Как проверить лямбда зонд на работоспособность своими руками мультиметром и осциллографом, где находится датчик кислорода в авто » АвтоНоватор

Как проверить лямбда зонд на работоспособность своими руками мультиметром и осциллографом, где находится датчик кислорода в авто » АвтоНоватор Кислород

Восстановление датчика кислорода

А началось все с установки бортового компьютера… Все-таки, как оказалось, полезная и интересная это штука! Много чего умеет 🙂 Бортовик десяточный, достался мне по счастливой случайности от друга… Ну если он работает, то почему бы мне его не вкорячить?

Таким образом он занял место пепельницы, откуда, как выяснилось, он прекрасно осматривается и где не мешает. Я доволен. Ведь основной причиной моего противления бортовикам было нежелание убирать так полюбившуюся мне полочку в месте, задуманном как раз под бортовик. Ну а раз такая удача… 🙂

Слегка

Выяснилось, что ЭБУ Ласточки, несмотря на то, что лампа «Джеки Чан» (он же «карапуз», «смени двигатель») не горит, гонит пару-тройку ошибок: высокий уровень сигнала датчика фаз, неисправность нагревателя датчика кислорода и неверный сигнал датчика кислорода. С ума сойти!

То-то я стал замечать что-то неладное: провалы какие-то, в частности на несильно прогретом движке, заводиться стала хуже, особенно на горячую. Ну с датчиком фаз (он же ДПРВ) все оказалось просто… После проверки убедился, что он приказал долго жить, хоть и простой конструкции, как шпингалет.

В пору неработоспособности датчика фаз инжектор переключается с фазированного на попарно-параллельный впрыск, что в общем-то некритично: время впрыска уменьшается, льет одновременно в два горшка, что ведет к не очень существенному перерасходу (до 10%), холостой ход слегка нестабильный становится ну и заводится дольше обычного.

А с лямбдой все куда интереснее. После завода двигателя лямбда-зонд начинает свою работу не сразу, а только после достижения высокой температуры (до 300 градусов) . Это обусловлено химической составляющей концепции работы датчика. Циркониевый электролит с нанесенными на него платиновыми электродами приобретает достаточную проводимость только при этих температурах.

До высоких температур датчик нагревается от выхлопных газов, однако происходит это довольно медленно, поэтому в современных датчиках встроена цепь нагрева рабочего элемента, которая включается от реле бензонасоса. ЭБУ после завода двигателя дает датчику время на прогрев от термоэлемента от 5 до 7 минут, корректируя состав смеси на основании показаний других датчиков и по усредненным параметрам.

Из-за неисправности цепи подогрева датчик не успевал прогреваться за отведенное время и, когда ЭБУ подключал его к работе, он был еще не готов к немедленным и решительным действиям 🙂 В итоге возникала ошибка неверного сигнала датчика кислорода. Движок же тем временем начинало реально колбасить: холостые держит еле кое-как, ехать машина вообще с трудом могла.

Ощущение при этом такое, что она не выспалась: вялая такая, тупая. И все это происходит до тех пор, пока датчик не прогреется от выхлопных газов и не начнет нормально функционировать. Благо, прогревается он не так уж и долго, а после установки паука, так и еще быстрее.

Но мой ДК новый, в октябре только поменял(!), и работает вроде неплохо, что же с нагревом? Выяснить мне этого не удалось — цепь нагревателя прекрасно звонится, а при подключения 12 вольт с блока питания в домашних условиях она работает, и датчик на ощупь становится теплее!

А нового образца у меня стоял до него, но был заменен по причине усталости в эпоху борьбы с перерасходом неровной работой двигателя, повальной диагностикой и заменой многих датчиков (в том числе ДМРВ и РХХ), промывкой форсунок. Ради интереса решил поставить его.

Динамика автомобиля ощутимо ухудшилась, расход подрос, однако ошибки системы пропали 🙂 Анализ работы этого датчика по изменению напряжения выявил, что фронт напряжений уменьшился, зачастую напряжение на датчике приближалось к среднему значению 0,45 вольт, чего в принципе быть не должно (напомню, что порог обедненной смеси <

0,25 вольт, а обогащенной — >0,65 вольт) . Так же время реакции датчика было слегка выше, чем нужно (Часто значения напряжения менялись реже двух раз в секунду) . Конечно, подключить осциллограф и получить точные эпюры зависимости милливольт от миллисекунд у меня возможности не было, но косвенные признаки явно указывали на то, что датчик действительно «устал».

