Кратко и емко о газовых баллонах

Кратко и емко о газовых баллонах Кислород

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Газообразный
технический и медицинский кислород должен быть изготовлен в соответствии с
требованиями настоящего стандарта по технологическим регламентам, утвержденным
в установленном порядке.

1.2. Запрещается применять
для дыхания и лечебных целей кислород, получаемый электролизом воды, а также
кислород, получаемый способом низкотемпературной ректификации с последующим
сжатием в компрессорах с поршневым уплотнением, изготовленным из фторопласта
или других материалов, не проверенных медицинским надзором.

1.3. По физико-химическим
показателям газообразный технический и медицинский кислород должен
соответствовать нормам, указанным в табл. 1.

Таблица 1

Наименование
показателя

Норма для марок

Технический кислород

Медицинский кислород

Первый сорт

Второй сорт

1. Объемная доля кислорода, %, не менее

99,7

99,5

99,5

2. Объемная доля водяных паров, %, не более

0,007

0,009

0,009

3. Объемная доля водорода, %, не более

0,3

0,5

4. Объемная доля двуокиси углерода, %, не более

Не
нормируется

0,01

5. Содержание окиси углерода

То же

Должен выдерживать испытание по п. 3.6

6. Содержание газообразных кислот и
оснований

»

Должен выдерживать испытание по п. 3.7

7. Содержание озона и других
газов-окислителей

»

Должен выдерживать испытание по п. 3.8

8. Содержание щелочи

Должен
выдерживать испытание по п. 3.9

9. Запах

Не
нормируется

Отсутствие

Примечания:

1. По
согласованию с потребителем допускается в медицинском кислороде объемная доля
кислорода не менее 99,2 %.

2. Медицинский кислород, предназначенный для авиации, должен
выпускаться с объемной долей водяных паров не более 0,0007 %.

3.
Показатели, указанные в подпунктах 3 и 8,
нормируются только для кислорода, получаемого электролизом воды.

4. В техническом кислороде 2-го сорта, вырабатываемом на установках
высокого, среднего и двух давлений, оснащенных щелочными декарбонизаторами для
очистки воздуха от двуокиси углерода, а также на установках типа СКДС-70М
допускается объемная доля кислорода не менее 99,2 %.

(Измененная редакция, Изм. №
1, 3, 4).

1.4. Коды ОКП газообразного
технического и медицинского кислорода приведены в табл. 1а.

Таблица 1а*

Наименование
продукта

Код ОКП

Кислород газообразный технический компримированный

21 1411
0100

первый сорт

21 1411
0130

второй сорт

21 1411
0140

Кислород газообразный технический
компримированный с объемной долей кислорода не менее 99,2 %

21 1411
0150

Кислород газообразный технический несжатый

21 1411
2100

первый сорт

21 1411
2130

второй сорт

21 1411
2140

Кислород газообразный технический,
получаемый из привозного жидкого кислорода

21 1411
1600

первый сорт

21 1411
1630

второй сорт

21 1411
1640

Кислород газообразный медицинский

с объемной долей кислорода не менее 99,5 %

21 1411
0200

с объемной долей кислорода не менее 99,2 %

21 1411
1700

Кислород газообразный медицинский,
предназначенный для авиации

21 1411
2300

* Табл. 2, 3.
(Исключены, Изм, № 4).

(Измененная редакция, Изм. №
3, 4).

МЕТОДЫ АНАЛИЗА

3.1. Отбор проб

3.1.1. Пробу кислорода из
баллона или автореципиента отбирают при давлении (14,7 ± 0,5) или (19,6 ± 1,0)
МПа [(150 ± 5) или (200 ± 10) кгс/см2] в прибор для анализа с
помощью редуктора или вентиля тонкой регулировки и соединительной трубки от
точки отбора пробы до прибора. Соединительную трубку продувают не менее чем
десятикратным объемом анализируемого газа.

(Измененная редакция, Изм. №
3).

3.1.2.
Пробу кислорода из трубопровода отбирают с помощью газоотборной трубки из
коррозионно-стойкой стали в аппаратуру для анализа или в прибор для отбора и
хранения проб газа по ГОСТ 18954, либо в стеклянные пипетки. При определении
примесей щелочи и водяных паров пробы отбирают только в аппаратуру для анализа.

3.1.3. При определении концентрации
водяных паров должна использоваться соединительная трубка из
коррозионно-стойкой стали внутренним диаметром не более 4 мм, предварительно
высушенная или отожженная.

3.2. Определение объемной доли кислорода

3.2.1. Аппаратура,
реактивы и материалы

Измерительный аппарат для
анализа кислорода АК-М1 ( черт. 1) или газоанализатор типов ПАК и А.

Весы лабораторные общего
назначения 4-го класса точности с наибольшим пределом взвешивания 2 кг.

Секундомер механический.

Аммоний хлористый по ГОСТ
3773.

Аммиак водный по ГОСТ 3760,
раствор с массовой долей 18 %.

Аммиачный раствор хлористого
аммония; готовят следующим образом: 750 г хлористого аммония растворяют в 1 дм3
воды и добавляют 1 дм3 раствора аммиака.

Вода дистиллированная по
ГОСТ 6709.

Проволока медная круглая
электротехническая диаметром 0,8-1,0 мм в виде спиралей длиной около 10 мм,
диаметром витка около 5мм.

Смазка для кранов.

(Измененная редакция, Изм. №
1, 3).

3.2.2. Подготовка к
анализу

Для подготовки прибора (см. черт. 1) к
проведению анализа необходимо цилиндрическую часть пипетки заполнить медными
спиралями и закрыть пробкой. После этого заливают в пипетку и уравнительную
склянку аммиачный раствор хлористого аммония.

Кран бюретки смазывают и
соединяют отдельные части прибора резиновыми трубками. Затем проверяют прибор
на герметичность по постоянству уровня жидкости в бюретке при закрытом кране и
нижнем положении уравнительной склянки.

Перед проведением анализа
заполняют аммиачным раствором цилиндрическую часть пипетки с капиллярной
трубкой, капиллярную трубку 5, бюретку, проходы и капиллярные отростки
крана.

Жидкость в пипетке и бюретке
прибора перемещается подъемом или опусканием уравнительной склянки с аммиачным
раствором. При этом поворотом крана соединяют внутренний объем бюретки с
поглотительной пипеткой или атмосферой.

