Химические свойства кислорода — Основы химии на Ида Тен

Химические свойства кислорода - Основы химии на Ида Тен Кислород

Взгляд снаружи

Диапазон концентрации кислорода в воздухе, пригодный для жизни. Диапазон содержания кислорода в воздухе ( p_{text{O}_2}), при котором возможна жизнедеятельность человека в течение длительного времени, ограничен значениями

90–100 мм рт. ст. < ( p_{text{O}_2}) < 400–450 мм рт. ст.

Нижняя граница соответствует началу кислородного голодания, верхняя — началу кислородного отравления. В процентном отношении наступление кислородного голодания у здорового человека наступает уже при содержании O2 в воздухе ( p_{text{O}_2}) / pатм менее 14% (при pатм = 760 мм рт. ст.).

Эти данные соответствуют диапазону жизнедеятельности человека на уровне моря. По мере подъема в горы давление снижается, что наглядно отражают кривые атмосферного давления и парциального давления кислорода (рис. 1).

Видно, что начиная с высот 4,5–5 км давление кислорода становится ниже допустимой нижней границы давления в 90 мм рт. ст. При этом давление воздуха в альвеолах составляет 105–110 мм рт. ст., что также близко к нижней границе. По мере уменьшения давления кислорода до уровня 100 мм рт. ст. замедляются обменные процессы в организме, дыхание и сердцебиение учащаются, ухудшаются зрение и работа мозга…

Оценка времени развития кислородной недостаточности при нахождении в замкнутом объеме. В качестве примера рассмотрим несколько ситуаций с людьми, находящимися в замкнутом объеме: один человек, застрявший в лифте объемом V = 2 м3; два человека в комнате с V = 30 м3; сто человек, застрявшие в остановившемся вагоне метро с V = 250 м3.

В каждом случае найдем, за какое время Δt в замкнутом объеме V в процессе спокойного дыхания людей концентрация кислорода снижается от первоначального уровня 21% до начала кислородной недостаточности, т.е. до 14%. Подчеркнем — спокойного, поскольку при панике это время сильно снижается.

Спокойному дыханию соответствует потребление кислорода на уровне 0,25 литра в минуту. Поскольку 1 литр O2 соответствует 5 ккал энергии, то 0,25 л/мин сообщает организму за сутки 0,25 × 5 × 60 × 24 ккал = 1800 ккал энергии. Так как плотность человеческого организма около 1000 кг/м3, тело массой 70 кг занимает объем 0,07 м3, или 70 литров. Добавив одежду, получим оценку объема, вытесняемого из замкнутого помещения, в 100 литров, или 0,1 кубометра на человека.

Лифт. Свободный объем, занятый воздухом, составляет 1,9 м3. В этом объеме содержится 1,9 × 0,21 м3 = 0,4 м3 = 400 л кислорода. Признаки кислородной недостаточности развиваются, когда полезный объем кислорода уменьшится до 1,9 × 0,14 м3 = 0,27 м3 = 270 л.

Комната. Свободный объем около 30 м3. Начальный объем кислорода 6,3 м3. Минимально допустимый объем кислорода 4,2 м3. Потребление кислорода 0,5 л/мин. Время ( Δt_{text{O}_2}) = 2100 / 0,5 мин = 4200 мин, т.е. почти трое суток (!).

Вагон метро. Свободный объем около 240 м3. Начальный объем кислорода 50 м3. Минимально допустимый объем кислорода 34 м3. Потребление кислорода около 25 л/мин . Время ( Δt_{text{O}_2}) = 16000/25 мин = 640 мин, т.е. около 10 часов.

Во всех указанных случаях (если нет паники) время развития кислородной недостаточности очень велико. Однако, такой вывод находится в противоречии с житейским опытом: в метро и застрявшем лифте бывает душно и даже после сна в комнате с закрытой форточкой наутро ощущается духота.

По всей видимости, имеет место другой, более мощный механизм развития неблагоприятных ощущений в процессе дыхания при нахождении в замкнутом объеме, не связанный с потерей кислорода из воздуха. Оказывается, таким механизмом является накопление углекислого газа.

Концентрация углекислого газа в воздухе, пригодная для жизни. Диапазон допустимого содержания CO2 в воздухе составляет

( 0 < C_{text{CO}_2} = frac{p_{text{CO}_2}}{p_{атм}} < text{0,1%}. )

Отметим, что обычное содержание углекислого газа в воздухе ( C_{text{CO}_2} ) = 0,04%.