Заинтересовавшись вопросом, нашел в интернете некоторые идеи и даже чей-то опыт по восстановлению работоспособности лямбда-зондов. Однако, ни одного подробного и детального описания с фотографиями мне встретить так и не пришлось… А мне чего терять? Да и интерес был велик 🙂 Вот и занялся.

Восстановление происходит за счет банального очищения платиновых электродов на керамическом стержне от нагара. Дело в том, что нагар препятствует улавливанию кислорода и, соответственно, искажает выходной сигнал. Очищать нагар механическими средствами-абразивами строго нельзя, поскольку в этом случае повредится напыление благородного металла.

Приступаем. Для очистки датчик лучше вскрыть. Отпиливаем защитный колпачок почти у основания и обнаруживаем — что бы вы думали? 🙂 — еще один колпачок, который то же спиливаем у основания. Двойная защита, надо же… Интересно, зачем? Пилится, к слову, весьма непросто… Полотно садится — дай Боже, твердый какой-то металл.

В конечном итоге видим следующую картину:

Белый керамический стержень с таким же белым нагаром. Рабочей поверхности с напылением платины за нагаром невидно вообще 🙂 Очень интересно. В очистке от нагара нам понадобится реактив — ортофосфорная кислота, которая состоит в составе преобразователя ржавчины.

Ну что, наливаем этого средства в стеклянную тару, погружаем в реактив датчик и наблюдаем, как на его поверхности начинают образовываться пузырьки, а жидкость начинает мутнеть.

Оставляем датчик плавать минут на 20. Нагар потихоньку начинает сходить, помогаем ему кисточкой. По прошествии времени начинает проявляться рабочая поверхность с напылением — значит мы близки к цели! В ходе процесса пару раз раскаляем керамический стерженек на открытом огне.

Такое нагревание очень хорошо позволяет избавиться от нагара, особенно, если после нагрева резко охладить стержень. Перепад температур вынуждает нагар трескаться и отваливаться, как скорлупу. Однако, я допустил одну досадную ошибку, которая сгубила весь эксперимент… В преобразователе ржавчины содержится присадка, которая после обработки детали покрывает ее слоем невидимого защитного слоя, вроде грунта.

По уму образующуюся пленку надо бы смывать водой, пока не засохла… А моя ошибка заключалась в том, что после нагрева я остужал стержень не в воде, а в нашем растворе. На раскаленный стержень моментально налипли эти присадки и тут же засохли, образовав гладкую поверхность, плотно закрывая электрод даже больше, чем это делал бывший там доселе нагар.

В недрах стержня отчетливо видны тончайшие нити спирали подогрева — блин, надо ж было такое сконструировать! Жалко, черт возьми, почти ведь был у финала… Конечно, теперь датчик почил окончательно. Испытания показали, что он застыл на странном показании в 1,13 вольта.

Но зато теперь я опытен 🙂 И следующего испытуемого постараюсь очистить без негативных последствий.После очистки колпачок (хотя бы один) должен был прихватиться на пару-тройку точек полуавтоматической кемпи-сварки.Во всех экспериментах мне помогал папка :-), за что тому отдельное спасибо!

P. S.: За месяц моего молчания поставил на Ласточку паука, доставшегося от любезнейшего товарища blond707. 4-2-1. Возился с другом Эльдаркой Mania4e11o два дня и полторы ночи, зато теперь могу хвастаться тем, что мы смогли (или лучше — умудрились? 🙂 ) высверлить заломанную шпильку и нарезать новую резьбу м8, не снимая головки блока!

День пришлось покататься с абсолютным прямотоком — без глушителя и резонатора, потому что флянец паука оказался дальше, чем у стандартных штанов и труба-проставка вместо катализатора оказалась попросту слишком длинной. На следующий день удалось достать баллон с углекислотой и укоротить эту трубу в гаражных условиях путем вырезания куска трубы с середины и последующего сваривания краев.

Эффект от паука неожиданно ощутимый: момент сместился к более низкой отметке оборотов, машина куда резвее на средних оборотах. На высоких я бываю крайне редко, но и даже на низких как-то поприятнее стало — плавнее как-то, приемистость получше — в общем, я рад, не зря заморочился.