(Измененная редакция, Изм. №
1).

3.2.3. Проведение
анализа

Отбирают в бюретку прибора
через отросток 3 крана пробу кислорода, несколько превышающую 100 см3.

Для приведения объема газа в
бюретке к атмосферному давлению устанавливают уровень аммиачного раствора
хлористого аммония в уравнительной склянке против нулевого деления бюретки.
Пережимают резиновую трубку 10 и быстрым поворотом крана выпускают из
бюретки избыток газа в атмосферу.

Для лучшего поглощения
кислорода прибор осторожно встряхивают. Через 2-3 мин поглощение кислорода
обычно заканчивается. Поворотом крана соединяют бюретку с пипеткой и, медленно
опуская уравнительную склянку, переводят в бюретку непоглощенный остаток пробы.

Как только аммиачный раствор начинает поступать в бюретку, кран закрывают. Газ
в бюретке приводят к атмосферному давлению, устанавливая на одной высоте уровни
жидкости в бюретке и уравнительной склянке. Объем остаточных газов в бюретке измеряют
через 1-2 мин, выжидая, пока жидкость стечет со стенок бюретки.

Деление, соответствующее
уровню жидкости в бюретке, показывает объемную долю кислорода (X) в
процентах в анализируемом кислороде.

Поглощение кислорода
повторяют. Анализ заканчивают, если после повторного поглощения измерение
объема остаточных газов не превышает 0,05 см3.

Аммиачный раствор в пипетке
прибора заменяют после проведения 20-30 анализов.

За результат анализа
принимают среднее арифметическое результатов двух параллельных определений,
абсолютное расхождение между которыми не превышает допускаемое расхождение,
равное 0,05 %.

Измерительный аппарат для
анализа кислорода АК-М1

1 — бюретка; 2 — двухходовой кран; 3,4 — отростки крана; 5,6
— капиллярные стеклянные трубки; 7 — поглотительная пипетка с
капиллярной трубкой; 8 — штатив; 9 — уравнительная склянка; 10,
11 — резиновые трубки

Черт. 1

Допускаемая абсолютная
суммарная погрешность результата анализа ± 0,05 % при доверительной вероятности
Р = 0,95.

При наполнении баллонов или
автореципиентов, а также при поставке кислорода по трубопроводу объемную долю
кислорода допускается определять промышленными автоматическими
газоанализаторами непрерывного действия по ГОСТ 13320 с погрешностью не более
0,1 %, например типа МН 5130М со шкалой 98-100 %, установленными на
трубопроводе подачи кислорода к наполнительному коллектору.

При разногласиях в оценке
объемной доли кислорода анализ проводят измерительным аппаратом типа АК-М1.

(Измененная редакция, Изм. №
1, 3, 4).

3.3. Определение объемной доли водяных паров

3.3.1 Аппаратура

Влагомеры газов
кулонометрические, рассчитанные на измерение микроконцентраций водяных паров, с
относительной погрешностью измерения не выше 10 % в области измерений от 0 до
20 млн-1 (ррт) и не выше 5 % при более высоких концентрациях.

3.3.2 Проведение анализа

Кулонометрический метод
основан на непрерывном количественном извлечении водяных паров из испытуемого
газа гигроскопичным веществом и одновременном электростатическом разложении
извлекаемой воды на водород и кислород, при этом ток электролиза является мерой
концентрации водяных паров.

Прибор соединяют с местом
отбора пробы трубкой из нержавеющей стали. Расход газа устанавливают (50 ± 1)
см3/мин. Переключатель диапазонов измерения устанавливают так, чтобы
показания прибора были в пределах второй трети измерительной шкалы,
градуированной в миллионных долях (ррт). Ток электролиза измеряют
микроамперметром.

Температура баллона с
анализируемым газом должна быть не ниже 15 °С. Анализ проводят по инструкции,
прилагаемой к прибору.

3.3.3. Обработка результатов

Объемную долю водяных паров (Х1) в млн-1
определяют в соответствии с установившимися показаниями прибора.

Допускается определять
объемную долю водяных паров конденсационным методом, приведенным в приложении 3.

При разногласиях в оценке
объемной доли водяных паров анализ проводят кулонометрическим методом.

(Измененная редакция, Изм. №
4).

3.4. Определение объемной доли водорода в
кислороде, получаемом электролизом воды

3.4.1. Аппаратура,
реактивы и материалы

Газоанализатор лабораторный
со сжигательной пипеткой ( черт. 2).

Лабораторный газоанализатор
со сжигательной пипеткойдля определения объемной доли водорода

1 — уравнительная склянка; 2 — трансформатор на 60 Вт (первичная
обмотка на 220 В, вторичная на 2-3 В); 3 — реостат на 3-5 Ом, 5-6 А; 4,
7 — резиновые трубки; 5 — спираль из платиновой проволоки диаметром
0,3 мм, длиной 60 мм;

6 — сжигательная пипетка с водяным охлаждением; 8,
9,10 — краны распределительной гребенки; 11 — водяная
рубашка; 12 — поглотительный сосуд; 13 — измерительная бюретка; 14
— переходник

Черт. 2

Весы лабораторные общего
назначения 4-го класса точности с наибольшим пределом взвешивания 2 кг.

Аммоний хлористый по ГОСТ
3773.

Аммиак водный по ГОСТ 3760,
раствор с массовой долей 18 %.

Вода дистиллированная по
ГОСТ 6709.

Метиловый оранжевый
(пара-диметиламиноазобензолсульфокислый натрий), индикатор, раствор с массовой
долей 0,1 %.

Кислота соляная по ГОСТ
3118, раствор с массовой долей 10 %.

Аммиачный раствор хлористого
аммония; готовят следующим образом: 750 г хлористого аммония растворяют в 1 дм3
воды и добавляют 1 дм3 раствора аммиака.

Проволока медная круглая
электротехническая диаметром 0,8-1,0мм в виде спиралей длиной около 10мм, диаметром витка около 5мм.

Смазка для кранов.

(Измененная редакция, Изм. №
1, 3, 4).

3.4.2. Подготовка к
анализу

Для подготовки прибора
заполняют спиралями из медной проволоки верхнюю часть поглотительного сосуда и
вставляют ее через пробку в нижнюю склянку сосуда, заполненную аммиачным
раствором хлористого аммония. В уравнительную склянку и в нижний сосуд
сжигательной пипетки заливают раствор соляной кислоты, подкрашенный несколькими
каплями раствора метилового оранжевого.