Величину принятого ограничения сверху на содержание углекислого газа (( C_{text{CO}_{2:text{max}}} ) = 0,1%) обсудим чуть позже, а сначала проведем оценки для замкнутых объемов лифта, комнаты, вагона метро и школьного класса применительно ко времени накопления концентрации углекислого газа до верхней границы. Примем, что взрослый человек обычно выдыхает углекислого газа в атмосферу ( q_{text{CO}_2}) = 0,25 л/мин.

https://www.youtube.com/watch?v=hI5ZELS5qsw

Лифт. Свободный объем, занятый воздухом, равен 1,9 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет

( Δt_{text{CO}_2} = frac{(C_{text{CO}_{2:text{max}}}:-:C_{text{CO}_2}):·:V}{q_{text{CO}_2}} = frac{(1:·:10^{-3}:-:4:·:10^{-4}):·:text{1,9}:·:10^3 }{text{0,25}}:text{мин} = 5:text{мин}. )

Комната. Свободный объем около 30 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет ( Δt_{text{CO}_2} ) = 6 · 10−4 · 30 · 103 / (2 · 0,25) мин = 36 мин.

Вагон метро. Свободный объем около 240 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет ( Δt_{text{CO}_2} ) = 6 · 10−4 · 240 · 103 / (100 · 0,3) мин ≈ 6 мин.

Школьный класс. Приведем также оценки для школьного класса объемом около 200 м3, в котором находится 25 учеников. При уровне выдоха CO2 одним школьником 0,12 л/м (половина от взрослого) получим ( Δt_{text{CO}_2} ) = 6 · 10−4 · 200 · 103 / (25 · 0,12) мин ≈ 40 мин.

Это уже ближе к житейским ощущениям и оправдывает присутствие вентиляции на потолке лифтов, необходимость проветривания комнат в домах, в школьных классах после каждого урока, а также наличие системы вентиляции в метро.

Таким образом, именно накопление углекислого газа в замкнутых помещениях в первую очередь действует угнетающе на человека. В чем это проявляется?

В литературе отмечается два типа воздействия: кратковременное (часы) и длительное (регулярно, более нескольких часов в день). Симптомы при кратковременном воздействии при уровне вдыхаемого углекислого газа выше 0,1% — это усталость, головная боль, ухудшение концентрации внимания, плохой сон…

При длительном воздействии при уровне CO2 выше 0,1% появляются проблемы с дыхательной системой (сухой кашель, риниты…), снижение иммунитета, ухудшение работы сердечно-сосудистой системы… При уровне выше 0,2% еще больше ухудшается концентрация внимания, растет количество совершаемых ошибок и т.д. по нарастающей.

Еще одна проблема помещений без вентиляции — возможность расслоения воздуха на фракции. Поскольку углекислый газ в полтора раза тяжелее воздуха, он может опуститься ближе к полу и его концентрация там увеличится. Но процесс этот медленный, и любое движение воздуха перемешивает фракции.

Наконец, использование растений, казалось бы, должно помочь — ведь они выделяют кислород и поглощают углекислый газ. Однако, это происходит только днем, а вечером и ночью (когда свежий воздух особенно нужен) растения выделяют углекислый газ, усугубляя проблему с его накоплением.

Накопление угарного газа в замкнутом помещении. Казалось бы, откуда взяться угарному газу (СО) в замкнутом помещении, если нет рядом дровяной печки или камина с неидеальной вытяжкой? Но в литературе приводятся следующие данные: наряду с углекислым газом человек выдыхает также и угарный газ — в количестве примерно 1,6 мл/ч (при нормальных условиях); предельно допустимая для человека концентрация угарного газа составляет 1 мг/м3.

Этих данных достаточно, чтобы снова провести оценки времени накопления предельной концентрации угарного газа для людей в лифте, комнате, вагоне метро и школьном классе. Для этого перейдем от объема к массе образовывающегося угарного газа, воспользовавшись известным соотношением: один моль любого газа при нормальных условиях занимает объем 22,4 л.

В таблице 2 приведены значения времени накопления CO2 и СО до опасной концентрации, а также времени развития кислородной недостаточности в лифте, комнате, вагоне метро и школьном классе. Для детей принята половинная величина выдыхаемого СО и CO2.

Таблица 2. Сопоставление времени снижения концентрации O2, накопления СО и CO2

Видно, что накопление углекислого газа примерно на порядок опаснее накопления угарного газа и еще на порядок опаснее снижения концентрации кислорода.

