ГДЗ Химия 8 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А. 2019 §13 КИСЛОРОД » Крутые решение для вас от GDZ.cool

ГДЗ Химия 8 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А.  2019 §13 КИСЛОРОД » Крутые решение для вас от GDZ.cool Кислород

Биологическая роль кислорода

Файл:Emergency stock of oxygen.jpg

Аварийный запас кислорода в бомбоубежище

Большинство живых существ (аэробы) дышат кислородом воздуха.
Широко используется кислород в медицине.

При сердечно-сосудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»).

Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях.

Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном.

Радиоактивный изотоп кислорода 15O применяется для исследований скорости кровотока, лёгочной вентиляции.

Горение и виды горючих веществ

Реакция, протекающая с участием кислорода и сопровождающаяся выделением большого количества света и тепла, называется горением.

В чистом кислороде, по сравнению с воздухом, вещества горят во много раз быстрее (рис. 22). В обоих случаях выделяется равное количество теплоты, но в кислороде этот процесс протекает быстрее и выделяющаяся теплота не расходуется, как в случае с воздухом, на нагревание азота.

Температура при горении в чистом кислороде выше, чем в воздухе. Опуская тлеющую лучину в сосуд с чистым кислородом, можно увидеть, как она сразу загорается. А в воздухе тлеющая лучина может вскоре и потухнуть. Если эта лучина зажжена, то она продолжает гореть на воздухе, потому что выделяющееся при горении тепло требует большей температуры, чем температура воспламенения лучины.

Рис. 22. Горение магния в чистом кислороде

Рис. 23. Тушение пламени

Температура, необходимая для поджигания вещества на воздухе, называегся температурой воспламенения.

Значит, для обеспечения горения веществ, нужно нагревать их до температуры воспламенения и подавать кислород в достаточном количестве.

Для того чтобы потушить пламя, необходимо ликвидировать факторы, обеспечивающие его появление, т.е. охладить вещество до температуры ниже температуры возгорания и прекратить подачу кислорода (рис. 23).

Чтобы потушить горящую вещь, сначала следует понизить температуру, используя невоспламеняющиеся средства, затем накрыть источник возгорания одеялом или брезентом, чтобы прекратить подачу воздуха.

В непредвиденных ситуациях для тушения пожара необходимо использовать специальные средства, а если их нет, то применять указанный выше способ.

Вообще процесс горения имеет огромное значение в промышленности и в повседневной жизни.Кислород как химический элемент в химии - формулы, определение с примерами

От твердого топлива остается минеральный осадок — пепел. Жидкое и газообразное топливо такого недостатка не имеет. Но любое топливо независимо от места добычи, промышленного объема, экономической эффективности имеет только свое место применения, и возможности по его взаимозамещению ограничены.

Неправильное сжигание топлива приносит вред народному хозяйству.

Топливо позволяет спокойно переносить холод, варить пищу, которая не употребляется в сыром виде, получать металлы из руд путем их выплавки, обеспечивать движение транспорта, получать другие виды энергии.

История открытия

Официально считается[2][3], что кислород был открыт английским химиком Джозефом Пристли1 августа1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»).

О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле.

Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Получение

В настоящее время в промышленности кислород получают из воздуха.
Основным промышленным способом получения кислорода является криогенная ректификация.
Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV):

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

Примечания

  1. Дикислород // Большая Энциклопедия Нефти Газа
  2. J. Priestley, Experiments and Observations on Different Kinds of Air, 1776.
  3. W. Ramsay, The Gases of the Atmosphere (the History of Their Discovery), Macmillan and Co, London, 1896.
  4. 4,04,14,2Inorganic Crystal Structure Database
  5. Margaret-Jane Crawford и Thomas M. Klapötke The trifluorooxonium cation, OF3 // Journal of Fluorine Chemistry. — 1999. — Т. 99. — С. 151-156.
  6. Curie P., Curie M. (1899). «Effets chimiques produits par les rayons de Becquerel«. Comptes rendus de l’Académie des Sciences129: 823-825. 
  7. Радиационная химия // Энциклопедический словарь юного химика. 2-е изд.. — М.: 1990. — С. 200.
  8. Руководство для врачей скорой помощи / Михайлович В. А. — 2-е изд., перераб. и доп. — Л.: Медицина, 1990. — С. 28-33. — 544 с. — 120 000 экз. — ISBN 5-225-01503-4. (см. ISBN )
  9. Food-Info.net : E-numbers : E948 : Oxygen.