Газоанализаторы кислорода (o2) — обзор, характеристики, цены

Газоанализатор взрывоопасных и токсичных газов
Измерение:O2, CO, CO2, SO2, H2S, NO2, EX, CH4, C3H8, SumCH
Блок питания и сигнализации
Измерение:O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, C2H2, D2O, SumCH
Измерение:O2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, SumCH
Сигнализатор горючих и токсичных газов
Газоанализатор многокомпонентных смесей
Система контроля атмосферы
Измерение:O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, EX, CH4, C3H8, C2H2

§

Многокомпонентный газоанализатор промышленных выбросов
Измерение:O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL
Газоанализатор универсальный
Измерение:O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, CH4, C3H8, C2H5OH, C6H14, O3, SF6
Измерение:O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, EX, CH4, C3H8, C6H14, O3
Газоанализатор взрывоопасных паров переносной
Измерение:O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, EX, CH4, C3H8, C6H14, O3
Измерение:O2, CO, CO2, SO2, H2S, CL2, NO, NO2, NH3, HCL, EX, CH4, C3H8, C6H14, O3
Газоанализатор кислорода, токсичных и горючих газов
Измерение:O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, CH4, C3H8, C6H14, HF
Газоанализатор кислорода и токсичных газов
Измерение:O2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, HF
Переносной многокомпонентный газоанализатор
Измерение:O2, H2, CO, CO2, SO2, H2S, CL2, NO2, NH3, HCL, CH4, C3H8, C2H5OH, CH3OH
Портативный газоанализатор
Измерение:O2, H2, CO, CO2, SO2, H2S, NO, NO2, NH3, HCL, EX, CH4, PH3

§

Портативный газоанализатор
Измерение:O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, HCL, EX, O3, HF, PH3
Измерение:O2, H2, CO, CO2, SO2, H2S, CL2, NO, NO2, HCL, EX, O3, HF, PH3
Портативный газоанализатор

Датчик кислорода 25.368889 инструкция по проверке и эксплуатации — клуб газелистов россии

Демонтаж изделия:
Процесс диагностики, осуществляемый перед демонтажем датчика с транспортного средства:
— Визуальный осмотр;
— Поиск повреждения или обрыва контакта в цепи соединения «датчик — транспортное средство».
— Поиск повреждения проводов датчика или жгута проводов автомобиля, присоединяемого к нему вследствие обрыва, истирания, износа из-за трения или оплавления от горячих частей двигателя.
— После разъединения электрических разъемов жгутовой части и датчика провести визуальную оценку на наличие в обоих разъемах следов коррозии на контактах или отложений солей на корпусе разъемов.
— При отсутствии следов коррозии или повреждения проводов заново подсоединить датчик к жгуту проводов и проверить наличие ошибки.
— В случае устранения ошибки при повторном подключении необходимо устранить все проблемы, обнаруженные в процессе визуальной проверки.
Проверка сигнала датчика:
Если при наружном осмотре не удалось выявить никаких проблем, данный датчик следует снова подсоединить к электропроводке транспортного средства. Если для проверки датчика Вы используете специальные средства/оборудование для диагностики или инструмент для сканирования, надо следовать инструкциям фирмы-изготовителя данного оборудования.
ПРЕДОСТЕРЕЖЕНИЕ: В случае необходимости подключения к цепи датчика не следует обрезать/зачищать или прокалывать провода датчика или жгута проводов транспортного средства. Датчик вырабатывает очень слабый сигнал. Коррозия или повреждение электропроводки могут привести к искажению сигнала датчика или его «отравлению» из-за попадания загрязнения через проводку на чувствительный элемент.
— С помощью средств диагностики датчика или сканирующего инструмента следует проверить уровень напряжения перед запуском двигателя. При включенном зажигании автомобиля и отсутствии питания нагревательного элемента датчика, уровень напряжения должен быть примерно 450 мВ. В случае же наличия тока в системе нагревателя, измеряемый уровень напряжения должен быть > 1.0 В. Этот уровень напряжения генерируется контроллером системы управления двигателем (КСУД). Если напряжение отсутствует, следует отсоединить датчик и проверить уровень напряжения на контактах разъема жгута автомобиля. Если на жгутовом разъеме присутствует напряжение указанного выше уровня, значит короткое замыкание и датчике или его проводке. Необходимо демонтировать изделия для его дальнейшего анализа. Если же напряжение отсутствует на разъеме автомобильного жгута — следовательно возникла неполадка в электропроводке или электронном оборудовании автомобиля.
— Нужно снова подсоединить данный датчик и запустить двигатель. Установить средние обороты двигателя для разогрева датчика кислорода до рабочей температуры. Это состояние надо поддерживать в течение от 1 до 2 минут для обеспечения того, чтобы двигатель вышел в рабочий режим. Как только данный двигатель выйдет в рабочий режим, уровень измеряемого напряжения на датчике должен колебаться в пределах от 100 до 250 мВ и от 700 до 900 мВ. Если этот уровень напряжения не наблюдается, следует определить, чем вызвано проявление данной неполадки — работой двигателя или функционированием датчика.
— Следует проверить проводку двигателя и проверить уровень напряжения зажигания в контуре нагревателя.
ПРИМЕЧАНИЕ: при отсоединенном датчике и заземлив сигнальный провод жгута проводов автомобиля, можно проверить целостность электропроводки электронного оборудования автомобиля с помощью специально сканирующего устройства; по показаниям сканирующего тестера уровень выходного сигнала датчика должен составлять < 50 мВ.