Перед проведением анализа
необходимо с помощью уравнительной склянки поднять уровни растворов в
измерительной бюретке, поглотительном сосуде и сжигательной пипетке до кранов.
После этого краны устанавливают так, чтобы образовался сквозной проход для
газа.

Затем присоединяют трубку 7 к точке отбора пробы и продуваютим
распределительную гребенку и краны. Закончив продувку, поворачивают кран 10
в такое положение, чтобы гребенка прибора не была соединена с атмосферой.

3.4.3. Проведение анализа

Отбирают в бюретку прибора
через кран 8 пробу, несколько превышающую 100 см3. Приводят
давление газа в бюретке к атмосферному, удаляя избыток кислорода через кран 10
и резиновую трубку 4, погруженную в сосуд с водой на глубину 15-20мм.

Поглощают около половины
объема кислорода; остаток газа возвращают в бюретку и измеряют его объем.
Затем, повернув краны 8 и 9, вводят газ из бюретки в сжигательную
пипетку так, чтобы уровень запорной жидкости опустился на 10-12мм ниже
платиновой спирали.

Включают трансформатор и регулируют реостатом ток накала
платиновой спирали, доводя накал нити до слабого красного каления. По мере
сжигания водорода анализируемый кислород по частям переводят из бюретки в
сжигательную пипетку. По окончании сжигания водорода весь оставшийся кислород
возвращают из пипетки в бюретку и измеряют его объем. Повторяют сжигание до
постоянного остаточного объема.

3.4.4. Обработка
результатов

Объемную долю водорода (Х2)
в процентах вычисляют по формуле

где V1 — объем пробы, оставшийся
после поглощения кислорода, см3;

V 2 — объем пробы, оставшийся после сжигания водорода, см3;

V 3 — объем пробы кислорода, взятый для анализа, см3;

2/3 — доля водорода в объеме
сгоревшей смеси.

За результат анализа
принимают среднее арифметическое результатов двух параллельных определений,
относительное расхождение между которыми не превышает допускаемое расхождение,
равное 10 %.

Допускаемая относительная
суммарная погрешность результата анализа ± 25 % при доверительной вероятности Р
= 0,95.

Объемную долю водорода
допускается определять газоадсорбционным хроматографическим методом,
приведенным в приложении 1, а также при наполнении баллонов
или автореципиентов и при поставке по трубопроводу автоматическими
газоанализаторами непрерывного действия по ГОСТ 13320 с погрешностью измерения
не более 0,1 %.

При разногласиях в оценке
объемной доли водорода анализ проводят лабораторным газоанализатором со
сжигательной пипеткой.

(Измененная редакция, Изм. №
1, 3, 4).

3.5. Определение объемной доли двуокиси углерода

3.5.1. Аппаратура
и реактивы

Бюретка 1-2-25-01 по ГОСТ
29251, других типов вместимостью 25 см3.

Пипетка 4-1(2)-1 или
5-1(2)-1 по ГОСТ 29227.

Склянка для промывания газов
СН-1 — 100 или СН-2 — 100 по ГОСТ 25336.

Прибор для отбора и хранения
проб газа по ГОСТ 18954 вместимостью 3,0 дм3 или склянка с тубусом
4-10 по ГОСТ 25336.

Цилиндр 1-100 по ГОСТ 1770.

Весы лабораторные общего
назначения 2-го класса точности с наибольшим пределом взвешивания 200 г.

Секундомер механический.

Бария гидрат окиси по ГОСТ
4107, раствор с массовой долей 5 % (поглотительный); готовят растворением 5 г
гидрата окиси бария в 100 см3 воды. Раствор быстро фильтруют через
плотный бумажный фильтр и хранят в колбе, закрытой пробкой. В пробку вставлена
стеклянная трубка, соединенная с промывной склянкой с раствором гидроокиси
натрия или гидроокиси калия.

Вода дистиллированная по
ГОСТ 6709, дополнительно очищенная от углекислоты по ГОСТ 4517 следующим
образом: воду нагревают и кипятят в течение 30 мин до выделения крупных
пузырей. При охлаждении и хранении воду предохраняют от двуокиси углерода,
присутствующей в атмосферном воздухе.

Натрия гидроокись по ГОСТ
4328 или калия гидроокись, раствор с массовой долей 20 %.

Натрий двууглекислый по ГОСТ
4201, раствор с массовой долей 0,04 %; готовят растворением 0,04 г
двууглекислого натрия в 100 см3 воды.

(Измененная редакция, Изм. №
1, 3, 4).

3.5.2. Подготовка
к анализу

Анализ проводят в склянке
для промывания газов. В склянку вливают поглотительный раствор. Объем
кислорода, пропущенный через поглотительный раствор, измеряют с помощью склянки
с тубусом или прибора для отбора проб газа, присоединенного к короткой трубке
склянки на выходе газа.

3.5.3. Проведение анализа

В склянку для промывания
газов вливают 100 см3 прозрачного раствора гидрата окиси бария.
Через раствор пропускают 1000 см3 кислорода в течение 15-20 мин.

Сравнивают в проходящем
свете испытуемый и контрольный раствор, приготовленный в отдельной склянке
одновременно с проведением анализа и содержащий в 100 см3 раствора
гидрата окиси бария 1 см3 раствора двууглекислого натрия, что
соответствует объемной доле двуокиси углерода 0,01 %.

Кислород считают
соответствующим требованиям настоящего стандарта, если опалесценция
поглотительного раствора, образующаяся при пропускании кислорода, не будет
интенсивнее опаленсценции контрольного раствора.

3.5.2; 3.5.3. (Измененная
редакция, Изм. № 3).

3.6. Определение содержания
окиси углерода

3.6.1. Аппаратура
и реактивы

Аппаратура — по п. 3.5.1.

Аммиак водный по ГОСТ 3760,
раствор с массовой долей 10 %.

Вода дистиллированная по
ГОСТ 6709.

