Как известно, рыбы дышат кислородом, растворённым в воде. Что можно сказать о требовательстве к содержанию кислорода в воде таких известных видов рыб, как карась и форель, если первый предпочитает стоячую воду, а вторая водится только в быстрых

Как известно, рыбы дышат кислородом, растворённым в воде. Что можно сказать о требовательстве к содержанию кислорода в воде таких известных видов рыб, как карась и форель, если первый предпочитает стоячую воду, а вторая водится только в быстрых Кислород

Кое-что полезное «на десерт»

Рыбы — это не только животные, но и … ценный продукт питания. А некоторые знания о жабрах могут помочь выбрать «правильную» рыбку, не только вкусную, но и полезную. Вот вам три основных совета:

  • выбирая рыбу, обязательно взгляните на жабры, розовые — смело покупайте;
  • рыбку с ярко-розовыми жабрами лучше не брать, поверьте мне, нередки случаи, когда продавцы подкрашивают их марганцовкой, чтобы выдать лежалый товар за свежий улов;
  • если готовите рыбу с головой, то обязательно удалите жабры, ведь вся бяка, содержащаяся в воде, накапливается именно в них.

А жабры ли главные

Несомненно, жабрами «пользуются» все рыбки без исключения. И их принято называть главными в обеспечении рыбьего дыхания. Но ведь именно вспомогательные способы были «придуманы» природой, чтобы дать водным жителям возможность выжить в неблагоприятных условиях.

Эти механизмы начинают работать тогда, когда жабры становятся почти бесполезными. Например, дышать кожей тоже могут абсолютно все рыбы, только когда вода чистая и богата кислородом, необходимости в этом нет, и кожное дыхание составляет всего 5%. Зато когда О₂ в воде мало, интенсивность его возрастает до 80%.

Другие механизмы дыхания у рыб

Многие рыбы дышат через кожу, особенно когда рождаются, потому что они настолько малы, что у них нет специализированных органов. По мере роста развиваются жабры, потому что диффузии через кожу недостаточно. 20% или более кожного газообмена наблюдают у некоторых взрослых рыб.

Некоторые виды рыб имеют развитые полости за жабрами, которые заполняются воздухом. У других сложные органы, развитые из орошаемой жаберной дуги, формируются и действуют как легкое.

Некоторые рыбы дышат воздухом без специальной адаптации. Американский угорь покрывает 60% потребностей в кислороде через кожу и 40% заглатывает из атмосферы.

Как же они дышат

Итак, дыхание у рыбок бывает двух видов: водное и воздушное. В первом участвуют:

Во втором:

  • кожа;
  • плавательный пузырь;
  • кишечник;
  • наджаберные органы.

Появились и трансформировались они под действием условий обитания. Конечно, наиглавнейшим органом, благодаря которому обитатели глубин могут дышать — это жабры. Каждая из двух жабр состоит из 5 дуг: четырех полностью сформировавшихся и одной «недоделанной».

На этих дугах размещаются лепестки, а на них — лепесточки или, по-другому, вторичные пластинки. Их очень много, свыше 30 штук на каждый миллиметр. Благодаря лепесткам и лепесточкам площадь поверхности жабр бывает в несколько раз больше поверхности тела рыбы.

И вся она густо-густо оплетена мельчайшими кровеносными сосудиками. Кровь, поступившая в них, забирает из воды растворенный кислород, захватывая его с помощью гемоглобина (не удивляйтесь, у рыб он тоже есть). И разносит живительный О₂ по всем органам и тканям рыбы.

Как известно, рыбы дышат кислородом растворённом в воде? — химия

Вы открыли страницу вопроса Как известно, рыбы дышат кислородом растворённом в воде?. Он относится к категории
Химия. Уровень сложности вопроса – для учащихся 5 — 9 классов.
Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие
ответы по интересующей теме. Чтобы получить наиболее развернутый ответ,
можно просмотреть другие, похожие вопросы в категории Химия,
воспользовавшись поисковой системой, или ознакомиться с ответами других
пользователей. Для расширения границ поиска создайте новый вопрос, используя
ключевые слова. Введите его в строку, нажав кнопку вверху.