Ракетное топливо

В качестве окислителя для ракетноготоплива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения.

Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

Про кислород:  Химия: С какими из перечисленных веществ будет реагировать аммиак: вода, кислород, гидроксид...

Медицинский кислород хранится в металлических газовых баллонах высокого давления (для сжатых или сжиженных газов) голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей.

Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки.

Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха.

Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометруредуктора) умножают на величину ёмкости баллона в литрах.

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавкиE948[9], как пропеллент и упаковочный газ.

Свойства и применение кислорода

Цель урока: изучить физические и химические
свойства кислорода, дать общее понятие об
оксидах, реакциях горения; рассмотреть
практическую значимость и применение; доказать,
что кислород — один из важнейших элементов на
Земле.

Задачи урока:

Образовательные

:

  • Расширить представления обучающихся о
    кислороде.
  • Познакомить со свойствами и применением
    кислорода.
  • Совершенствовать умения составлять уравнения
    химических реакций.

Воспитательные

:

  • Формировать умения работать в парах у каждого
    обучающегося, считаться с мнением соседа и
    отстаивать свою точку зрения корректно, выполняя
    упражнения.
  • Воспитывать бережное отношение к своему
    здоровью, окружающей природе, учить понимать
    прекрасное, ценить произведения искусства.

Развивающие

:

  • Способствовать продолжению развития
    устойчивого интереса к химической науке и
    практике.
  • Совершенствовать навыки самостоятельной
    работы, развивать умения наблюдать,
    формулировать высказывания.
  • Способствовать развитию исследовательских
    навыков, соблюдая правила техники безопасности.
  • Совершенствовать умения обобщать и делать
    выводы.

Планируемые результаты:

личностные: готовность и способность
учащихся к саморазвитию, самоопределению;
ответственное отношение к учению; способность
ставить цели и строить жизненные планы;
формирование коммуникативной культуры, ценности
здорового и безопасного образа жизни;

  • метапредметные: уметь ставить цель и
    планировать пути её достижения, выбирая более
    рациональные способы решения данной проблемы;
    учиться корректировать свои действия в связи с
    изменением создавшейся ситуации; уметь
    создавать, применять и преобразовывать знаки и
    символы, модели и схемы для решения учебных и
    познавательных задач; уметь осознанно
    использовать речевые средства в соответствии с
    задачей коммуникации для выражения своих мыслей
    и потребностей; уметь организовывать совместную
    работу со сверстниками в парах; уметь находить
    информацию в различных источниках; владеть
    навыками самоконтроля, самооценки;
  • предметные:
    • знать: основные химические понятия
      “катализаторы”, “оксиды”, “реакции горения”,
      “реакции окисления”; физические и химические
      свойства кислорода; области применения
      кислорода.
    • уметь: отличить кислород от других газов;
      составлять уравнения реакций горения веществ в
      кислороде; записывать химические формулы
      оксидов и давать им названия; объяснять, как
      происходит круговорот кислорода в природе.
  • Тип урока: урок формирования умений и навыков.

    Форма работы: фронтальная,

    групповая,
    работа в парах, игровая.

    Методы обучения: словесный,

    частично-поисковый,
    наглядный, демонстрационный, интерактивный.

    Приемы обучения

    : постановка проблемных
    вопросов.