Серебро азотнокислое по ГОСТ
1277, аммиачный раствор с массовой долей 5 %; готовят следующим образом: 5 г
азотнокислого серебра растворяют в 100 см3 воды. К раствору
добавляют по каплям при постоянном помешивании раствор аммиака, пока осадок не
будет почти (но не полностью) растворен. Раствор фильтруют и хранят в плотно
закрытой склянке из темного стекла в защищенном от света месте.

(Измененная редакция, Изм. №
3).

3.6.2. Подготовка к анализу
— по п.
3.5.2.

3.6.3. Проведение анализа

2000 см3
кислорода пропускают в течение 30-35 мин через склянку со 100 см3 слабо
нагретого аммиачного раствора азотнокислого серебра.

Кислород считают
соответствующим требованиям настоящего стандарта, если раствор остается
бесцветным и прозрачным, что свидетельствует об отсутствии окиси углерода в
анализируемой пробе.

(Измененная редакция, Изм. №
3).

3.6.4. Содержание окиси
углерода допускается определять линейно-колористическим методом.

Анализ проводят с помощью
химического газоопределителя типа ГХ-4 (ГХ-4АМ-3) или универсального
переносного газоанализатора типа УГ-2 и индикаторной трубки на окись углерода.

Просасывают через
индикаторную трубку с помощью газоанализатора ГХ-4 1000 см3
кислорода, с помощью газоанализатора УГ-2-220 см3 кислорода.

Кислород считают
соответствующим требованиям настоящего стандарта, если индикаторный порошок не
окрашивается. Пороговая чувствительность метода 0,0005 %.

При разногласиях в оценке
содержания окиси углерода анализ проводят с применением аммиачного раствора
азотнокислого серебра.

(Измененная редакция, Изм. №
1, 3).

3.7. Определение содержания
газообразных кислот и оснований

3.7.1. Аппаратура
и реактивы

Аппаратура — по п. 3.5.1.

Вода дистиллированная,
дополнительно очищенная от углекислоты по п. 3.5.1.

Кислота соляная по ГОСТ
3118, раствор концентрации с (НС l ) = 0,01 моль/дм3
(0,01 н.).

Метиловый красный
(индикатор), спиртовой раствор с массовой долей 0,2 %; готовят растворением 0,2
г метилового красного в 100 см3 раствора этилового спирта с массовой
долей 60 %.

Натрий хлористый по ГОСТ
4233, насыщенный раствор.

Спирт этиловый
ректификованный технический по ГОСТ 18300, раствор с массовой долей 60 %.

(Измененная редакция, Изм.№ 3).

3.7.2. Подготовка к
анализу — по п. 3.5.2.

3.7.3. Проведение анализа

В три пронумерованные
склянки для промывания газов наливают по 100 см3 воды и добавляют в каждую
из них по 3-4 капли раствора метилового красного. Затем в склянку № 2 с помощью
пипетки вводят 0,2 см3, в склянку № 3-0,4 см3 раствора
соляной кислоты.

Через раствор в склянке № 2
пропускают 2000 см3 кислорода в течение 30-35 мин. Сравнивают
окраску раствора в склянке № 2 с окраской растворов в склянках № 1 и 3.

Кислород считают
соответствующим требованиям настоящего стандарта по содержанию газообразных
оснований, если окраска раствора в склянке № 2 сохраняет розовый цвет в отличие
от раствора в склянке № 1, окрашенного в желтый цвет; и соответствующим по
содержанию газообразных кислот, если розовая окраска раствора в склянке № 2
будет слабее, чем в склянке № 3.

Пороговая чувствительность
метода 0,001 г/моль газообразных кислоты или основания в 1 м3 кислорода.

(Измененная редакция, Изм. №
1, 3).

3.8. Определение содержания
озона и других газов-окислителей

3.8.1. Аппаратура
и реактивы

Аппаратура — по п. 3.5.1.

Вода дистиллированная по
ГОСТ 6709.

Калий йодистый по ГОСТ 4232.

Крахмал растворимый по ГОСТ
10163.

Смешанный раствор крахмала и
йодистого калия; готовят следующим образом: 0,5 г йодистого калия растворяют
при нагревании в 95 см3 воды; 0,5 г крахмала размешивают в 5 см3
холодной воды. Смесь медленно вливают при помешивании в кипящий раствор
йодистого калия и кипятят 2-3 мин.

Кислота уксусная по ГОСТ 61.

3.8.2. Подготовка к
анализу — по п. 3.5.2.

3.8.3. Проведение анализа

2000 см3
кислорода пропускают в течение 30-35 мин через склянку для промывания газов, в
которую налито 100 см3 свежеприготовленного смешанного раствора
крахмала и йодистого калия и прибавлена одна капля уксусной кислоты.

Кислород считают
соответствующим требованиям настоящего стандарта, если раствор остается
бесцветным, что свидетельствует об отсутствии озона и других газов-окислителей
в анализируемой пробе.

3.9. Определение содержания
щелочи в кислороде, получаемом электролизом воды

3.9.1. Аппаратура
и реактивы

Бумага фильтровальная лабораторная
по ГОСТ 12026.

Фенолфталеин (индикатор),
спиртовой раствор с массовой долей 1 %.

Вода дистиллированная по
ГОСТ 6709.

Секундомер механический.

(Измененная редакция, Изм. №
3).

3.9.2. Проведение анализа

Кислород пропускают со
скоростью 100-200 см3/мин в течение 8-10 мин через стеклянную трубку
длиной 10-11 см, диаметром 1,6 см. Узкий конец трубки длиной 2-3 см, диаметром
0,5-0,6 см соединяют с реометром резиновой трубкой. Другой конец трубки
закрывают резиновой пробкой, в которую вставлена стеклянная трубочка (вход
газа).

Кислород считают
соответствующим требованиям настоящего стандарта, если не произойдет
окрашивания фильтровальной бумаги в розовый или красный цвет.

3.10. Определение запаха

3.10.1. Запах определяют
органолептически. Продукт считают соответствующим требованиям настоящего стандарта,
если выпускаемый через слегка открытый вентиль кислород не обладает запахом.

Баллоны стальные малого и среднего объема гост 949-73

БАЛЛОНЫ СТАЛЬНЫЕ МАЛОГО И СРЕДНЕГО ОБЪЕМА ДЛЯ ГАЗОВ НА РР£19,6 Мпа (200 кгс/см2)ГОСТ 949-73

Баллоны для технических газов из углеродистой и легированной стали, малого объема — до 12 литров и среднего объема — от 20 литров до 50 литров с рабочим давлением до 19,6 МПа — (200 кгс/см2), изготовленные из бесшовных труб и предназначенные для хранения и перевозки сжатых, сжиженных и растворенных газов при температурах от минус 50 до плюс 60°С.

ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

Газовые баллоны изготовливают на рабочее давление 9,8 МПа; 14,7 МПа; 19,6 МПа (100 кгс/см2; 150 кгс/см2 и 200 кгс/см2) из углеродистой и легированной стали.

Чертеж газового баллона

1 — опорный башмак; 2 — корпус баллона; 3 — кольцо горловины; 4 — вентиль; 5 — предохранительный колпак

Резьба горловины баллонов должна изготовляться в соответствии с ГОСТ 9909-81, при этом:

наружный диаметр резьбы в основной плоскости должен быть:

для баллонов малого объема — 19,2 мм, для баллонов среднего объема — 27,8 мм, для баллонов ацетиленовых — 30,3 мм;

Размеры в мм

Объем баллона, литровДиаметр цилиндрической частиТолщина стенки баллонов на давление, МПа (кгс/см2), не менееДлина корпуса баллонов на давление, МПа(кгс/см2)
из углеродистой сталииз легированной сталииз углеродистой сталииз легированной стали
9,8(100)14,7(150)19,6(200)14,7(150)19,6(200)9,8(100)14,7(150)19,6(200)14,7(150)19,6(200)
0,4701,62,22,91,61,9165170175165165
0,7255260270255255
1,0891,92,83,61,92,5240250255240245
1,3295305315295300
2,0425440455425435
2,01082,43,44,42,43,0320330340320325
3,0445460480445455
3,01403,14,45,73,13,9310325335310320
4,0385400415385395
5,0460475495460470
6,0535555575535550
7,0610630660610625
8,0680710740680700
10,0830865900830850
12,0975102010609751005
20,02195,26,88,95,26,0730740770730
25,0890900935890
32,01105112011651105
40,01350137014301350
50,01660168517551660
Объем баллона, литровДиаметр цилиндрической частиМасса газового баллона на давление МПа (кгс/см2)
из углеродистой сталииз легированной стали
9,8(100)14,7(150)19,6(200)14,7(150)19,6(200)
0,4700,60,81,00,60,7
0,70,91,21,50,91,0
1,0891,21,82,31,21,6
1,31,52,22,81,51,9
2,02,13,14,02,12,7
2,01082,53,74,72,53,1
3,03,45,06,43,44,3
3,01404,16,07,94,15,3
4,05,07,39,65,06,5
5,05,88,511,45,87,6
6,06,79,813,16,78,8
7,07,611,114,97,69,9
8,08,512,416,68,511,1
10,010,213,020,110,213,4
12,010,917,623,511,915,6
20,021928,532,342,028,5
25,034,038,750,534,0
32,042,047,762,542,0
40,051,558,576,551,5
50,062,571,393,062,5

Примечания:

Масса баллонов указана без вентилей, колпаков, колец и башмаков и является справочной величиной и номинальной при изготовлении баллонов с ограничением по массе.

Длины баллонов указаны как справочные и принимаются номинальными при изготовлении баллонов с ограничением по длине.

Ориентировочная масса колпака металлического — 1,8 кг; кольца — 0,3 кг; башмака — 5,2 кг.

По заказу потребителя баллоны из легированной стали могут изготовляться с ограничениями по массе.

При этом масса баллонов не должна превышать более чем на 10% массу, указанную в табл.

Примеры условных обозначений:

баллона объемом 40л на давление 14,7 МПа (150 кгс/см2), из углеродистой стали, обычной точности изготовления, для воздуха:

Баллон для воздуха 40-150У ГОСТ 949-73

то же, из легированной стали, повышенной точности изготовления, с ограничением по объему, без ограничения по массе, для азота:

Баллон для азота 40п-150Л ГОСТ 949-73

то же, 40 литровый баллон обычной точности изготовления, с ограничением по массе, для воздуха:

Баллон для воздуха 40-150 Л-М ГОСТ 949-73

то же, повышенной точности изготовления по объему, с ограничением по массе, для медицинского кислорода:

Баллон для медицинского кислорода 40П-150 Л-М ГОСТ 949-73

то же, повышенной точности изготовления, длиной корпуса баллона 400 мм, с ограничением по массе, для азота:

Баллон для азота 4-150Л-400-М ГОСТ 949-73

то же, короткого объемом 2 л на давление 14,7 МПа (150 кгс/см2), из углеродистой стали, повышенной точности изготовления с ограничением по длине, без ограничения по массе, для воздуха:

Баллон для воздуха К2-150У-330 ГОСТ 949-73

МАТЕРИАЛЫ КОРПУСА ВЕНТИЛЕЙ БАЛЛОНОВ И НАПРАВЛЕНИЕ РЕЗЬБЫ БОКОВОГО ШТУЦЕРА

Наименование газовМатериал корпуса вентиляНаправление резьбы бокового штуцераНаименование газовМатериал корпуса вентиляНаправление резьбы бокового штуцера
АзотЛатуньПравоеМетанЛатуньЛевое
АммиакСтальПравоеПропан и другие горючие газыСталь или латуньЛевое
АргонЛатуньПравоеСернистый ангидридСтальПравое
БутанЛатунь или стальЛевоеУглекислотаЛатуньПравое
БутиленЛатуньЛевоеФосгенСтальПравое
ВодородЛатуньЛевоеХладонСталь или латуньПравое
ВоздухЛатуньПравоеХлорСтальПравое
ГелийЛатуньПравоеХлорметилЛатуньЛевое
КислородЛатуньПравоеХлорэтилЛатуньЛевое
КсенонЛатуньПравоеЭтиленЛатуньЛевое

Кислородные манометры — книга «манометры» от нпо «юмас»

Кислородные манометры – приборы, измеряющие давление кислорода. Согласно ГОСТ  12.2.052–81/19/, кислородными являются среды с долей кислорода 23 % и более.

Соприкосновение кислорода с минеральными маслами и некоторыми органическими веществами вызывает взрыв, возникающий даже при их малых долях. Мощность такого взрыва, как и его возникновение, не определяется количеством масла.