Про кислород:  Пульсоксиметр cms 50 dl с принадлежностями

Как работают жабры

Жабры рыб видны, когда смотрят на их головы. Это линии по бокам головы рыбы. Жабры также находятся внутри тела рыб, но их нельзя увидеть снаружи – так же, как наши собственные легкие. Можно видеть, как рыба дышит в воде, потому что ее голова становится больше, когда она набирает воду. Также как когда человек заглатывает большой кусок еды.

Сначала вода поступает в рот рыб и протекает через жабры. Когда вода покидает жабры, она возвращается в водоём. Кроме того, углекислый газ, который вырабатывает рыба, также удаляется вместе с водой, когда она покидает жабры.

Забавный факт: рыбы и другие животные с жабрами дышат кислородом, потому что их кровь течет через жабры в противоположном направлении от воды. Если бы кровь текла через жабры в том же направлении, что и вода, рыба не получила бы из неё необходимый кислород.

Жабры подобны фильтру, и они собирают из воды кислород, необходимый рыбе для дыхания. После того, как жабры поглощают кислород (круговорот кислорода), газ распространяется по крови и питает тело.

Вот почему так важно оставлять рыбу в воде. Без воды они не получат кислород, необходимый для здоровья.

Роль кислорода в жизнедеятельности рыб – аграрий

Все рыбы дышат растворенным в воде кислородом, поэтому его содержание для них имеет решающее значение. Дышать водным животным значительно тяжелее и не только потому, что в воде в 21 раз меньше кислорода, но и потому, что вода плотнее воздуха в 800 раз.

Пелагические, речные и холодолюбивые рыбы более требовательны к кислороду, чем донные.

Кислород необходим рыбам для обеспечения аэробного энергообмена в индивидуальном развитии, и они могут обходиться без него самое короткое время только на ранних стадиях. Гликолиз у рыб чаще всего имеет место в зрелых половых клетках и у эмбрионов, т.е. в самом начале становления новых организмов.

В подавляющем большинстве рыбы используют кислород, растворенный в воде, и лишь некоторые виды способны дополнительно использовать атмосферный кислород .

По отношению к кислороду рыб делят на следующие группы:

  • нуждающиеся в высоком содержании кислорода (7-12 мг/л), при снижении его содержания до 5-6 мг/л дыхание невозможно (форели, сиги);
  • нуждающиеся в высоком содержании кислорода (5-8 мг/л), но выдерживающих его уменьшение до 5 мг/л (многочисленная группа пресноводных рыб: хариус, подуст, пескарь, налим);
  • менее требовательные к содержанию кислорода, легко переносящие его уменьшение до 5 мг/л (окунь, карп, плотва, щука);
  • довольствующиеся содержанием кислорода в 2,0-0,5 мг/л (линь, сазан, карась).

Морские рыбы более чувствительны к понижению содержания кислорода, чем речные, и задыхаются при уменьшении его содержания до 60-70% нормы (Котляр, 2007).
Потребление кислорода рыбами зависит от вида, возраста, подвижности, плотности посадки, физиологического состояния и солености воды.

Молодь рыб более чувствительна к содержанию кислорода, чем старшие возрастные группы.

Подвижные рыбы больше потребляют кислорода, чем малоподвижные.

Перед нерестом потребление кислорода рыбами возрастает на 23-30% по сравнению с другими периодами.

В холодной воде кислорода растворяется больше, чем в теплой, следовательно, при низких температурах рыба нуждается в меньшем количестве гемоглобина.

Рыбам вреден не только недостаток кислорода, но и его избыток который вызывает анемию и удушье.

Обогащение воды кислородом происходит в основном двумя путями: продуцированием кислорода фтосинтезирующими растениями и поступлением его из атмосферы.