    Оборудование:

    компьютер, проектор,
    презентация “Свойства и применение кислорода.
    Круговорот кислорода в природе”, колбы, пинцет,
    ложки для сжигания веществ, спиртовка.

    Реактивы:

    уголь, сера, красный фосфор,
    железная пластина, вода, известковая вода.

    ХОД УРОКА

    І. Организационный момент. (1 мин.)

    (Слайд № 1)

    Учитель:

    Добрый день! Прошу
    всех садиться. Тема сегодняшнего урока
    “Свойства и применение кислорода”.

    (Слайд № 2)

    Мы с вами рассмотрим физические и
    химические свойства кислорода, сформулируем
    общие понятия об оксидах, реакциях горения,
    окисления; ознакомимся с практической
    значимостью и применением кислорода; а также
    докажем, что кислород — один из важнейших
    элементов на Земле.

    ІІ. Актуализация знаний. (7 мин.).

    Работа с карточками.

    От 2 до 4 обучающихся
    получают задание на карточках и выполняют его у
    доски.

    (Слайд № 3) Фронтальный опрос “А ну-ка,
    химики”.

    Учитель:

    Но перед тем как приступить к
    изучению новой темы, вам следует ответить на
    следующие вопросы:

    Химический знак кислорода?

    Ответ: О

    Относительная атомная масса кислорода?

    Ответ:
    16.

    Химическая формула кислорода?

    Ответ: О2.

    Относительная молекулярная масса кислорода?

    Ответ:
    32.

    В соединениях кислород обычно какой
    валентности?

    Ответ: II.

    Расскажите о нахождении кислорода в природе.

    Ответ:
    Кислород — самый распространенный химический
    элемент в земной коре. Кислород — самый
    распространенный на Земле элемент, на его долю
    приходится около 49% массы твердой земной коры.
    Морские и пресные воды содержат огромное
    количество
    связанного кислорода — 85,5% (по
    массе), в атмосфере содержание свободного
    кислорода составляет 21% по объёму и 23% по массе.
    Более 1500 соединений земной коры в своем составе
    содержат кислород. Кислород входит в состав
    многих органических веществ и присутствует во
    всех живых клетках. По числу атомов в живых
    клетках он составляет 20,9%, по массовой доле —
    около 65 %.

    Перечислите способы получения кислорода в
    лаборатории?

    Ответ:В лаборатории
    кислород получают следующими способами:

    1) Разложение перманганата калия. 2KMnO

    4 =
    K
    2MnO4 MnO2 O2ГДЗ Химия 8 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А.  2019 §13 КИСЛОРОД » Крутые решение для вас от GDZ.cool

    2) Разложение перекиси водорода. 2H

    2O2
    = 2H
    2O O2ГДЗ Химия 8 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А.  2019 §13 КИСЛОРОД » Крутые решение для вас от GDZ.cool

    3) Разложение бертолетовой соли. 2KClO

    3 =
    2KCl 3O
    2ГДЗ Химия 8 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А.  2019 §13 КИСЛОРОД » Крутые решение для вас от GDZ.cool

    8. Перечислите способы получения кислорода в
    промышленности.

    Ответ: В промышленности
    кислород получают:

    1) Электролиз воды. 2H

    2O = 2H2 O2ГДЗ Химия 8 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А.  2019 §13 КИСЛОРОД » Крутые решение для вас от GDZ.cool

    2) Из воздуха. ВОЗДУХ давление, -183

    oC=O2
    (голубая жидкость).

    В настоящее время в промышленности кислород
    получают из воздуха. В лабораториях небольшие
    количества кислорода можно получать нагреванием
    перманганата калия (марганцовка) KMnO

    4.
    Кислород мало растворим в воде и тяжелее воздуха,
    поэтому его можно получать двумя способами:

    (Слайд № 4).9. Установите соответствие
    между способом получения кислорода и уравнением
    химической реакцией. Работа в парах.

    Ответ: А-4; Б-2; В-1; Г-5; Д-3.

