
K1коэффициент для определения объема кислорода в баллоне при нормальных условиях, вычисляемый по формуле:

где

Pдавление газа в баллоне, измеренное манометром, кгс/см2;
0,968коэффициент для пересчета технических атмосфер (кгс/см2) в физические;
tтемпература газа в баллоне, °С;
Zкоэффициент сжигаемости кислорода при температуре t.

Значения коэффициента K1 приведены в таблице 3.

Таблица 3 — Значения коэффициента для определения объема кислорода в баллоне
Температура газа в баллоне, °СЗначение коэффициента K1 при избыточном давлении, МПа (кгс/см2)
13,7
(140)
14,2
(145)
14,7
(150)
15,2
(155)
15,7
(160)
16,2
(165)
16,7
(170)
17,2
(175)
17,7
(180)
18,1
(185)
18,6
(190)
19,1
(195)
19,6
(200)
20,1
(205)
20,6
(210)
-500,2320,2420,2510,2600,2690,2780,2860,2960,3030,3110,3190,3270,3350,3420,349
-400,2120,2210,2290,2360,2450,2530,2600,2690,2750,2840,2900,2980,3050,3120,319
-350,2030,2110,2190,2260,2340,2420,2490,2570,2640,2720,2780,2860,2930,2990,306
-300,1950,2020,2110,2170,2250,2320,2390,2480,2530,2610,2670,2740,2810,2880,294
-250,1880,1950,2020,2090,2170,2230,2300,2380,2430,2510,2570,2640,2700,2770,283
-200,1820,1880,1950,2020,2090,2150,2220,2290,2350,2420,2480,2550,2610,2670,273
-150,1760,1820,1890,1960,2020,2080,2150,2210,2270,2340,2400,2460,2520,2580,263
-100,1710,1770,1830,1890,1950,2020,2080,2140,2200,2260,2320,2380,2440,2500,255
-50,1650,1720,1780,1840,1900,1950,2020,2070,2130,2190,2250,2310,2360,2420,247
00,1610,1670,1720,1790,1840,1900,1960,2010,2070,2130,2190,2240,2290,2350,240
50,1570,1620,1680,1740,1790,1850,1900,1960,2010,2070,2120,2170,2230,2280,233
100,1530,1580,1630,1690,1740,1800,1850,1910,1960,2010,2060,2110,2170,2220,227
150,1490,1540,1590,1650,1700,1750,1800,1860,1910,1960,2010,2060,2110,2160,221
200,1450,1500,1560,1600,1660,1710,1760,1810,1860,1910,1960,2010,2060,2110,215
250,1420,1470,1520,1570,1620,1670,1720,1770,1820,1860,1910,1960,2010,2060,210
300,1390,1430,1480,1530,1580,1630,1680,1730,1770,1820,1870,1920,1960,2010,206
350,1360,1400,1450,1500,1540,1590,1640,1690,1730,1780,1820,1870,1920,1960,201
400,1330,1370,1420,1470,1510,1560,1600,1650,1700,1740,1780,1830,1880,1920,196
500,1270,1320,1360,1410,1450,1490,1540,1580,1630,1670,1710,1750,1800,1840,188

Свойства

Основные свойства кислорода приведены в таблице 1.

Таблица 1 — Основные свойства кислорода
ПоказательДанные показателя
ФормулаО2
Молекулярная масса31,9988
Плотность (при 0 °С и давлении 760 мм рт. ст.), кг/м31,43
Плотность (при 20 °С и давлении 760 мм рт. ст.), кг/м31,33
Температура критическая, °С-118,8
Давление критическое, кгс/см251,35
Температура кипения (при 760 мм рт. ст.), °С-182,97
Температура плавления (затвердевания) (при 760 мм рт. ст.), °С-218,4
Масса 1 л жидкости кислорода при -182,97 °С и 760 мм рт. ст., кг1,13
Количество газообразного кислорода, получающегося из 1 л жидкого, л850

Массовая концентрация механических примесей в медицинском кислороде, предназначенном для авиации, – не более 0,001 г/м3 с размером частиц не более 0,1 мм при 15 °С и 101, 3 кПа (760 мм рт. ст.).