Мощность систем вентиляции. Как оценить мощность систем вентиляции qвент, необходимую для поддержания нормального состава воздуха? Если отвлечься от переходных процессов установления и выравнивания потоков воздуха, то конечный результат выглядит очень просто:

( q_{text{вент}} = frac{q_{text{CO}_2}}{(C_{text{CO}_{2:text{max}}}:-:C_{text{CO}_2})}. )

Так, если ( q_{text{CO}_2} ) = 0,25 литра в минуту (в этом случае человек выдыхает 15 литров CO2 в час), то при ( C_{text{CO}_{2:text{max}}} ) = 1 · 10−3 и ( C_{text{CO}_{2}} ) = 4 · 10−4 получим требуемую мощность вентиляции в 420 литров воздуха в минуту или 25 м3 в час.

Если же выдыхается 20 литров CO2 в час, то мощность вентиляции увеличивается до 33 м3 воздуха в час. А если принять для максимально допустимого значения концентрации CO2 в воздухе несколько меньшее значение 0,8 · 10−3, то мощность вырастет уже до 38 м3 воздуха в час (при 15 л CO2 в час) и 50 м3 воздуха в час (при 20 л CO2 в час).

Много это или мало? Как обеспечить такой приток свежего воздуха? Например, если приоткрыть дверь, то через каждый квадратный сантиметр щели при перепаде давлений по обе стороны двери Δp = 10 Па проходит в час один кубометр воздуха. Это означает, что при указанном Δp через сантиметровую щель в двери высотой два метра проходит 200 м3 воздуха за час.

Отметим, что принятый уровень перепада давлений 10 Па довольно мал (это 10−4 от атмосферного) и вполне может быть достигнут. Еще более мощный эффект вентиляции оказывает проветривание при открытии окон и дверей в течение хотя бы нескольких минут.

В качестве примера рассмотрим ситуацию с кислородом и углекислым газом при спасении детей в пещере Таиланда, частично затопленной водой. В 2022 году весь мир следил за спасением футбольной команды из 12 школьников и их тренера, ушедших на экскурсию в пещеру Кхао Луанг и застрявших в ней на 18 дней (23 июня — 10 июля) из-за дождей, затопивших вход в пещеру.

Они укрылись в воздушном кармане, полностью перекрытом водой и удаленном от выхода из пещеры на 5 километров. Задача заключалась в высвобождении ослабевших детей и тренера из пещеры. Ситуация осложнялась наличием узкой щели — на рисунке 2 она обозначена как «опасная точка», через которую предстояло выбираться.

В этой ситуации оказались важны все отмеченные выше особенности поведения кислорода и углекислого газа в замкнутом объеме. Для борьбы с постепенным уменьшением количества кислорода в пещере была организована доставка кислорода с помощью специального трубопровода.

Было решено, что накопление углекислого газа в пещере представляет существенно большую опасность, чем нехватка кислорода. Закачкой кислорода по трубопроводу в верхнюю часть пещеры вытесняли углекислый газ. Учитывалось также расслоение воздуха на фракции — CO2 скапливался в нижней части пещеры. Вот почему дети и тренер скрылись в верхней ее части.

Поиски ребят и подготовительные работы заняли почти две недели. За это время известный изобретатель и организатор исследований Илон Маск (космические корабли, электрокары) успел из запчастей к ракете изготовить миниатюрную подводную лодку на одного человека и доставить ее в Таиланд. Но из-за узкой щели от ее использования отказались.

Ситуация с каждым днем становилась все более сложной. Необходимо было постоянное присутствие людей, занятых на откачке воды из пещеры (иначе пещера полностью заполнилась бы водой) и установке труб для подачи кислорода. Более десятка аквалангистов доставляли в пещеру воду, еду и кислородные баллоны.

Там постоянно присутствовали врачи и те, кто готовили спасательную операцию. При дыхании этих взрослых спасателей состав воздуха ухудшался еще стремительнее. Наступил момент, когда из-за накопления углекислого газа дальше ждать было нельзя. Множество кислородных баллонов было расставлено по всему маршруту из пещеры к выходу (каждый баллон рассчитан на работу только в течение часа).