    10. Что называют катализаторами? Где эти
    вещества применяются?

    Ответ: Вещества,
    которые ускоряют химические реакции, но сами при
    этом не расходуются, называют катализаторами.
    Катализаторы широко применяют в химической
    промышленности. С их помощью удается повысить
    производительность химических процессов,
    снизить себестоимость выпускаемой продукции и
    более полно использовать сырье.

    Про кислород:  Конспект урока: «Элементы VI-группы: сера и кислород».

    (Слайд № 5). На какой диаграмме распределение
    массовых долей элементов отвечает
    количественному составу (NH4)3PO4?

    Ответ:
    4.

    ГДЗ Химия 8 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А.  2019 §13 КИСЛОРОД » Крутые решение для вас от GDZ.cool

    ІІІ. Изучение нового материала. (12 мин.)

    (Слайд № 6) Учитель:

    Физические свойства.

    Кислород
    — бесцветный газ, без вкуса и запаха, относительно
    малорастворим в воде (в 100 объемах воды при
    температуре 20?С растворяется 3,1 объема
    кислорода). Кислород немного тяжелее воздуха: 1л
    кислорода при нормальных условиях весит 1,43 г, а 1л
    воздуха — 1,29г. (Нормальные условия — сокращенно:
    н.у. — температура 0

    o

    С и давление 760 мм.рт.ст.,
    или 1 атм.

    ГДЗ Химия 8 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А.  2019 §13 КИСЛОРОД » Крутые решение для вас от GDZ.cool

    0,1 МПа). При
    давлении 760 мм.рт.ст. и температуре -183

    o

    С
    кислород сжижается, а при снижении температуры
    до -218,8

    o

    С затвердевает.

    (Слайд № 7)

    Химические свойства.Техника
    безопасности (провести инструктаж!)

    Кислород при нагревании энергично реагирует
    со многими веществами, при этом выделяются
    теплота и свет. Такие реакции называют реакциями
    горения. Если опустить в сосуд с кислородом O

    2

    тлеющий уголек, то он раскаляется добела и
    сгорает, образуя оксид углерода (IV) СO

    2

    .
    Чтобы определить, какое образовалось вещество, в
    сосуд наливают известковую воду — раствор
    гидроксида кальция Са(ОН)

    2

    . Она мутнеет, так
    как при этом образуется нерастворимый карбонат
    кальция СаСO

    3

    :

    CO2 Ca(OH)2 = CaCO3img2.gif (48 bytes) H2O

    Видеодемонстрация №1 “Горение угля в
    кислороде”
    http://files.school-collection.edu.ru/dlrstore/695aa82a-e84a-fa4d-7b04-16d28ded2fbb/index.htm

    (Слайд № 8) Сера горит в O2 ярким синим
    пламенем с образованием газа с резким запахом —
    оксида серы (IV)

    S O2 = SO2

    Видеодемонтсрация №2 “Горение серы в
    кислороде”
    http://files.school-collection.edu.ru/dlrstore/600cd365-f9f2-ae10-56e4-98ee0af7e4c6/index.htm

    (Слайд № 9) Горение фосфора в кислороде

    Видеодемонстрация №3 “Горение фосфора в
    кислороде”
    http://files.school-collection.edu.ru/dlrstore/f83beda5-449d-d3dc-442c-a474a89eeca6/index.htm

    Опыт следует проводить под тягой. Следует
    соблюдать правила обращения с нагревательными
    приборами. Не допускать попадания горящего
    фосфора на рабочую поверхность стола. Не вдыхать
    выделяющийся дым фосфорного ангидрида.

    Фосфор Р сгорает в O2 ярким пламенем с
    образованием белого дыма, состоящего из твердых
    частиц оксида фосфора (V).