Проверка датчика после демонтажа:
Если на нижнем защитном колпачке датчика видны следы загрязнения (оседания сажи), причиной этого может быть попадание масла, эксплуатационных жидкостей в вы хлопную систему или некачественное топливо.

Датчик кислорода при правильной эксплуатации 

Датчик кислорода при правильной эксплуатации

Щели защитного колпачка с отложениями Щели защитного колпачка с отложениями

Защитный колпачок в саже, свидетельствующий об «отравлении» Защитный колпачок в саже, свидетельствующий об «отравлении»

Если наблюдаются обильное отложение сажи и нагара, то скорее всего это результат использования топлива ненадлежащего качества или изменение режимов сгорания топливной смеси двигателя.
Если датчик имеет комнатную температуру, необходимо провести замер сопротивления между контактами управляющей цепи — черный и серый провод. Если сопротивление менее 1 Мом — датчик имеет внутреннее короткое замыкание. На датчике при комнатной температуре (Т= 21°C) провести замер сопротивления контура нагревателя — между фиолетовым и белым проводами. Нормальное сопротивление данного контура составляет 8.1 — 11.1 Ом.
dadchik-kis4

Если датчик имеет повышенную температуру после эксплуатации или при повышенной температуре окружающей среды, сопротивление будет немного больше, указанного выше. Если датчик холодный, сопротивление будет немного меньше. Дополнительную информацию по методам и процедурам диагностики можно почерпнуть в инструкции по эксплуатации и обслуживанию автомобиля. При обнаружении повреждений данного датчика необходимо выявить основную причину возникновения повреждения, приведшую к данному отказу.
Противозадирная смазка.
На все датчики кислорода поставляемые заказчику при производстве обязательно
наносится специальная «сухая» противозадирная смазка. В случае использования крепежной резьбы рекомендованного типоразмера этот материал обеспечивает гарантированные противозадирные свойства, так что применение каких-либо дополнительных противозадирных мер не требуется. Если датчик демонтирован с автомобиля и должен быть заново установлен, следует снова нанести противозадирную смазку. Для этого должна применяться высокотемпературная противозадирная смазка, подходящая для этих целей. Она должна наноситься согласно рекомендациям на этикетке. При необходимости можно обратиться к производителю за дополнительной информацией.
ВНИМАНИЕ: данную смазку следует наносить только на резьбовую часть. При попадании этой смазки на нижний защитный колпачок датчика она может повлиять на функционирование этого датчика и его характеристики. Перед повторной установкой датчика необходимо снять использованную уплотнительную шайбу и установить новую.

Информация по электрическому разъему.Контактный разъем
dadchik-raz1 

Цоколевка разъема
Контакт 1: силовое питание нагревателя (14 Вольт) (фиолетовый провод)
Контакт 2: заземление нагревателя (белый провод)
Контакт 3: заземление датчика (серый провод)
Контакт 4: выходной сигнал датчика (черный провод)

Маркировка изделия.
Корпус датчика

Маркировка датчика кислорода 

Расшифровка маркировки на изделии: DDDY L S
DDD: Дата по юлианскому календарю
Y: Год
P: Место изготовления
S: Код смены (1-3)

Установка датчика на автомобиль
НЕОБХОДИМО: при установке датчика, затягивать резьбовое соединение с рекомендованным усилием затяжки.
— Вставить датчик в выхлопную трубу и вручную завинтить его до упора уплотнительной
шайбы.
— При обращении с датчиком следует брать его за корпус, не использовать жгут проводов при монтаже.
— Затяжка датчика согласно следующим параметрам: Вращающий момент при установке: 40 – 60 Н/м (30 – 44 фунтов / фут)
Усилие натяжения: максимально допустимое усилие натяжения на разъем датчика –100 Н (22 фунтов)
Монтажная часть:резьба M18 x 1.5 — 7G
Наружный диаметр: 18.032 – 18.485 мм
Внутренний диаметр: 16.408 – 16.783 мм
Диаметр начальной окружности: 17.058 – 17.294 мм
Материал: ферритная нержавеющая сталь или аналогичный материал
Качество резьбы: нити резьбы не должны иметь неровностей или прочих дефектов, которые могут осложнить установку датчика или его демонтаж.
Мин. толщина: 9.0 мм
Поверхность уплотнения: см. габаритный чертеж и требования ниже
установка датчика кислорода газель 

— После установки датчика в нейтрализатор или выхлопную трубу с соответствующим усилием затяжки, контактный разъем датчика устанавливается в ответную часть жгута проводов автомобиля.