Тысяча спасателей снаружи, включая сто дайверов, начали операцию. В первый день 13 дайверов спасли четырех подростков. Во второй день 18 дайверов (и 70 аквалангистов сопровождения) спасли еще четверых. Наконец, в третий день были спасены оставшиеся четверо детей и их тренер, а также 4 человека, остававшиеся в пещере. Молодцы!

Задания 29. расчет массы вещества или объема газа

Какой объем (н.у.) углекислого газа образуется при горении 32 л (н.у.) этана в избытке кислорода?

Решение

  • Ответ: 64 л
  • Пояснение
  • Реакция горения этана в избытке кислорода:
  • 2CH3-CH3 7O2 → 4CO2 6H2O
  • Следствием из закона Авогадро является то, что объемы газов, находящихся в одинаковых условиях, относятся друг к другу так же, как и количества молей этих газов. Если по уравнению реакции ν(CO2) = 2ν(C2H6), то и V(CO2) = 2V(C2H6), следовательно:
  • V(CO2) = 32 л · 2 = 64 л

Вычислите массу кислорода (в граммах), необходимого для полного сжигания 6,72 л (н.у.) сероводорода.

Решение

  1. Ответ: 14,4
  2. Пояснение:
  3. Уравнение реакции:
  4. 2H2S 3O2 = 2SO2 2H2O
  5. Из условия найдем количество вещества сероводорода:
  6. n(H2S) = 6,72/22,4 = 0,3 моль;
  7. В уравнении реакции перед кислородом стоит коэффициент 3, а перед водородом 2. Отсюда следует, что количество вещества, вступившего в реакцию кислорода через количество вещества сероводорода, выражается следующим образом:
  8. n(O2) = n(H2S)  3/2 = 0,45 моль.
  9. Следовательно:
  10. m(O2) = M(O2) n(O2) = 32*0,45 = 14,4 г

Какой объём (в литрах при н.у.) кислорода образуется при разложении 0,6 моль оксида ртути(II)? (Запишите число с точностью до сотых.)

Решение

  • Ответ: 6,72
  • Пояснение:
  • Уравнение реакции:
  • 2HgO =to=> O2↑ 2Hg
  • Из условия задачи количество вещества оксида ртути равно:
  • n(HgO) = 0,6 моль
  • В уравнении реакции перед кислородом стоит коэффициент 1, а оксидом ртути — 2. Отсюда следует, что количество вещества, образовавшегося в результате реакции кислорода через количество вещества оксида ртути, выражается следующим образом:
  • n(O2) = n(HgO) ⋅ 1/2 = 0,6 ⋅ 1/2 = 0,3 моль,
  • Следовательно:
  • V(O2) = Vm  n(O2) = 22,4 ⋅ 0, 3 = 6,72 л

Какой объём (в литрах при н.у.) кислорода образуется при разложении 4 моль пероксида водорода? (Запишите число с точностью до десятых.)

Решение

  1. Ответ: 44,8
  2. Пояснение:
  3. Уравнение реакции:
  4. 2H2O2 =to=> 2H2O  O2
  5. Из условия задачи:
  6. n(H2O2) = 4 моль,
  7. В уравнении реакции перед кислородом стоит коэффициент 1 (в уравнении не ставится), а перед пероксидом водорода — 2. Это значит, что количество вещества кислорода через количество вещества пероксида водорода выражается следующим образом:
  8. n(O2) = n(H2O2) ⋅ 1/2 = 4 ⋅ 1/2 = 2 моль.
  9. Следовательно:
  10. V(O2) = Vm⋅ n(O2) = 22,4⋅ 2 = 44,8 л.

При обжиге сульфида цинка было получено 0,5 моль оксида цинка. Какой объем (в литрах н.у.) оксида серы (IV) образовался в результате этого процесса? (Запишите число с точностью до десятых.)

Решение

  • Ответ: 11,2
  • Пояснение:
  • Уравнение реакции:
  • 2ZnS 3O2 =to=> 2ZnO 2SO2
  • Из условия задания:
  • n(ZnO) = 0,5 моль,
  • И перед оксидом цинка и перед оксидом серы в уравнении стоит одинаковый коэффициент. Следовательно равны и количества молей указанных веществ:
  • n(SO2) = n(ZnO) = 0,5 моль
  • Следовательно:
  • V(SO2) = Vm  n(SO2) = 22,4  0.5 = 11,2 л

При растворении сульфида железа (II) в избытке соляной кислоты выделилось 5,6 л (н.у.) газа. Масса сульфида железа (II) равна _____ г. (Запишите число с точностью до целых.)