    4P 5O2 = 2P2O5

    (Слайд № 10) Горение железа в кислороде

    Видеодемонстрация №4 “Горение железа в
    кислороде”
    http://files.school-collection.edu.ru/dlrstore/deb6e939-f8c8-fea7-fe24-7b2c80013fd7/index.htm

    В кислороде горят и такие вещества, которые
    обычно считают негорючими, например железо. Если
    к тонкой стальной проволоке прикрепить спичку,
    зажечь ее и опустить в сосуд с кислородом, то от
    спички загорится и железо. Горение железа
    происходит с треском и разбрасыванием ярких
    раскаленных искр — расплавленных капель
    железной окалины Fe3O4. В этом соединении два атома
    железа трехвалентны и один двухвалентен. Поэтому
    реакцию горения железа в кислороде можно
    выразить следующим уравнением:

    3Fe 2O2 = FeO * Fe2O3 или Fe3O4

    (Слайд № 11) Взаимодействие вещества с
    кислородом относится к реакциям окисления.

    (Слайд № 12)

    Горение — это химическая реакция,
    при которой происходит окисление веществ с
    выделением теплоты и света.

    (Слайд № 13)

    В большинстве случаев при
    взаимодействии веществ с кислородом образуются
    оксиды.

    Оксиды — это сложные вещества,
    которые состоят из двух элементов, одним из
    которых является кислород.

    (Слайд № 14)

    Известны химические элементы,
    которые непосредственно с кислородом не
    соединяются. К ним относятся золото Au и некоторые
    другие. Оксиды этих элементов получают косвенным
    путем.

    (Слайд № 15)

    Применение кислорода.

    Основано
    на его химических свойствах. В больших
    количествах кислород используют для ускорения
    химических реакций в разных отраслях химической
    промышленности и в металлургии. Например, при
    выплавке чугуна для повышения
    производительности доменных печей в них подают
    воздух, обогащенный кислородом.

    (Слайд № 16)

    При сжигании смеси ацетилена или
    водорода с кислородом в специальных горелках
    температура пламени достигает 3000

    o

    С. Такое
    пламя используется для сварки металлов. Если
    берут кислород в избытке, то пламенем можно
    резать металл.

    (Слайд № 17)

    Жидкий кислород применяют в
    ракетных двигателях.

    (Слайд № 18)

    В медицине кислород служит для
    облегчения затрудненного дыхания. В этом случае
    кислородом заполняют специальные подушки.
    Кислородные маски необходимы в высотных полетах,
    в космосе и при работе под водой.

    Кислород расходуется в громадных количествах
    на многие химические реакции, например на
    сжигание топлива.

    (Слайд № 19)

    Из сказанного видно, что очень
    много кислорода расходуется на разнообразную
    деятельность человека, тратится на процессы
    дыхания человека, животных, растений, а также на
    процессы гниения. Человек при дыхании в течение 1
    мин в среднем употребляет 0,5 дм

    3

    кислорода,
    в течении суток — 720 дм

    3

    , а в год — 262,8 м

    3

    кислорода, что все жители земного шара (5
    миллиардов) в течение года для дыхания
    используют 1578 миллиардов кубических метров
    кислорода. Если такой объем кислорода при
    нормальном давлении поместить в железнодорожные
    цистерны, то поезд был бы протяженностью более 300
    млн км, что равняется расстоянию до Солнца и
    обратно.

    (Слайд № 20)

    Но все же общая масса кислорода в
    воздухе заметно не изменяется. Это объясняется
    процессом фотосинтеза, происходящим в зеленых
    растениях на свету. В результате этого процесса
    выделяется кислород. С фотосинтезом вы уже
    знакомились в курсе ботаники. Упрощенно процесс
    фотосинтеза изображают так:

    6CO2 6H2O = C6H12O6
    6O2.

    Так в природе происходит непрерывный
    круговорот кислорода.

    В целях сохранения кислорода в воздухе вокруг
    городов и крупных промышленных центров
    создаются зоны зеленых насаждений. Специальная
    служба систематически контролирует содержание
    кислорода в воздухе. При необходимости применяют
    меры по устранению загрязнения воздуха.