Тест «погремушка»

Надо взять в руку корпус датчика вместе с уплотнительным кольцом и потрясти над ухом. Если слышно дребезжание, значит внутренний керамический элемент разбит/сломан.

dadchik-kis5 

dadchik-kis7 

Сломанный элемент (внутренняя керамическая деталь)

Как проверить лямбда-зонд самостоятельно

Автомобиль едет рывками, повысился расход топлива, загорелся «Check Engine». Признаки характерны
не только для поломки лямбды, поэтому нужна полная диагностика систем. Но если вы уверены, что дело в нем
и не готовы ехать к специалисту, рассказываем,
как проверить датчик своими руками.

Проверка датчика кислорода мультиметромПроверка лямбда-зонда мультиметром.

Проверять кислородные датчики рекомендуют через замер значений напряжения. Подобную проверку мультиметром, тестером и омметром
можно сделать самостоятельно.

Видео о проверке датчика.

Порядок действий:

  1. Прогрейте двигатель до рабочей температуры.
  2. Снимите и осмотрите зонд и проводку на предмет механических повреждений и загрязнений.
    Если он погнут, поцарапан или покрыт наростом сажи, свинцовым налетом, белым или серым нагаром, меняйте.
  3. Проверьте работоспособность лямбда-зонда омметром. Часто причина неисправности кроется в поломке спирали подогрева
    или проводов к нему. Как его «прозвонить»? Присоедините омметр между проводами нагревателя,
    предварительно отсоединенные от колодки. При исправной работе сопротивление сигнальной цепи на разных автомобилях
    меняется от 2 до 10 Ом и от 1 ком до 10 мОм в цепи подогрева. Если его нет совсем, в проводке обрыв.
  4. Протестируйте сигнал зонда с помощью мотор-тестера, стрелочного вольтметра или осциллографа.
    Подсоедините тестер между проводом массы и сигнальным, поднимите обороты до 3 000 Нм, засеките время и следите за
    показаниями. Они должны изменяться от 0.1 до 0.9 вольт. Рекомендуем заменить датчик, если диапазон изменений меньше
    или за 10 секунд сменилось меньше 9–10 показаний. Причина ошибки может быть в «усталости» и
    медленном отклике системы.
  5. Проверьте исправность лямбда-зонда через опорное напряжение. Заведите машину, измерьте напряжение между массой и
    сигнальным проводом. Если показатели отличаются от 0.45 вольт больше, чем на 0.2, датчик или цепи в цепи,
    ведущие к нему, неисправны.

Если нет приборов для проверки, обратитесь к специалистам. Они проведут полную диагностику и точно назовут
причину неисправности.

Купить газоанализатор кислорода (о2) в россии дешево: цены от ооо вилитек

Southland SensingКомпания Вилитек на правах официального представителя в России предлагает газоанализаторы кислорода американской компании Southland Sensing. Популярные модели постоянно поддерживаются в наличии на складе в Москве, осуществляется доставка во все регионы России, Белоруссию и Казахстан. Компания Southland Sensing специализируется на разработке и производстве газоанализаторов кислорода и этот вид анализаторов является основным продуктом для компании. Благодаря узкой специализации продукция компании отличается очень высокими техническими характеристиками и разумной стоимостью (в большинстве случаев стоимость выгоднее отечественных и китайских аналогов). Представленные в данном разделе приборы способны измерять концентрации от долей ppm до 100%, то есть подходят для широкого спектра применений: от измерения следовых количеств кислорода в инертных газах до измерения чистоты кислорода. В частности газоанализаторы О2 Southland Sensing широко применяются в перчаточных боксах, камерах сварки в среде инертных газов, научных стендах, установках для получения чистых газов, газоразделительных установках, оборудовании для измельчения и классификации порошков в среде инертных газов, химических установках, в металлургической промышленности.