По физико-химическим показателям газообразный технический и медицинский кислород должен соответствовать нормам, указанным в таблице 2.

Таблица 2 — Физико-химические показатели кислорода
Наименование показателяНорма для марок
Технический кислородМедицинский кислород
Первый сортВторой сорт
Объемная доля кислорода, %, не менее99,799,599,5
Объемная доля водяных паров, %, не более0,0070,0090,009
Объемная доля водорода, %, не более0,30,5
Объемная доля двуокиси углерода, %, не болееНе нормируется0,01
ЗапахНе нормируетсяОтсутствие
Примечания:

1. По согласованию с потребителем допускается в медицинском кислороде объемная доля кислорода не менее 99,2 %.

2. Медицинский кислород, предназначенный для авиации, должен выпускаться с объемной долей водяных паров не более 0,0007 %.

3. В техническом кислороде 2-го сорта, вырабатываемом на установках высокого, среднего и двух давлений, оснащенных щелочными декарбонизаторами для очистки воздуха от двуокиси углерода, а также на установках типа СКДС-70М допускается объемная доля кислорода не менее 99,2 %.

Свойства и применение кислорода

Рассмотрите картинки и поясните свои соображения. Какова причина длительного пребывания водолазов под водой? Где ещё используется кислородный баллон?

Физические свойства:

Кислород — это бесцветный газ без запаха и вкуса, относительно мало растворим в воде (при температуре 20°С в 100 объёмах воды растворяется 3,1 объёма кислорода). Кислород немного тяжелее воздуха, при температуре — 183 °С сжижается, а при понижении температуры до — 218,8 °С — затвердевает.

Химические свойства:

В обычных условиях кислород в чистом виде и в составе воздуха химически неактивен. Однако при нагревании его активность резко возрастает. Кислород может находиться во взаимодействии с большинством простых веществ — неметаллами и металлами, а также со сложными веществами.

Про кислород:  Рак 4 степени: признаки, продолжительность жизни при раке 4 стадии

Взаимодействие кислорода с неметаллами. Если раскалить под действием пламени спиртовки уголек в железной ложке, то он не загорится, а начнет дымиться. Поместим железную ложку с дымящимся угольком в банку с кислородом (для того, чтобы банка не разбилась, дно посыпаем мелким песком). Раскаленный уголек будет гореть без пламени, выделяя тепло. Если нальем в банку известковую воду Кислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерами

При горении раскаленного угля в условиях нехватки кислорода образуется очень опасный удушающий угарный газ:

Нагреем в железной ложке немножко серы. Сера горит слабым голубоватым пламенем. Опустим ложку в банку с кислородом. Скорость горения серы увеличивается, появляется пламя ярко-голубого цвета. В банке образуется бесцветный газ с резким запахом — серный газ (Кислород как химический элемент в химии - формулы, определение с примерами

Возьмем немного фосфора в железной ложке и нагреем на огне спиртовки. Фосфор начинает гореть. Если опустить горящий фосфор в банку с кислородом, то горение ускорится и очень скоро банка наполнится белым дымом оксида фосфора (V). Горение фосфора тоже сопровождается выделением теплоты.

Все неметаллы, кроме фтора (Кислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерами

Взаимодействие кислорода с металлами. Кроме ценных (благородных) металлов (Ag, Au, Pt), большинство других металлов находятся в непосредственном взаимодействии с кислородом. Для вступления металлов в реакцию с кислородом, их следует нагреть, после чего реакция протекает самопроизвольно, с выделением света и тепла.