Кислородные манометры конструктивно практически не отличаются от общепромышленных. Требования к диапазонам измерения, классам точности, размерам корпусов и т. п. одинаковы (см. главу 1). Повышенные требования сохраняются к надежности. Они идентичны газовым. Принципиальная отличительная особенность кислородных манометров – строгое соблюдение предельно допустимых концентраций масла на поверхностях измерителя, которые контактируют с кислородсодержащими средами. Такие концентрации не должны превышать значений, приведенных  в табл. 2.7.

                                                                                                                                Таблица 2.7

Предельно допустимые концентрации жировых загрязнений

на поверхностях, контактирующих с кислородсодержащими

средами, при различных значениях давленияпо ГОСТ  12.2.052–81/19/                                                                                              

        Температура, К(оС)

Содержание жировых загрязнений , мг/м2, не более, при давлении кислорода,  МПа

до 0,6

свыше 0,6 до 1,6

свыше 1,6 до 6,4

свыше 6,4

До 333(60) включ.

  500

    200

   100

   50

Св.333(60) до 423(150) включ.

  250

    100

    50

   25

Недопустимо также наличие масла, которое может определяться визуально, на внешних частях кислородных манометров.

Кислородные манометры обязательно должны иметь на шкале прибора полные или условные обозначения: кислород, маслоопасно (см. табл.1.9). Кроме этого, для внешнего отличия кислородных манометров от промышленных европейские стандарты рекомендуют окрашивать корпус и (или) часть шкалы в голубой цвет. ГОСТ 2405-88/4/ такие требования не регламентирует. Однако ГОСТ 12.2.052-81/19/ регламентирует обязательность окраски кислородного оборудования  в голубой цвет или нанесение на него полосы этого же цвета.

При выборе материала уплотнительной прокладки между штуцером прибора и посадочным гнездом (см. рис.2.10) рекомендуется руководствоваться данными табл. 2.8.

                                                                                   Таблица 2.8

материалы, рекомендуемые для изготовления прокладок,

используемых при монтаже кислородных манометров

по ГОСТ  12.2.052–81/19/

Материал   

Толщина прокладки, мм

  не более

0,5

1,0

2,0

4,0

Рабочее давление, МПа

не более

Листовая фибра  (ГОСТ 14613–83)

15,0

7,0

3,5

1,6

Резина В-14, В-14-1, Н-1, Н-10, Р-24

12,0

8,0

5,0

4,0

Резина ТМКЩ   (ГОСТ 7338–77)

12,0

8,0

5,0

4,0

Резина ИРП-1136

28,0

18,0

10,0

8,0

Резина № 52-775

42,0

30.0

18,0

12,0

Паронит ПОН   (ГОСТ 481–80)

22.0

16,5

12,0

10,0

Фторопласт-3   (ГОСТ 13744–87)

15,0

10,0

7,5

6,4

Фторопласт-4   (ГОСТ 10007–80)

42,0

42,0

15,0

10,0

Паронит КП-2

Без ограничений

Асбестовый картон  (ГОСТ 2850–80)

             Без ограничений

Фторопластовый уплотнительный материал ФУМ

                       25,0

    Парониты допускается применять при температуре до 200 оС. До 400 оС выдерживают уплотнительные прокладки из асбеста.

Кислородный манометр обеспечивается техническим паспортом с отметкой организации производителя,  поверителя и датами изготовления и поверки.

Контрольно-измерительные приборы кислородного оборудования на территории Российской Федерации должны проходить государственную и ведомственную поверку в соответствии с требованиями ПР 50.2.002-94/20/ и ПР 50.2.006-99/21/.

Межповерочный интервал кислородных манометров такой же, как и обычных технических средств измерения. Однако их поверка из-за недопустимости наличия масла или его остатков на внутренних поверхностях измерителя требует соблюдения ряда технологий и повышенного внимания. Кроме того, поверка кислородных манометров как функция особой важности – прерогатива государственных метрологических органов.

Исключение контакта масла с рабочими поверхностями кислородных манометров может быть достигнуто несколькими путями. Например, масляная среда в поверочной установке после соответствующих технических мероприятий заменяется на допустимую для этих целей жидкость. В качестве рабочей жидкости могут использоваться: дистиллированная вода (ГОСТ 6709–72), жидкости ПЭФ 70/60, ПЭФ130/100, ПЭФ 240 (ТУ 6-01-652–71), глицерин (ГОСТ 6824–76), смесь глицерина с дистиллированной водой, а также другие жидкости, не вступающие в реакцию с измеряемой средой.

Другой метод, исключающий контакт масляной среды поверочной установки с кислородным манометром, предусматривает использование разделительной камеры с масляной и немасляной средами. Масляная среда посредством немасляной передает давление на кислородный манометр. На рис. 2.14 приведена принципиальная  схема разделительной камеры П. В. Индрика, состоящей из верхнего 1 и нижнего 2 колпаков, прижимной гайки3, обеспечивающей путем плотного соединения герметизацию сосуда, входного 4 и выходного 5каналов. Поверяемый манометр устанавливается в посадочное гнездо 6, а разделительная камера подсоединяется с помощью штуцера 7 к установке, генерирующей давление. Разделительная камера заполняется водой.


При повышении давления в поверочной установке создается давление в разделительной камере, и вода поступает в поверяемый манометр. Наличие входного и выходного каналов с трубками, высота которых близка к высоте рабочего пространства разделительной камеры, обеспечивает устойчивое разделение масляной и не масляной сред. Такой метод поверки кислородных манометрических приборов нашел широкое применение, однако требует соблюдения специальной технологии контроля состояния не масляной среды.

     Известны другие конструкции разделительных камер (рис. 2.15). В корпусе 1 имеется штуцер подводящего давления 2. Герметичность корпуса обеспечивается крышкой 3. Внутренняя полость корпуса заполнена маслом от масляного пресса. Внутри корпуса на соединительном штуцере закреплена резиновая оболочка 4, наполненная водой. В результате при создании прессом давления масляной среды через подводящий штуцер оно поступает во внутреннюю полость корпуса и через резиновую оболочку передается на выходной штуцер 5, на котором устанавливается кислородный манометр. Погрешностью передачи давления, вносимой резиновой оболочкой, можно пренебречь.

       В процессе поверки манометров обязателен тест-контроль внутренних поверхностей чувствительного элемента и подводящего штуцера на наличие масла. Он заключается в промывке внутренних поверхностей прибора растворителем и последующем контроле концентрации масла в нем.