Процессы, связанные с использованием или выделением газов, нуждаются в контроле газовых сред. Это также бывает необходимо при проведении работ в атмосфере определенного состава. Для этих случаев применяются газовые анализаторы. Различные составы газовых средств не позволяют создать универсальный газовый анализатор. Поэтому под определенные нужды используются анализаторы с различными принципами действия и селективностью. Наша компания специализируется на поставке прецизионных газоанализаторов кислорода, предназначенных в первую очередь для измерения микроконцентраций кислорода в азоте, аргоне, водороде и других газах.

Исходя из поставленных задач, могут использоваться ручные или автоматические газоанализаторы О2. Ручные имеют периодическое действие, а автоматические могут делать измерения в реальном режиме времени. Любой газоанализатор состоит из следующих частей:

рабочей зоны, где над газом совершается какое-либо действие, основанное на характерных особенностях исследуемых компонентов;
зоны обработки данных, которая может состоять из приемника и преобразователя сигнала, к ним обычно добавляется усилитель;
вторичного прибора, на который выводится информация для считывания оператором.

Чтобы систематизировать весь широкий спектр газоанализаторов кислорода, их классифицируют по типу метода получения и обработки данных, примененному в приборе:

— использование только физических методов анализа;
— использование физических методов анализа на основе дополнительных физико-химических процессов;
— использование физических методов анализа на основе вспомогательных химических реакций.

Более наглядной классификацией приборов является их разделение по принципу действия и назначению:

— термокондуктометрический газоанализатор

В основу работы прибора заложено свойство изменения теплопроводности газовой смеси в зависимости от ее состава. Этот тип газоанализатора применяется только в случаях, если теплопроводность исследуемого компонента существенно отличается от теплопроводности остальных компонентов смеси. Термокондуктометрический метод не отличается высокой избирательностью и точностью. Диапазон работы прибора от единиц до десятков процентов объема контролируемого вещества. Применяется для определения концентраций водорода, аргона, гелия, углекислого газа в смесях с азотом, кислородом и другими газами.

— магнитный газоанализатор кислорода

Применяется для определения концентрации О2. Действие селективного прибора основано на измерении магнитной восприимчивости газовой смеси. Объемная магнитная восприимчивость кислорода на два порядка превосходит другие газы. Диапазон измерения от сотых долей до 100%.

— пневматический газоанализатор кислорода 

Принцип действия основывается на измерении изменения вязкости и плотности газовой смеси в зависимости от ее состава. Прибор может служить для определения концентрации различных компонентов. В газоанализаторе установлены две рабочих камеры, одна для исследуемой газовой смеси, а другая – для определяемого компонента. На вторичный прибор выводится преобразованный сигнал, основанный на разнице текущих параметров рабочих камер. Изменяя наполнение камеры сравнения можно перестроить селективность прибора. Если объединить несколько таких одноканальных приборов, то можно получить многоканальную систему, показывающую изменение состава газовой смеси по всем компонентам. Диапазон измерений от 0 до 100%.

— инфракрасные и ультрафиолетовые газоанализаторы

В основе действия приборов избирательность поглощения излучения определенной частоты молекулами исследуемых компонентов. Диапазон измерения у инфракрасных газоанализаторов от тысячной доли процента, у ультрафиолетовых – от сотых долей до 100%.

— фотоколориметрический газоанализатор кислорода 

Селективный прибор, настраиваемый на исследуемый компонент подбором соответствующих реагентов, дающих качественную реакцию. Существуют жидкостные газоанализаторы и анализаторы на твердом носителе. Измерение осуществляется путем сравнения цвета исходного индикатора с индикатором, подвергшегося обработке исследуемым компонентом. Точность определения лежит в диапазоне от стотысячной доли процента до 1%.

— электрохимический газоанализатор кислорода 

Газоанализаторы этой группы подразделяются на ряд подгрупп, использующих в своей работе различные электрохимические параметры. Эти приборы чаще всего применяются как газоанализаторы кислорода.

кондуктометрические газоанализаторы измеряют электропроводность электролита с растворенным в нем исследуемым компонентом. Это селективные приборы, избирательность определяется подбором соответствующего электролита.
потенциометрические газоанализаторы измеряют потенциал индикаторного электрода, который изменяется в зависимости от активности ионов растворенного в электролите компонента. Если в приборе используется твердый электролит, например, CaO или ZrO2, то он является анализатором O2.
амперометрические газоанализаторы основывают свое действие на зависимости количества тока, прошедшего через электрод, и количества вещества, прореагировавшего на этом электроде. Применяются для газов, обладающими ярко выраженными окислительно-восстановительными свойствами, в том числе и как анализаторы кислорода.
кулонометрические газоанализаторы работают по принципу кулонометрического титрования. На одном из электродов генерируется реагент, вступающий в реакцию с растворенным в электролите исследуемым компонентом. Окончание титрования определяется по скачку потенциала.

