Норма сатурации кислорода в крови у взрослого: таблица, как поднять

Норма сатурации кислорода в крови у взрослого: таблица, как поднять Кислород

Основные страхи, связанные с кислородотерапией

Несмотря на то, что использование кислородных концентраторов на дому широко распространено, у многих людей остается страх, связанный с тем, что кислород взрывоопасен. Это действительно так, однако при соблюдении мер предосторожности этот риск сводится к нулю.  

Также многие думают, что человек «подсядет на кислород». На это я всегда отвечаю, что пациенту нужен кислород в силу его заболевания. И если потребность в кислороде растет, это значит, что заболевание прогрессирует. Если же симптомы дыхательной недостаточности полностью проходят, то кислородотерапию врач отменит. Однако отмена — редкое явление у паллиативных пациентов.

Таким образом, кислородотерапия — метод лечения, который помогает тогда, когда есть конкретные показания. Общее правило гласит: кислород не лечит одышку, он помогает справиться со сниженным содержанием кислорода в крови. Но нужна кислородотерапия или нет, должна она быть длительной или ситуационной — это должен определять только врач.

У пациентов паллиативного профиля показания к кислородотерапии чаще всего есть. И когда кислородный концентратор появляется у пациента дома, при условии соблюдений правил эксплуатации и правильной организации пространства, это значительно облегчает жизнь больному.

Расходные материалы для респираторной поддержки: как ухаживать за ними дома.Что можно обрабатывать, а что нельзя? Как и с помощью чего дезинфицировать многоразовые изделия, как часто менять одноразовые?

Портативные источники кислорода.Как использовать кислородные концентраторы и баллоны.

Все о масках для неинвазивной вентиляции легких (НИВЛ).Виды масок, правила подбора, проблемы и осложнения при использовании маски, уход за маской.

Рекомендации для пациентов, получающих респираторную поддержку дома во время пандемии COVID-19.Что делать, если установлена трахеостома, как часто обрабатывать и менять расходники для устройств искусственной вентиляции легких.

Материал подготовлен с использованием гранта Президента Российской Федерации, предоставленного Фондом президентских грантов.

Использовано стоковое изображение от Depositphotos.

Где и когда применяют пульсоксиметрию?

Где и когда применяют

Если без еды и воды человеческий организм способен существовать на протяжении относительно долгого периода времени, так как имеет их запасы, то без кислорода он просто не сможет жить. Уже через несколько минут от момента старта острого кислородного голодания в организме запускаются процессы, которые приводят к его гибели. В первую очередь страдают органы, отвечающие за жизнедеятельность организма.

Если гипоксия протекает в хронической форме, то будут страдать все органы и системы. Это обязательно отразится на самочувствии человека. У него учащаются головные боли, появляется головокружение, усиливается сонливость, страдает внимание и память. Возможно возникновение аритмии, увеличивается вероятность инфаркта и гипертонии.

В кабинете большинства специалистов всегда имеется тонометр и стетоскоп, но пульсоксиметра у них в наличии нет, что не позволяет определить уровень сатурации у пациента. В то время как этот показатель имеет немаловажное значение в лечении и постановке диагноза пациентам с заболеваниями системы крови, дыхательной и сердечно-сосудистой системы.

Как измерить уровень насыщения крови кислородом?

Для этого можно использовать специальный прибор для измерения сатурации — пульсоксиметр. Вы можете купить портативный напальчниковый прибор и проводить измерения самостоятельно. Следует помнить, что измерение сатурации при ковид-19 крайне важно и должно проводиться регулярно с начала заболевания.

Пульсоксиметр представляет собой небольшое устройство, чрезвычайно простое в использовании — просто наденьте его на указательный или средний палец и нажмите кнопку ВКЛ/ВЫКЛ. Он не требует калибровки или специальной подготовки к измерению. Устройство состоит из зажима, облегчающего фиксацию прибора на пальце, специального датчика и ЖК-дисплея.

Пульсоксиметрию на пальце можно проводить как ребенку, так и взрослому. Особенно рекомендуется спортсменам, пожилым людям, людям с риском заражения COVID-19 и пациентам с респираторными и сердечно-сосудистыми заболеваниями или диабетом. Для достоверного измерения сатурации его следует проводить в положении сидя или лежа.

На результат измерения могут повлиять несколько факторов, например, холодные руки, грибковая инфекция ногтя или кровотечение, вызванное механическим повреждением пальца. Кроме того, во время измерения не допускается никаких движений. Если у вас есть сомнения по поводу показаний, рекомендуется провести измерения с помощью другого устройства.