В качестве растворителей могут использоваться хладоны 113 и 114В2, трихлорэтилен, тетрахлорэтилен, обеспечивающие остаточное содержание жировых загрязнений не более 20 мг/м2. Наиболее часто применяется в этих целях хладон 113, который особенно опасен своей токсичностью при высоких температурах.

В промышленных условиях для обезжиривания используется бензин-растворитель  БР-1 «Галоша».

Содержание масла на открытой поверхности проверяют, согласно ГОСТ 12.2.052-81/19/, непосредственно путем осмотра контролируемой поверхности с ультрафиолетовыми осветителями с пороговой чувствительностью 100 мг/м2 или протирая участки поверхности салфеткой из стеклянного волокна марки Э толщиной 0,06-0,08 мм, размером 20х20 см.

Наличие следов масла на салфетке определяют несколькими способами:

качественным – облучением в люминесцентном приборе, для чего расправленную салфетку подносят к щели прибора; отсутствие светящегося пятна на салфетке свидетельствует о достаточной чистоте поверхности;

количественным – салфетку промывают в фарфоровой чашке или стакане, заполненном 100  см3 растворителя в течение 3-5 минут; 10 см3   растворителя вливают в кювету люминесцентного прибора и определяют содержание масла в нем.

 контроль за отсутствием масла на внутренних поверхностях   манометра осуществляют следующим образом: шприцем во входное отверстие штуцера впрыскивают горячую воду, взбалтывают ее внутри прибора, а затем выливают в сосуд с чистой водой или вытряхивают на белый лист бумаги. Появление на поверхности воды радужной пленки или жировых разводов на бумаге свидетельствует о наличии масляной фракции. выливать промывочную жидкость необходимо только в воду, так как в других средах масло, как фракция с большим удельным весом может опускаться на дно и не будет заметна при визуальной оценке.

Наличие масла после промывки загрязненных поверхностей растворителем определяют выливанием отработанной жидкости на впитывающую бумагу. Затем с помощью флюоресценции поверхности этой бумаги в ультрафиолетовом свете определяют наличие масла. Масляные вкрапления и водяное смачивание имеют различные интенсивности люминесценции.

Для контроля флюоресценции в ультрафиолетовом свете рекомендуется использовать: флюориметр объективный ФР-1, прибор типа 833, прибор ПЛКД-1, «Малютка», «Свет», а также импортные аналоги, близкие по техническим параметрам.

Для обезжиривания манометров в собранном виде внутреннюю измерительную полость промывают растворителем с помощью шприца или других устройств, позволяющих вводить жидкость во входной канал штуцера. Растворитель должен находиться в обезжириваемых полостях не менее 20 мин.

Содержание масла в хладоне-113 перед обезжириванием должно соответствовать нормам, указанным в табл.2.9/22/.

       Растворитель из внутренних полостей манометра после выдержки удаляют путем свободного стекания или вакууммированием.

Контроль за обезжириванием производится по замерам концентрации масла в отработанном растворителе. Эти концентрации не должны превышать значений, приведенных в табл. 2.10. 

     При производстве манометров, если технологические процессы изготовления, наладки и поверки обеспечивают чистоту поверхностей в соответствии с табл. 2.7, согласно ОСТ 26-04-2158–78/22/, обезжиривание средств измерений не требуется.

     Общетехнические приборы могут переводиться в разряд кислородных путем обезжиривания, последующего контроля масла на внутренних поверхностях и нанесения соответствующих обозначений на шкалу прибора. Однако это возможно только на специализированных предприятиях, как правило, входящих в структуру Государственной метрологической службы.

Определение объемной доли водяных паров
конденсационным методом

Объемную долю водяных паров
определяют приборами конденсационного типа с пороговой чувствительностью не
выше 1,5 млн-1 (ррт).

Относительная погрешность
прибора не должна превышать 10 %.

Метод основан на измерении
температуры насыщения газа водяными парами при появлении росы на охлажденной
зеркальной поверхности.

Анализ проводят по
инструкции, приложенной к прибору.

Объемную долю
водяных паров в соответствии с найденной температурой насыщения определяют по
таблице.

Объемная доля водяных
паров, млн (рр m )

Температура насыщения,
°С

Объемная доля водяных
паров, млн ( ppm )

Температура насыщения,
°С

2,55

-70

23,4

-54

3,44

-68

31,1

-52

4,60

-66

39,4

-50

6,10

-64

49,7

-48

8,07

-62

63,2

-46

10,6

-60

80

-44

14,0

-58

101

-42

18,3

-56

127

-40

Примечание. Объемная
доля, равная 1 млн-1, соответствует 1 10-4 %.

За результат анализа принимают
среднее арифметическое результатов двух параллельных определений, относительное
расхождение между которыми не превышает допускаемое расхождение, равное 10 %.

Допускаемая относительная
суммарная погрешность результата анализа ± 25 % при доверительной вероятности Р
= 0,95.

ПРИЛОЖЕНИЕ
3.
(Введено дополнительно, Изм. № 4).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. УТВЕРЖДЕН И ВВЕДЕН В
ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров
СССР от 26.05.78 № 1419

Изменение № 4 принято
Межгосударственным Советом по стандартизации, метрологии и сертификации
(протокол № 8 от 12.10.95)

За принятие изменения
проголосовали:

Наименование
государства

Наименование
национального органа по стандартизации

Республика Беларусь

Госстандарт Беларуси

Республика Казахстан

Госстандарт Республики Казахстан

Республика Молдова

Молдовастандарт

Республика Таджикистан

Таджикгосстандарт

Республика Узбекистан

Узгосстандарт

Российская Федерация

Госстандарт России

Туркменистан

Главная государственная инспекция Туркменистана

Украина

Госстандарт Украины

2. ВЗАМЕН ГОСТ 5583-68

3. ССЫЛОЧНЫЕ
НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на
который дана ссылка