    Физкультминутка. (1 мин.)

    IV. Закрепление знаний. (6 мин.)

    (Слайд № 21) Задание №1. “Правда или ложь? Если
    знаешь — разберешь”

    Для кислорода верны следующие утверждения:

    а) Кислород – бесцветный газ, без вкуса и
    запаха.

    б) Кислород немного легче воздуха.

    в) В кислороде горят и такие вещества, которые
    обычно считают негорючими, например железо.

    г) Известны химические элементы, которые
    непосредственно с кислородом соединяются. К ним
    относятся золото Au и некоторые другие.

    д) Применение кислорода основано на его
    физических свойствах.

    е) Непрерывный круговорот кислорода
    непосредственно связан с таким процессом, как
    фотосинтез.

    Ответ:

    а; в; е.

    (Слайд № 22) Задание №2. “Скорая помощь”

    Вставьте пропущенные вещества в уравнениях
    реакций:

    а) …….. Ca(OH)2 = CaCO3ГДЗ Химия 8 класc Габриелян О.С. , Остроумов И.Г., Сладков С.А.  2019 §13 КИСЛОРОД » Крутые решение для вас от GDZ.cool H2O

    б) S ……. = SO2

    в) ….. 2O2 = FeO * Fe2O3 или Fe3O4

    Ответ: а)CO2 б)O2 в) 3Fe

    (Слайд № 23) Задание №3. “Мозговой штурм”

    Расставьте коэффициенты в уравнениях реакций.

    а) CO2 H2O = C6H12O6 O2

    б) P O2 = P2O5

    Про кислород:  И с кислородом, и с водородом реагирует1) азот2) аммиак3) оксид меди(II)4)... - Правильные Решения и Ответы

    (Слайды № 24-25) Задание №4. “Ассоциации”

    С каким применением кислорода ассоциируется
    данное изображение?

    1) в металлургии;

    2) для резки металлов;

    3) в авиации для дыхания;

    4) в авиации для двигателей;

    5) для сварки металлов;

    6) на взрывных работах;

    7) в медицине.

    (Слайд № 26) V. Домашнее задание. (1 мин.)

    Параграф 20, 21;  №6-9 (с.60). Решите задачи 1-2 (с.60).

    Творческое задание:

    подготовить сообщение
    №10 с. 60 “Что делается в вашей местности для
    поддержания определенного содержания кислорода
    в воздухе? В чем может заключаться ваше участие в
    этой деятельности?”

    (Слайд № 27) VI. Рефлексия. (1 мин.)

    Учитель:

    • Сегодня я узнал…
    • было трудно…
    • я понял, что…
    • я научился…
    • я смог…
    • было интересно узнать, что…
    • меня удивило…
    • мне захотелось…

    VII. Подведение итогов урока. (1 мин.)

    (Слайд № 28)

    В чём горят дрова и газ,


    Фосфор, водород, алмаз?

    Дышит чем любой из нас

    Каждый миг и каждый час?

    Без чего мертва природа?

    Правильно, без….

    Обучающиеся: кислорода

    (Слайд № 29) Учитель: Правильно. Спасибо за
    урок! До свидания!

    Литература

    [1] Горковенко М. Ю. Поурочные разработки по
    химии 8 класс к учебникам О. С. Габриеляна, Л. С.
    Гузея, Г. Е. Рудзитиса. — М: “ВАКО”, 2004;

    [2] Радецкий А. М., Горшкова В. П. Дидактический
    материал: химия 8-9 классы — М: Просвещение, 1997.

    [3] Химия: неорганическая химия: учебник для 8
    класса общеобразовательных учреждений/ Г. Е.
    Рудзитис, Ф.Г. Фельдман. — М: “Просвещение”, 2022 г.

    Интернет-ресурсы

    1. http://files.school-collection.edu.ru/
    2. http://www.e-osnova.ru/

    Физические свойства

    Файл:AYool WOA surf O2.png

    В мировом океане содержание растворённого O2 больше в холодной воде, а меньше — в тёплой.