Про кислород:  Сжижение водорода и кислорода | Oxygen Not Included Guide Вики | Fandom

Расходуется кислород на обеспечение процессов жизнедеятельности гидробионтов и окисление органических и минеральных веществ. Следовательно, любые воздействия на водоем, которые снижающие продуцирование кислорода или увеличивающие его расход, могут принести к нарушению кислородного режима водоема, к возникновению в нем кратковременного или длительного дефицита.

Даже в нормальных условиях концентрация растворенного кислорода в пресных водоемах претерпевает значительные изменения в зависимости от интенсивности фотосинтеза и степени насыщения воды воздухом. В теплых поверхностных слоях, где фотосинтез идет особенно интенсивно, концентрация кислорода, как правило, выше, чем в более глубоких слоях. В морях и океанах, где перемешивание более эффективно, концентрация кислорода и углекислого газа более постоянна, чем в пресных водоемах.

Существенное влияние на уровень насыщения воды кислородом оказывает температура, поскольку с ее изменениями меняется величина растворимости кислорода. При прочих равных условиях растворимость кислорода в пресной воде выше, чем в соленой.

Помимо температуры и солености, на содержание кислорода в воде влияют сезонные и суточные изменения интенсивности фотосинтеза водных растений, особенности динамики потребления кислорода рыбами и другими водными животными, количество находящихся в воде легко окисляемых органических и минеральных веществ, сезонные особенности поглощения кислорода поверхностными слоями воды из воздуха. Вследствие этого в водоеме имеют место сезонные и суточные колебания концентрации растворенного в воде кислорода.

Кратковременные суточные изменения концентраций кислорода в воде представляют для рыб меньшую опасность, чем более длительные сезонные изменения. Зимой, вследствие образования ледяного покрова, препятствующего поступлению кислорода из воздуха, содержание растворенного в воде кислорода во многих водоемах снижается до 50–25% нормы по сравнению с летним периодом .

Дефицит кислорода приводит к массовым заморам рыб, нередко заморы возникают летом, главным образом ночью, из-за усиленного потребления кислорода водной растительностью или при массовом отмирании водорослей, чаше всего в слабо проточных водоемах.

Еще более существенное воздействие на кислородный режим водоемов оказывают загрязнения, поступающие с промышленными, сельскохозяйственными и бытовыми сточными водами. Большинство сточных вод, наряду с прямым токсическим воздействием на рыбу, вызывает резкий дефицит растворенного в воде кислорода, ведущий к обеднению кормовой базы и исчезновению оксифильных видов рыб (Котляр, 2007).

Около половины всех случаев массовой гибели рыб в загрязненных водоемах обусловлено резким дефицитом растворенного в воде кислорода, в связи с усиленным его расходом на окисление органических загрязнений.

Устойчивость рыб к дефициту кислорода определяется глубиной и длительностью наступивших изменений, температурой воды, ее химическим составом, видовыми и возрастными особенностями рыб.

Интенсивность потребления рыбой кислорода находится в прямой зависимости от температуры воды. При низких температурах потребность рыб в кислороде меньше, чем при высоких.

Чувствительность рыб к недостатку кислорода у холодолюбивых рыб значительно выше, чем у теплолюбивых (карповых, окуневых), а устойчивость, напротив, у теплолюбивых выше, чем у холодолюбивых, хотя разрыв между пороговым напряжением кислорода, вызывающим гибель и критическим, при котором наступает реальное угнетение дыхания и снижение потребление кислорода, чрезвычайно мал, что делает рыб более уязвимыми при резком изменении кислородного режима.

Рыбы способны выживать при концентрации кислорода ниже уровня нормального насыщения. Длительность выживания определяется степенью снижения содержания кислорода: чем существеннее отклонения, тем короче время выживания и, наоборот, чем менее значительны изменения концентрации кислорода, тем длительнее время выживания в дискомфортных условиях.

Хотя рыбы и способны переносить низкие концентрации кислорода более или менее длительный период не погибая, почти любое снижение содержания кислорода ниже уровня насыщения отрицательно влияет на рост и воспроизводство и другие физиологические функции рыб. Особенно велико отрицательное влияние пониженных концентраций кислорода на ранних этапах развития и роста рыб.