Представленные на сайте прецизионные газоанализаторы кислорода относятся к электрохимическим приборам и обладают высокой точностью определения содержания кислорода в газовой смеси. Встраиваемый газоанализатор кислорода EMD-485 широко используется в тех случаях, когда необходимо контролировать состав атмосферы на предмет наличия в ней кислорода. Например, при пайке и сварочных работах в среде инертного газа, или перчаточных боксах при работе с веществами активно взаимодействующих с кислородом. Газоанализаторы кислорода для панельного монтажа OMD-501D/401D адаптивно встраиваются в рабочую линию, предназначенную для исследовательских или производственных работ. Портативные газоанализаторы кислорода OMD-580/480 могут быть использованы в автономном режиме. Это обеспечивается встроенной батареей и возможностью записывать текущие параметры на usb-носитель для последующей обработки данных на ПК.

Назначение и принцип работы

Лямбда зонд – это устройство, предназначенное для контроля состава выхлопных газов. С помощью него определяется объем кислорода, оставшийся после сгорания топлива, а полученные данные по сигнальным проводам передаются на ЭБУ автомобиля. Для чего это нужно?

Дело в том, что работа систем выпуска отработанных газов и топливной тесно взаимосвязаны.

Связующим звеном в этой цепи является электронный блок управления, который не только получает данные от датчика кислорода в виде электрических импульсов, но и передает на его сигнальный вывод опорное напряжение 0.45 вольт (это важно).

ЭБУ, получая данные от датчика кислорода, корректирует, в зависимости от режимов работы двигателя (на холодную, в прогретом состоянии, под нагрузкой и без нее, и т.д.), качество топливовоздушной смеси поступающей в цилиндры двигателя, которая может быть обогащённой, бедной, обедненной и т.д. Корректировка происходит за счет изменения времени открытия топливных форсунок.

Правильное соотношение топлива и воздуха для определенных условий работы двигателя, при которых горючая смесь сгорает полностью, называется стехиометрической топливовоздушной смесью.

Также существует такое понятие как коэффициент избытка воздуха или уровень лямбда.

В идеальных условиях, когда все пропорции топлива и воздуха соблюдены правильно (14,7 частей воздуха и 1 часть топлива) этот коэффициент равен 1.

Если смесь обедненная (15:1 и выше), то уровень лямбда будет больше 1, если обогащенная (ниже 14:1), меньше.

Представим, что лямбда зонд неисправен и передает ошибочные данные на ЭБУ. В результате для разных режимов работы двигателя будет формироваться неправильная топливовоздушная смесь, а это минимум большой расход топлива и потеря мощности.

Дальше идет экологическая составляющая, без которой на современных автомобилях никуда, речь идет про каталитический нейтрализатор.

При сгорании топлива образуется ряд токсических компонентов, увеличенное количество которых в выхлопных газах негативно влияет на эффективность работы катализатора.

К основным токсическим веществам можно отнести:

  1. Несгоревшие углеводороды — CH;
  2. Угарный газ и окись кислорода — CO;
  3. Окись азота – Noх.

Ошибки в работе лямбда зонда, и как следствие, неправильное сгорание топлива, приводит к увеличению содержания вредных веществ в выхлопных газах, а с таким количеством катализатор уже не в состоянии справиться.

Существует такое понятие, как «медленный датчик», это когда время его срабатывания превышает 120 мСек и по этой причине ЭБУ не успевает подготовить правильную топливную смесь, отсюда и повышенная токсичность отработанных газов. Но об этом ниже.

Получается, что лямбда зонд является важным устройством, от работы которого зависит насколько правильно будет формироваться стехиометрический состав топливовоздушной смеси при тех или иных режимах работы силового агрегата.

Когда он исправен погрешность в формировании стехиометрического состава равна ±1% и это очень важно, а когда нет, эта цифра увеличивается.

Типы датчиков и температурные режимы их работы

На рынке представлены два типа датчиков кислорода – титановые и циркониевые.

Первые изготовлены на основе диоксида титана, а вторые – диоксида циркония.

Отличают их между собой только конструктивные особенности, принцип работы одинаковый.

Титановые датчики в последнее время практически не используются, ранее устанавливались на некоторые марки автомобили, встречаются сейчас очень редко. Циркониевые наоборот, получили широкое распространение.

Основа устройства – керамический элемент, выполненный из указанных выше диоксида циркония (ZrO2) или диоксида титана (Tio2), покрытый платиновой сеткой.