Решение

  1. Ответ: 22
  2. Пояснение:
  3. Уравнение реакции:
  4. FeS 2HCl = H2S FeCl2
  5. Как видно из уравнения реакции, газообразным продуктом реакции является сероводород. Рассчитаем количество его вещества:
  6. n(H2S) = V(H2S)/Vm = 5,6/22,4 = 0,25 моль
  7. В уравнении реакции и перед FeS и перед H2S стоят одинаковые коэффициенты равные единице. Это значит что и равны количества молей указанных веществ:
  8. n(FeS) = n(H2S) = 0,25 моль.
  9. Следовательно:
  10. m(FeS) = M(FeS)  n(FeS) = 88  0,25 = 22 г.

Карбид алюминия массой 86,4 г растворили в избытке соляной кислоты. Определите массу (в граммах) соли, образовавшейся при этом. (Запишите число с точностью до десятых.)

Решение

  • Ответ: 320,4
  • Пояснение:
  • Уравнение реакции:
  • Al4C3 12HCl = 4AlCl3 3CH4↑
  • Из условия задачи m(Al4C3) = 86,4 г. Найдем количество вещества Al4C3:
  • n(Al4C3) = m(Al4C3)/M(Al4C3) = 86,4/144 = 0,6 моль.

Образовавшаяся соль в результате реакции — это хлорид алюминия. В уравнении реакции перед Al4C3 стоит коэффициент 1, а перед AlCl3 — 4. Тогда количество вещества хлорида алюминия через количество вещества карбида алюминия выражается следующим образом:

n(AlCl3) = n(Al4C3) ⋅  4/1 = 0,6 ⋅ 4/1 = 2,4 моль.

m(AlCl3) = n(AlCl3) ⋅ M(AlCl3) = 2,4 ⋅ 133,5 = 320,4 г.

Через раствор, содержащий 29,4 г серной кислоты, пропустили аммиак до образования средней соли. Объем (н.у.) прореагировавшего газа составил _____ л. (Запишите число с точностью до сотых.)

Решение

  1. Ответ: 13,44
  2. Пояснение:
  3. Уравнение реакции:
  4. H2SO4 2NH3 = (NH4)2SO4
  5. Из условия задания m(H2SO4) = 29,4 г. Найдем количество вещества серной кислоты:
  6. n(H2SO4) = m(H2SO4)/M(H2SO4) = 29,4/98 = 0,3 моль.
  7. Перед H2SO4 в уравнении реакции коэффициент равный 1 (коэффициент равный единице в уравнении реакции не ставится),  а перед NH3 — коэффициент равный 2. Следовательно количество вещества аммиака связано с количеством вещества серной кислоты следующим образом:
  8. n(NH3) = n(H2SO4)  2/1 = 0,3  2/1 = 0,6 моль
  9. Следовательно:
  10. V(NH3) = n(NH3)  Vm = 0,6  22,4 = 13,44 л.

Объем (н.у.) оксида углерода (IV), который необходимо пропустить через раствор гидроксида кальция для получения 8,1 г гидрокарбоната кальция, равен _____л. (Запишите число с точностью до сотых.)

Решение

  • Ответ: 2,24
  • Пояснение:
  • Уравнение реакции:
  • 2CO2 Ca(OH)2 = Ca(HCO3)2
  • Из условия m(Ca(HCO3)2) = 8,1 г. Найдем количество вещества гидрокарбоната кальция:
  • n(Ca(HCO3)2) = m(Ca(HCO3)2)/M(Ca(HCO3)2) = 8,1/162 = 0,05 моль.
  • В уравнении реакции перед CO2 стоит коэффициент 2, а перед Ca(HCO3)2 — 1. Поэтому количество вещества CO2  через количество вещества Ca(HCO3)2 можно выразить следующим образом:
  •  n(CO2) = n(Ca(HCO3)2)  2/1 = 0,05 2 =  0,1 моль,
  • Следовательно:
  • V(CO2) = n(CO2) ⋅ Vm =  0,1 ⋅ 22,4 = 2,24 л

Какой объем (в литрах при н.у.) кислорода необходим для каталитического окисления 16 л (н.у.) аммиака? (Запишите число с точностью до целых.)