Магний горит в воздухе ярким, ослепительным пламенем. Если опустить ленту горящего магния в сосуд с кислородом, яркость пламени еще больше увеличится. В результате реакции образуется белый порошок оксида магния:

Если, насадив на железную проволоку деревянную щепку, мы зажжем ее и опустим в сосуд с кислородом, то вначале будет гореть кусок дерева, а затем железо. Железо горит без пламени, разбрасывая вокруг искры железной окалины.

Сложные вещества, состоящие из двух элементов, один из которых является кислородом, называются оксидами.

Взаимодействие сложных веществ с кислородом. Как и простые вещества, сложные вещества тоже могут гореть в кислороде и окисляться. Реакции взаимодействия веществ с кислородом являются реакциями окисления. Ряд оксидов, взаимодействуя с кислородом, образуют новые оксиды.

В наших квартирах ежедневно в газовых печах горит природный газ (Кислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерами

Серные соединения некоторых металлов (сульфиды) при горении в кислороде образуют два оксида.

Применение:

Сварка и резка металлов происходит при участии чистого кислорода. В металлургической и химической промышленности больше всего используется кислород из воздуха. Например, при производстве чугуна и серной кислоты использование кислорода из воздуха позволяет значительно ускорить и повысить производительность производственных процессов.

В медицине чистый кислород применяют для облегчения затрудненного дыхания. В этих целях в больницах используются кислородные подушки и заполненные чистым кислородом стальные баллоны. Летающие на большой высоте летчики, космонавты, работающие под водой водолазы также пользуются небольшими по размеру кислородными баллонами.

Все живые организмы в природе при дыхании употребляют кислород, ежегодно усваивая миллионы тонн атмосферного кислорода. Так, например, было вычислено, что только люди употребляют в течение года свыше 1330 миллиардов кубических метров атмосферного кислорода.

В организме человека и животных происходит медленное окисление глюкозы кислородом (рис. 2).

Строение и физические свойства простых веществ

С простым веществом кислородом вы уже познакомились в курсе химии 7-го класса. Напомним, что простое вещество кислород в природе существует в виде двух аллотропных модификаций — обычного кислорода Кислород как химический элемент в химии - формулы, определение с примерамиозона Кислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерами

В природе озон образуется при грозовых разрядах и при окислении смолы хвойных деревьев. Небольшие количества озона в воздухе оказывают целебное действие на людей. Однако сильное обогащение воздуха озоном может стать опасным для здоровья. Увеличение содержания озона в воздухе выше предельно допустимой концентрации приводит к появлению головных болей, раздражению дыхательных путей и глаз, а затем к ослаблению сердечной деятельности.

Источниками озона являются работающие приборы, в которых происходит высоковольтный электрический разряд — копировальные установки и лазерные принтеры, а также источники ультрафиолетового и рентгеновского излучения. Поэтому помещения, в которых находятся такие приборы, необходимо часто проветривать.

Озон сосредоточен в верхних слоях атмосферы, образуя озоновый слой, который защищает Землю и ее обитателей от жесткого ультрафиолетового излучения Солнца. Поверхности Земли достигают только те ультрафиолетовые лучи, которые не опасны для живых организмов.

Кислород и озон в воде мало растворимы. При 20 °С в 100 объемах Кислород как химический элемент в химии - формулы, определение с примерамиКислород как химический элемент в химии - формулы, определение с примерами

Требования безопасности

Кислород не токсичен, не горюч и не взрывоопасен, однако, являясь сильным окислителем, резко увеличивает способность других материалов к горению. Поэтому для работы в контакте с кислородом могут использоваться только разрешенные для этого материалы.

При соприкосновении сжатого газообразного кислорода с органическими веществами, маслами, жирами, угольной пылью, горючими пластмассами, даже в ничтожном количестве, может произойти их самовоспламенение в результате выделения теплоты при быстром сжатии кислорода, трении и ударе твердых частиц о металл, а также электростатического искрового разряда.