Одна часть элемента расположена в выхлопной трубе и контактирует с выхлопными газами, а другая снаружи, контактирует с атмосферным воздухом через места соединения проводов.

Температура, при которой лямбда зонд начинает функционировать, варьирует от 300 до 400 °С, опасный предел 900 – 1000 °С, за которым устройство может перегреться и выйти из строя. Рабочий температурный режим в движении – около 600 °С.

В современных лямбда зондах, но не во всех, конструктивно предусмотрен нагревательный элемент, который при запуске мотора на холодную прогреет устройство до рабочей температуры в 300 – 400 °С.

Отличительная особенность – наличие трех или четырех проводов, два из которых белого цвета (на японских авто могут быть черного) идут на подогреватель.

Такие устройства могут устанавливаться в выхлопной трубе на значительном расстоянии от двигателя, так как им не нужен интенсивный прогрев выхлопными газами.

В двух или одно проводных датчиках кислорода подогреватели отсутствуют, поэтому устанавливаются они как можно ближе к двигателю, как правило в выпускном коллекторе, но так, чтобы лямбда зонд не вышел из строя от перегрева.

У многих типов датчиков, особенно установленных на немецкие автомобили, но, кроме японских, черный провод является сигнальным, а серый (может быть не всегда) является сигнальной массой.

На датчиках кислорода, установленных на японские автомобили, провода имеют индивидуальную цветовую гамму для каждой модели, поэтому этот момент нужно каждый раз уточнять.

Но один плюс все же есть, лямбда зонды, идущие на замену вышедшим из строя аналогам, касается только японских авто, имеют постоянную цветовую гамму проводов: сигнальный — синего, а не черного цвета, сигнальная масса белого, а не серого цвета, а на подогреватель идут два черных провода, а не белые, как обычно.

Почему именно 300 °С? Именно после превышения данного показателя керамический элемент устройства, который смело можно назвать твердым электролитом, начинает пропускать через себя ионы кислорода, которые собираются на электродной сетке из платины.

Представьте себе условно две 5-литровые емкости (канистры), наполненные водой, стоящие на одном уровне и соединенные друг с другом шлангом, посередине которого находится краник.

Если просто открыть краник, куда потечет вода? Правильно, никуда. А если поднять одну из канистр, то куда? Правильно, в ту канистру, которая находится ниже.

Схожий принцип работает и в случае с лямбда зондом. Открытие крана – это превышение температуры на керамическом элементе выше 300 °С.

А перетекание ионов кислорода по нему обеспечивается благодаря формированию на его концах разности потенциалов (поднятие одной или другой канистры), чем больше разность, тем сильнее напряжение (чем выше емкость, тем сильнее течет вода).

На той стороне датчика, которая контактирует с атмосферным воздухом (эталонным), содержание кислорода небольшое и, как правило, меняется только при изменении условий эксплуатации автомобиля (горы, карьеры и так далее), потенциал там маленький, но он присутствует постоянно.

А на той стороне устройства, которое вкручено во выхлопную трубу, объем кислорода может варьировать от малого до значительного.

Но нужно понимать, что в выхлопных газах небольшое количество O 2 считается нормой, так как это обеспечивает полное догорание топлива в выхлопном коллекторе и защищает катализатор в случае сильного переобогащения топливной смеси (несгоревшее топливо выбрасывается в коллектор и догорает там).

Если в выхлопных газах количество O 2 равно содержащемуся в атмосфере, то разность потенциалов будет отсутствовать (если это ассоциировать с канистрами, то они будут находиться на одном уровне), а опорное напряжение, поступающее от блока управления будет ровно 0,45 вольтам — уровень лямбда равен 1.

Допустим, объем кислорода в выхлопных газах значительно ниже атмосферного.

Благодаря разности потенциалов образуется электрический ток, который течет от внутренней стороны гальванического элемента, контактирующей с эталонным воздухом, к внешней (значение « »). Его величина повышает опорное напряжение с 0,45 вольт от 0,5 до 0,8-0,9.

ЭБУ видит, что смесь обогащена (уровень лямбда меньше 1), и производит корректировку.

Если показатели уровня кислорода в выхлопных газах высокие (больше атмосферных), то изменится разность потенциалов, электрический ток будет течь в другую сторону (значение «-») снизив опорное напряжение до 0,1 – 0,3 вольт. ЭБУ будет видеть, что топливная смесь поступает в цилиндры обедненной — уровень лямбда больше 1.

Оцените статью
Кислород
Добавить комментарий