Решение

  1. Ответ: 20
  2. Пояснение:
  3. Уравнение реакции:
  4. 4NH3 5O2     кат.,t°   4NO 6H2O
  5. Из условия V(NH3) = 16 л. Рассчитаем количество вещества аммиака:
  6. n(NH3) = V(NH3)/Vm = 16/22,4 = 0,7143 моль;
  7. Перед NH3 в уравнении стоит коэффициент равный 4, а перед O2 — 5. Таким образом, количество вещества кислорода через количество вещества аммиака выражается следующим образом:
  8. n(O2) = n(NH3)  5/4 = 0,7143  5/4 = 0,8929 моль
  9. Следовательно:
  10. V(O2) = n(O2)  M(O2) = 0,8929  22,4 = 20 л.

Какой объем (н.у.) хлороводорода образуется при полном хлорировании 112 л (н.у.) метана? (Запишите число с точностью до целых.)

Решение

  • Ответ: 448
  • Пояснение:
  • CH4 4Cl2 = CCl4 4HCl
  • Из условия задания V(CH4) = 112 л. Рассчитаем количество вещества метана:
  • n(CH4) = V(CH4)/Vm = 112/22,4 = 5 моль.
  • В уравнении реакции перед метаном стоит коэффициент равный 1, а перед хлороводородом — 4. Исходя из этого:
  • n(HCl) = n(CH4)  4/1 = 5  4/1 = 20 моль;
  • V(HCl) = n(HCl)  Vm = 20   22,4 = 448 л.

Какой объем (н.у.) углекислого газа образовался в результате горения 3 л ацетилена в кислороде? (Запишите число с точностью до целых.)

Решение

  1. Ответ: 6
  2. Пояснение:
  3. Уравнение реакции:
  4. 2C2H2 5O2 = 4CO2 2H2O
  5. n(C2H2) = V(C2H2) /Vm = 3 / 22,4 = 0,1339 моль
  6. Перед C2H2 коэффициент 2, перед CO2 — 4. Поэтому количество вещества углекислого газа через количество вещества ацетилена можно выразить следующим образом:
  7. n(CO2) = n(C2H2)  4/2 = 0,1339  4/2 = 0,2678 моль.
  8. Следовательно:
  9. V(CO2) = n(CO2)  Vm = 0,2678  22,4 = 6 л.

Рассчитайте, какой объем азота (н.у.) образуется при полном сгорании 67,2 л (н.у.) аммиака. (Запишите число с точностью до десятых.)

Решение

  • Ответ: 33,6
  • Пояснение:
  • Уравнение реакции:
  • 4NH3 3O2 → 6H2O 2N2
  • Рассчитаем количество вещества аммиака:
  • n(NH3) = V(NH3)/Vm = 67,2/22,4 = 3 моль
  • Перед NH3 стоит коэффициент 4, а перед N2 — 2. Следовательно количество вещества азота через количество вещества аммиака можно выразить следующим образом:
  • n(N2) = n(NH3)  2/4 = 3  2/4 = 1,5 моль
  • V(N2) = n(N2)  Vm = 1,5  22,4 = 33,6 л.

60 г сульфида алюминия обработали избытком водного раствора хлороводородной кислоты. Рассчитайте объем (в литрах при н.у.) газа, выделившегося в результате этой реакции. (Запишите число с точностью до целых.)

Решение

  1. Ответ: 27
  2. Пояснение:
  3. Уравнение реакции:
  4. Al2S3 6HCl → 2AlCl3 3H2S↑
  5. Рассчитаем количество вещества сульфида алюминия:
  6. n(Al2S3) = m(Al2S3)/M(Al2S3) = 60 / 150 = 0,4 моль,
  7. Перед Al2S3 коэффициент равный 1, а H2S — 3. Следовательно, количество вещества H2S через количество вещества Al2S3 можно выразить следующим образом:
  8. n(H2S) = n(Al2S3)   3/1 = 0,4   3/1 = 1,2 моль
  9. Следовательно:
  10. V(H2S) = n(H2S)  Vm = 1,2  22,4 = 26,88 л ≈ 27 л

Определите объем (в литрах при н.у.) водорода, который потребуется для восстановления 16 г оксида меди (II). Выход продукта считать 100%. (Запишите число с точностью до сотых.)