Поэтому при использовании кислорода необходимо тщательно следить за тем, чтобы он не находился в контакте с легковоспламеняющимися и горючими веществами. В кислороде могут загораться также углеродистые стали при достаточном количестве теплоты в месте контакта и небольшой массе металла (например, при трении тонких платин о массивные части машин, наличии стружки, частиц окалины или железного порошка).

Для предотвращения аварий всю кислородную аппаратуру, кислородопроводы и баллоны подвергают тщательному обезжириванию. Необходимо исключить возможность попадания и накопления масел и жиров на поверхности деталей, работающих в среде кислорода.

Цилиндры компрессоров, накачивающих кислород в баллоны, смазывают не маслом, а дистиллированной водой, в которую иногда добавляют 10 % глицерина. Кроме того, в кислородных компрессорах применяют поршневые кольца из графита и других антифрикционных материалов, работающие без смазки и не загрязняющие кислород органическими примесями.

Также опасны пропитанные жидким кислородом пористые горячие вещества (уголь, сажа, войлок, пакля, ветошь, вата и др.), которые в этом случае становятся взрывчатыми. Одежда и волосы, будучи насыщенны кислородом, легко загораются. Смеси кислорода с горючими газами, жидкостями и их парами взрывоопасны при определенных соотношениях кислорода и горючего в смеси.

Накопление кислорода в воздухе помещений создает опасность возникновения пожаров. Объемная доля кислорода в рабочих помещениях не должна превышать 23 %. В помещениях, где возможно увеличение объемной доли кислорода, должно быть ограничено пребывание людей и не должны находиться легковоспламеняющиеся материалы. Эти помещения должны быть оборудованы средствами контроля воздушной среды и вытяжной вентиляцией для проветривания.

Перед проведением ремонтных работ или освидетельствованием трубопроводов, баллонов, стационарных и передвижных реципиентов или другого оборудования, используемого для хранения и транспортирования газообразного кислорода, необходимо продуть все внутренние объемы воздухом. Разрешается начинать работы только после снижения объемной доли кислорода во внутренних объемах оборудования до 23 %.

После пребывания в среде, обогащенной кислородом, не разрешается курить, использовать открытый огонь и приближаться к огню. Одежда должна быть проветрена в течение 30 мин.

Баллоны, автореципиенты и трубопроводы, предназначенные для транспортирования технического и медицинского кислорода, запрещается использовать для хранения и транспортирования других газов, а также запрещается производить какие-либо операции, которые могут загрязнить их внутреннюю поверхность и ухудшить физико-химические показатели продукции.

При погрузке, разгрузке, транспортировании и хранении баллонов должны применяться меры, предотвращающие падение, удары друг о друга, повреждение и загрязнение баллонов маслом. Баллоны должны быть предохранены от атмосферных осадков и нагревания солнечными лучами и другими источниками тепла.

Химические свойства

Сильный окислитель, самый активный неметалл после фтора, образует бинарные соединения (оксиды) со всеми элементами, кроме гелия, неона, аргона. Наиболее распространённая степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

 4Li O2 → 2Li2O
 2Sr O2 → 2SrO

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

 2NO O2 → 2NO2

Окисляет большинство органических соединений в реакциях горения:

 2C6H6 15O2 → 12CO2 6H2O
 CH3CH2OH 3O2 → 2CO2 3H2O

При определённых условиях можно провести мягкое окисление органического соединения:

 CH3CH2OH O2 → CH3COOH H2O

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета.

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

 2Na O2 → Na2O2
 2BaO O2 → 2BaO2
 H2 O2 → H2O2
 Na2O2 O2 → 2NaO2
 K O2 → KO2
 3KOH 3O3 → 2KO3 KOH ∗ H2O 2O2
 PtF6 O2 → O2PtF6

В этой реакции, кислород проявляет восстановительные свойства.

Оцените статью
Кислород
Добавить комментарий