Про кислород:  Относительная плотность паров органического соединения по кислороду равно 2,25. При сжигании 7,2 гр этого вещества образуется 22 гр у CO2 и 10,8 гр воды. Выведите формулу углерода -

При недостаточном содержании кислорода возникают различные нарушения в строении зародышей рыб. При снижении кислорода в воде, мальки не могут заполнить плавательный пузырь воздухом, подняться на плав и начать питаться. При этом вылупившиеся личинки имеют меньшую массу и размеры в сравнении с личинками, развитие которых проходило при нормальном насыщении кислорода. Дальнейшее снижение концентрации кислорода заканчивается гибелью всех зародышей еще до завершения инкубации.

Низкое содержание кислорода в воде (0,5-3,0 мг/л) оказывает губительное действие на большинство видов рыб. При содержании в воде растворенного кислорода ниже 4 мг/л многие промысловые виды рыб испытывают затруднения в дыхании, а у лососевых и осетровых угнетение дыхания может наступить даже при концентрации кислорода ниже 6 мг/л.

Большую угрозу для жизни рыб представляют сточные воды, содержащие бистро и медленно окисляющиеся вещества, которые весьма интенсивно поглощают кислород, вызывая тем самым снижение его содержания в водоемах. Особенно опасны в этом отношении хозяйственные сточные воды и стоки пищевых предприятий (мясокомбинатов, сахарных и картофелекрахмальных, винокуренных, дрожжевых) и кожевенных заводов. Обилие органики животного и растительного происхождения в сточных водах этих предприятий, как правило, лишенных специфических токсических свойств, ведет к отложению их на дне и формированию донных отложений.

Органические донные отложения со временем подвергаются процессам гниения, брожения и окисления. Эти процессы связаны с расходованием огромного количества кислорода, что приводит к резкому снижению его содержания в воде. Не меньшую опасность представляют органические сточные воды со специфическими токсическими свойствами, сбрасываемые кожевенными и целлюлозно-бумажными предприятиями. Они также вызывают дефицит кислорода за счет усиленного его потребления на биохимические и окислительные процессы.

Дефицит кислорода в загрязненном рыбохозяйственном водоеме может возникать вследствие угнетения фотосинтетических процессов в водоеме. Показательны в этом отношении загрязнения водоемов нефтью и нефтепродуктами.

Они образуют на поверхности водоема пленку, препятствующую нормальному газообмену между водой и атмосферой. Одна тонна нефти дает пленку в 10 км2.
Одновременно с этим нефтяная пленка затрудняет доступ солнечных лучей к фитопланктону, угнетая тем самым фотосинтез. Нефть и нефтепродукты подвергаются биохимическому окислению с интенсивным расходованием кислорода, ведущим к его дефициту в водоеме.

Нефть и нефтепродукты в количестве 15 мг/л абсолютно смертельны для всех живых существ, вызывая паралич дыхательных нервов.

Снижение фотосинтеза фитопланктоном и поверхностно-активные вещества (ПАВ), некоторые тяжелые металлы, многие пестициды.

Многие гербициды и альгициды оказывают угнетающее действие на процессы фотосинтеза низших и высших водных растений, снижая тем самым образование кислорода и его содержание в водоеме.

Нулевое содержание кислорода отмечается при поступлении гербицидов (монурона и диурона) в водоемы с большой биомассой макрофитов или при интенсивном развитии синезеленых водорослей. Массовое развитие синезеленых водорослей и их последующее отмирание и разложение, связанное с огромным расходом кислорода, также ведут к его дефициту в водоеме и могут быть одной из причин гибели рыб в цветущих водоемах.

Рыбам вреден и избыток кислорода. При перенасыщении воды газами, рыба также перенасыщается газами. При этом выделение газовых пузырьков происходит в тканях рыб. Пузырьки рвут кожу и плавники, выдавливают глаза, закупоривают кровеносные сосуды.

Перенасыщение воды кислородом наблюдается в водоемах при сильном освещении и мощном развитии зеленых водорослей.

Оцените статью
Кислород
Добавить комментарий