Решение

  • Ответ: 4,48
  • Пояснение:
  • CuO H2 t° > Cu H2O
  • Рассчитаем количество вещества оксида меди:
  • n(CuO) = m(CuO)/M(CuO) = 16/80 = 0,2 моль,
  • В уравнении реакции перед CuO и перед H2 стоят одинаковые коэффициенты. Это означает что равны и количества молей этих веществ:
  • n(H2) = n(CuO) =0,2 моль
  • Следовательно:
  • V(H2) = n(H2) Vm = 0,2  22,4 = 4,48 л

При растворении оксида меди (II) в избытке серной кислоты образовалась соль массой 40 г. Масса оксида меди (II) равна _____г. (Запишите число с точностью до целых.)

Решение

  1. Ответ: 20
  2. Пояснение:
  3. Уравнение реакции:
  4. CuO H2SO4 = CuSO4  H2O
  5. Из уравнения реакции можно сделать вывод, что образовавшаяся соль это сульфат меди. Рассчитаем его количество вещества:
  6. n(CuSO4) = m(CuSO4)/M(CuSO4) = 40 / 160= 0,25 моль.

В уравнении реакции перед оксидом меди и сульфатом меди стоят одинаковые коэффициенты. Это значит, что равны также их количества вещества, т.е.:

  • n(CuO) = n(CuSO4) = 0,25 моль
  • Следовательно, масса оксида меди равна:
  • m(CuO) = n(CuO)  M(CuO) = 0,25  80 = 20 г.

Какой объем (н.у.) газа образуется в результате взаимодействия угарного газа с 9 л (н.у.) кислорода? (Запишите число с точностью до целых.)

Решение

  1. Ответ: 18
  2. Пояснение:
  3. Уравнение реакции:
  4. 2CO O2 → 2CO2
  5. Рассчитаем количество вещества кислорода:
  6. n(O2) = V(O2) / Vm = 9 /22,4 = 0,402 моль
  7. Перед O2 стоит коэффициент 1, а перед СO2 — 2. Таким образом, количество вещества CO2 через количество вещества O2 можно выразить следующим образом:
  8. n(CO2) = n(O2)  2/1 = 0,402  2 = 0,804 моль
  9. Следовательно:
  10. V(CO2) = n(CO2)  Vm = 0,804  22,4 = 18 л

Какой объем (в литрах при н.у.) водорода можно получить при взаимодействии 0,25 моль магния с избытком разбавленной серной кислоты? (Запишите число с точностью до десятых.)

Решение

  • Ответ: 5,6
  • Пояснение:
  • Запишем уравнение реакции:
  • Mg H2SO4 = H2↑ MgSO4

В уравнении реакции перед магнием и водородом стоят одинаковые коэффициенты. Это значит, что равны также их количества вещества, т.е.:

  1. n(H2) = n(Mg) = 0,25 моль
  2. Следовательно:
  3. V(H2) = n(H2)  Vm = 0,25  22,4 = 5,6 моль

Определите массу (в граммах) этанола, необходимого для получения этилена объемом 5,6 л (н.у.). Выход продукта считать 100%. (Запишите число с точностью до десятых.)

Решение

  • Ответ: 11,5
  • Пояснение:
  • Запишем уравнение реакции:
  • C2H5OH    H₂SO₄(конц.), t° > C2H4 H2O
  • Рассчитаем количество вещества этилена:
  • n(C2H4) = V(C2H4) / Vm = 5,6 / 22,4 = 0,25 моль
  • В уравнении реакции перед C2H5OH и C2H4 стоят одинаковые коэффициенты. Это значит, что равны также и количества молей указанных веществ:
  • n(C2H5OH) = n(C2H4) =  0,25 моль
  • Следовательно:
  • m(C2H5OH) = n(C2H5OH)  M(C2H5OH) = 0,25  46 = 11,5 г

Какой объем (н.у.) углекислого газа образуется при горении 32 л (н.у.) этана в избытке кислорода? (Запишите число с точностью до целых.)

Решение

  1. Ответ: 64
  2. Пояснение:
  3. Запишем уравнение реакции:
  4. 2C2H6 7O2 → 4CO2 6H2O
  5. Рассчитаем количество вещества этана:
  6. n(C2H6) = V(C2H6) / Vm = 32 / 22,4 = 1,429 моль
  7. В уравнении реакции перед C2H6 стоит коэффициент 2, а перед CO2 — 4. Это значит, что количество вещества CO2 через количество C2H6 можно следующим образом:
  8. n(CO2) = n(C2H6)  4/2 = 2,858 моль
  9. V(CO2) = n(CO2) Vm = 2,858  22,4 = 64 л

В результате реакции алюминия с соляной кислотой выделилось 0,3 моль водорода. Какая масса хлороводорода потребовалась для реакции? (Запишите число с точностью до десятых.)