    При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

    1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C).

    Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C).
    Межатомное расстояние — 0,12074 нм. Является парамагнетиком.

    При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

    Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

    Файл:Phase diagram of oxygen.png
    Фазовая диаграмма O2

    Твёрдый кислород (температура плавления −218,35°C) — синие кристаллы.
    Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

    • α2 — существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейкиa=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°[4].
    • β2 — существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°[4].
    • γ2 — существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å[4].

    Ещё три фазы образуются при высоких давлениях:

    Химические свойства

    При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

    1. Кислород проявляет свойства окислителя(с большинством химических элементов) и свойства восстановителя(только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами, и с неметаллами. Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

    1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

    O2   2F2  →  2OF2

    С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

    1.2. Кислород реагирует с серой и кремниемс образованием оксидов:

    S O2 → SO2

      Si O2 → SiO2

    1.3.Фосфоргорит в кислороде с образованием оксидов:

    При недостатке кислорода возможно образование оксида фосфора (III):

    4P      3O2  →   2P2O3

    Но чаще фосфор сгорает до оксида фосфора (V):

    4P      5O2  →   2P2O5

    1.4.С азотомкислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000оС), образуя оксид азота (II):

        N2  O2→  2NO

    1.5. В реакциях с щелочноземельными металлами, литием  и алюминием кислород  также проявляет свойства окислителя. При этом образуются оксиды:

    2Ca       O2 → 2CaO

    Однако при горении натрияв кислороде преимущественно образуется пероксид натрия:

        2Na O2→  Na2O2

    А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

        K O2→  KO2

    Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

    Цинк окисляется до оксида цинка (II):

    2Zn O2→  2ZnO

    Железо, в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

    2Fe O2→  2FeO

    4Fe 3O2→  2Fe2O3

    3Fe 2O2→  Fe3O4

    1.6. При нагревании с избытком кислорода графит горит, образуя оксид углерода (IV):

    C     O2  →  CO2

     при недостатке кислорода образуется угарный газ СО:

    2C     O2  →  2CO

    Алмаз горит при высоких температурах:

    Горение алмаза в жидком кислороде:

    Графит также горит:

    Графит также горит, например, в жидком кислороде:

    Графитовые стержни под напряжением:

    2. Кислород взаимодействует со сложными веществами:

    2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды. При этом образуются оксиды:

    4FeS 7O2→  2Fe2O3 4SO2

    Al4C3 6O2→  2Al2O3 3CO2

    Ca3P2 4O2→  3CaO P2O5

    2.2. Кислород окисляет бинарные соединения неметаллов:

    • летучие водородные соединения (сероводород, аммиак, метан, силан гидриды. При этом также образуются оксиды: 

    2H2S 3O2→  2H2O 2SO2

    Аммиакгорит с образованием простого вещества, азота:

    4NH3 3O2→  2N2 6H2O

    Аммиакокисляется на катализаторе (например, губчатое железо) до оксида азота (II):

    4NH3 5O2→  4NO 6H2O

    • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора (сероуглерод, сульфид фосфора и др.):

    CS2 3O2→  CO2 2SO2

    • некоторые оксиды элементов в промежуточных степенях окисления (оксид углерода (II), оксид железа (II) и др.):

    2CO O2→  2CO2

    2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

    Например, кислород окисляет гидроксид железа (II):

    4Fe(OH)2 O2 2H2O → 4Fe(OH)3

    Кислород окисляет азотистую кислоту:

    2HNO2 O2 → 2HNO3

    2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

    CH4 2O2→  CO2 2H2O

    2CH4 3O2→  2CO 4H2O

    CH4 O2→  C  2H2O

    Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

    2CH2=CH2 O2 → 2CH3-CH=O

    Оцените статью
    Кислород
    Добавить комментарий