Номер пункта,
приложения

ГОСТ 61-75

3.8.1

ГОСТ 1277-75

3.6.1

ГОСТ 1770-74

3.5.1

ГОСТ 3118-77

3.4.1 , 3.7.1

ГОСТ 3760-79

3.2.1 ; 3.4.1; 3.6.1

ГОСТ 3773-72

3.2.1 ; 3.4.1

ГОСТ 4107-78

3.5.1

ГОСТ 4201-79

3.5.1

ГОСТ 4232-74

3.8.1

ГОСТ 4233-77

3.7.1

ГОСТ 4328-77

3.5.1

ГОСТ 4517-87

3.5.1

ГОСТ 6709-72

3.2.1 ; 3.4.1; 3.5.1;
3.6.1;
3.8.1;
3.9.1

ГОСТ 9293-74

Приложение 1

ГОСТ 10157-79

Приложение 1

ГОСТ 10163-76

3.8.1

ГОСТ 12026-76

3.9.1

ГОСТ 13320-81

3.2.3 ; 3.4.4

ГОСТ 18300-87

3.7.1

ГОСТ 18954-73

3.1.2 ; 3.5.1

ГОСТ 19433-88

4.1

ГОСТ 25336-82

3.5.1

ГОСТ 26460-85

4.1

ГОСТ 29227-91

3.5.1

ГОСТ 29251-91

3.5.1

4. Ограничение срока действия
снято по протоколу № 4-93 Межгосударственного Совета по стандартизации,
метрологии и сертификации (ИУС 4-94)

5.
ПЕРЕИЗДАНИЕ (июнь 1998 г.) с Изменениями № 1, 2, 3, 4, утвержденными в мае 1984
г., марте 1985 г., марте 1989 г., апреле 1996 г. (ИУС 8-84, 6-85, 6-89, 7-96)

СОДЕРЖАНИЕ

1. Технические требования . 1

2. правила
приемки . 2

3. Методы анализа . 3

4. Упаковка, маркировка, транспортирование и хранение . 9

5. Гарантии изготовителя . 9

6. Требования безопасности . 10

Приложение 1 Определение
объемной доли водорода в кислороде, получаемом электролизом воды,
хроматографическим методом .. 10

Приложение 2 Расчет
объема газообразного кислорода в баллоне . 11

Приложение 3 Определение объемной доли водяных паров конденсационным
методом .. 12

Расчет объема газообразного кислорода в баллоне

1. Объем газообразного
кислорода в баллоне (V) в кубических метрах при нормальных условиях
вычисляют по формуле

V = K1·V б ,

где V б —   вместимость баллона, дм3. В расчетах принимают среднюю статистическую
величину вместимости баллонов не менее чем из 100 шт.;

K 1 —    коэффициент
для определения объема кислорода в баллоне при нормальных условиях, вычисляемый
по формуле

где Р — давление газа в баллоне, измеренное
манометром, кгс/см2;

0,968 — коэффициент для пересчета технических
атмосфер (кгс/см2) в физические;

t —
температура газа в баллоне, °С;

Z —
коэффициент сжигаемости кислорода при температуре t .

Значения коэффициента К1
приведены в таблице
4.

Таблица 4

Температура
газа в баллоне, °С

Значение коэффициента Ki при избыточном давлении, МПа (кгс/см2)

13,7 (140)

14,2 (145)

14,7 (150)

15,2 (155)

15,7 (160)

16,2 (165)

16,7 (170)

17,2 (175)

17,7 (180)

18,1 (185)

18,6 (190)

19,1 (195)

19,6 (200)

20,1 (205)

20,6 (210)

-50

0,232

0,242

0,251

0,260

0,269

0,278

0,286

0,296

0,303

0,311

0,319

0,327

0,335

0,342

0,349

-40

0,212

0,221

0,229

0,236

0,245

0,253

0,260

0,269

0,275

0,284

0,290

0,298

0,305

0,312

0,319

-35

0,203

0,211

0,219

0,226

0,234

0,242

0,249

0,257

0,264

0,272

0,278

0,286

0,293

0,299

0,306

-30

0,195

0,202

0,211

0,217

0,225

0,232

0,239

0,248

0,253

0,261

0,267

0,274

0,281

0,288

0,294

-25

0,188

0,195

0,202

0,209

0,217

0,223

0,230

0,238

0,243

0,251

0,257

0,264

0,270

0,277

0,283

-20

0,182

0,188

0,195

0,202

0,209

0,215

0,222

0,229

0,235

0,242

0,248

0,255

0,261

0,267

0,273

-15

0,176

0,182

0,189

0,196

0,202

0,208

0,215

0,221

0,227

0,234

0,240

0,246

0,252

0,258

0,263

-10

0,171

0,177

0,183

0,189

0,195

0,202

0,208

0,214

0,220

0,226

0,232

0,238

0,244

0,250

0,255

-5

0,165

0,172

0,178

0,184

0,190

0,195

0,202

0,207

0,213

0,219

0,225

0,231

0,236

0,242

0,247

0

0,161

0,167

0,172

0,179

0,184

0,190

0,196

0,201

0,207

0,213

0,219

0,224

0,229

0,235

0,240

5

0,157

0,162

0,168

0,174

0,179

0,185

0,190

0,196

0,201

0,207

0,212

0,217

0,223

0,228

0,233

10

0,153

0,158

0,163

0,169

0,174

0,180

0,185

0,191

0,196

0,201

0,206

0,211

0,217

0,222

0,227

15

0,149

0,154

0,159

0,165

0,170

0,175

0,180

0,186

0,191

0,196

0,201

0,206

0,211

0,216

0,221

20

0,145

0,150

0,156

0,160

0,166

0,171

0,176

0,181

0,186

0,191

0,196

0,201

0,206

0,211

0,215

25

0.142

0,147

0,152

0,157

0,162

0,167

0,172

0,177

0,182

0,186

0,191

0,196

0,201

0,206

0,210

30

0,139

0,143

0,148

0,153

0,158

0,163

0,168

0,173

0,177

0,182

0,187

0,192

0,196

0,201

0,206

35

0,136

0,140

0,145

0,150

0,154

0,159

0,164

0,169

0,173

0,178

0,182

0,187

0,192

0,196

0,201

40

0,133

0,137

0,142

0,147

0,151

0,156

0,160

0,165

0,170

0,174

0,178

0,183

0,188

0,192

0,196

50

0,127

0,132

0,136

0,141

0,145

0,149

0,154

0,158

0,163

0,167

0,171

0,175

0,180

0,184

0,188

ПРИЛОЖЕНИЕ 2. (Измененная редакция, Изм.№ 3).

Оцените статью
Кислород
Добавить комментарий