Решение

Какова масса продукта, образовавшегося в результате окисления 0,6 моль оксида серы(IV) кислородом? Выход продукта считать равным 100%. (Запишите число с точностью до целых.)

Решение

Какая масса альдегида образуется при окислении 0,5 моль этанола оксидом меди(II)? Выход продукта считать равным 100%. (Запишите число с точностью до целых.)

Решение

Какова масса серебра, выделившегося в результате реакции окисления 0,2 моль уксусного альдегида избытком аммиачного раствора оксида серебра? (Запишите число с точностью до десятых.)

Решение

Какая масса соли образуется в результате нейтрализации 1,2 моль уксусной кислоты раствором гидроксида кальция? (Запишите число с точностью до десятых.)

Решение

Какова масса меди, образовавшейся при окислении 23 г этанола оксидом меди(II)? Выход продукта считать равным 100%. (Запишите число с точностью до целых.)

Решение

Определите массу цинка, который вступает в реакцию с соляной кислотой для получения 2,24 л (н.у.) водорода. (Запишите число с точностью до десятых.)

Решение

Углекислый газ, химические свойства, получение

1

H

ВодородВодород

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

ГелийГелий

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

ЛитийЛитий

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

БериллийБериллий

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

БорБор

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

УглеродУглерод

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

АзотАзот

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

КислородКислород

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

ФторФтор

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

НеонНеон

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

НатрийНатрий

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

МагнийМагний

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

АлюминийАлюминий

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

КремнийКремний

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

ФосфорФосфор

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

СераСера

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

ХлорХлор

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

АргонАргон

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

КалийКалий

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

КальцийКальций

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

СкандийСкандий

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

ТитанТитан

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

ВанадийВанадий

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

ХромХром

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

МарганецМарганец

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

ЖелезоЖелезо

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

КобальтКобальт

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

НикельНикель

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

МедьМедь

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

ЦинкЦинк

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

ГаллийГаллий

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

ГерманийГерманий

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

МышьякМышьяк

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

СеленСелен

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

БромБром

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

КриптонКриптон

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

РубидийРубидий

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

СтронцийСтронций

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

ИттрийИттрий

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

ЦирконийЦирконий

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

НиобийНиобий

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

МолибденМолибден

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

ТехнецийТехнеций

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

РутенийРутений

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

РодийРодий

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

ПалладийПалладий

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

СереброСеребро

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

КадмийКадмий

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

ИндийИндий

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

ОловоОлово

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

СурьмаСурьма

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

ТеллурТеллур

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

ИодИод

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

КсенонКсенон

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

ЦезийЦезий

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

БарийБарий

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

ЛантанЛантан

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

ЦерийЦерий

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

ПразеодимПразеодим

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

НеодимНеодим

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

ПрометийПрометий

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

СамарийСамарий

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

ЕвропийЕвропий

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

ГадолинийГадолиний

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

ТербийТербий

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

ДиспрозийДиспрозий

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

ХольмийХольмий

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

ЭрбийЭрбий

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

ТулийТулий

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

ИттербийИттербий

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

ЛютецийЛютеций

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

ГафнийГафний

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

ТанталТантал

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

ВольфрамВольфрам

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

РенийРений

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

ОсмийОсмий

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

ИрридийИрридий

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

ПлатинаПлатина

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

ЗолотоЗолото

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

РтутьРтуть

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

ТаллийТаллий

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

СвинецСвинец

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

ВисмутВисмут

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

ПолонийПолоний

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

АстатАстат

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

РадонРадон

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

ФранцийФранций

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

РадийРадий

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

АктинийАктиний

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

ТорийТорий

232,04

f-элемент

Серый мягкий металл

91

Pa

ПротактинийПротактиний

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

УранУран

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

НептунийНептуний

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

ПлутонийПлутоний

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

АмерицийАмериций

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

КюрийКюрий

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

БерклийБерклий

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

КалифорнийКалифорний

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

ЭйнштейнийЭйнштейний

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

ФермийФермий

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

МенделевийМенделевий

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

НобелийНобелий

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

ЛоуренсийЛоуренсий

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

РезерфордийРезерфордий

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

ДубнийДубний

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

СиборгийСиборгий

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

БорийБорий

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

ХассийХассий

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

МейтнерийМейтнерий

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

ДармштадтийДармштадтий

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Оцените статью
Кислород
Добавить комментарий