Как работает метод пульсоксиметрии?

Как работает метод пульсоксиметрии

Пульсоксиметр состоит из источника света, датчиков, детектора и процессора, анализирующего полученные данные. Длина световой волны, которую способен поглотить гемоглобин, меняется в зависимости от того, какое количество в нем содержится кислорода. Именно на этом принципе базируется работа пульсоксиметра.

Красная и инфракрасная волна выходит из источника света, располагающегося на приборе. Кровь поглощает эти волны с той силой, с которой ей позволяют это сделать молекулы гемоглобина, несущие кислород. Гемоглобин, который уже присоединил к себе молекулу кислорода, будет поглощать инфракрасный свет.

Гемоглобин, который не содержит молекулы кислорода, поглощает красный свет. То количество света, которое осталось не поглощенным, попадает на детектор. Прибор выполняет анализ и выдает результат на экран монитора. Этот метод не требует инвазивного вмешательства, он не причиняет пациенту боль или иной дискомфорт. Для того, чтобы оценить уровень кислорода в артериальной крови, достаточно нескольких секунд (не более 20).

На данный момент времени врачи используют пульсоксиметрию трансмиссионную и отраженную:

  • Трансмиссионная пульсоксиметрия. Датчик и излучатель света располагают с двух сторон от исследуемой ткани. Чаще всего для этой цели используют палец, нос или ухо человека.

  • Отраженная пульсоксиметрия. Прибор регистрирует те волны, которые не поглощает гемоглобин, а те, которые отражаются от тканей. Поэтому датчики можно располагать на теле где угодно. Возможности применения этого метода несколько расширены, но точность исследования является в обоих случаях одинаковой.

Однако пульсоксиметрия имеет ряд недостатков. Так, прибор изменяет работу, если исследование проводится на ярком свете, либо датчик установлен на объект, находящийся в движении. Сказаться на точности исследования может нанесенный на ногтевую пластину лак, если прибор надевают на палец.

Кроме того, если установить пульсоксиметр неправильно, то возможны определенные погрешности в показаниях. Сказаться на точности данных могут такие состояния, как шок и гиповолемия у больного. При отравлении угарным газом уровень сатурации может приравниваться к 100%, а кровь в это время будет насыщена не кислородом, а углекислым газом.

[Видео] Техническое объяснение, как работает метод пульсоксиметрии:

О сатурации крови

О сатурации крови

Сатурация — это показатель насыщения крови кислородом. Она измеряется в процентах. Уровень кислорода в крови — один из ключевых показателей при проведении диагностики во всем мире.

Кислород участвует в образовании 90 % энергии, производимой организмом. Он необходим для химических реакций расщепления молекул пищи и высвобождения из них энергии для функционирования всех органов и систем нашего тела.

Норма сатурации кислорода в крови у взрослых — 94-99%. Если значение опускается ниже, человек испытывает симптомы гипоксии, или кислородной недостаточности.

Понижение уровня кислорода в крови может сигнализировать о:

— заболеваниях органов дыхания (воспаление легких, пневмония, туберкулез, бронхит, рак легких и др.);

— нарушениях количественного состава крови (недостаток эритроцитов или гемоглобина);

— пороках сердца (ишемическая болезнь сердца, врожденные пороки, инфекционное поражение клапанов и др.).

Среди причин низкой сатурации кислорода в крови у взрослых также называют лишний вес и курение.

Сатурацию легко и быстро измерить: процедура занимает от 10 секунд до минуты, а используются для этого пульсоксиметры. Убедиться, что уровень сатурации кислорода у взрослого в норме, можно с помощью последних версий фитнес-браслетов и умных часов: они схожим образом проводят измерения, но менее точны.

Чтобы получить достоверные показания, необходимо сесть и расслабиться. Датчик пульсоксиметра должен находиться у основания ногтя. Шевелить рукой во время определения сатурации нельзя. О том, что прибор закончил диагностику, сообщает звуковой сигнал. Чтобы диагностика была максимально точной в критичный момент, желательно знать свою норму сатурации кислорода — например, произвести измерения в разное время суток: сразу после сна, после еды, во время работы и т.д.

Есть усредненная норма сатурации кислорода у взрослых при измерении пульсоксиметром.

Так, нормальный уровень сатурации кислорода у взрослого человека – более 95%. Сатурация от 94% до 90% говорит о дыхательной недостаточности 1-й степени. При дыхательной недостаточности 2-й степени сатурация снижается до 89%-75%, меньше 60% — гипоксемическая кома.

У новорожденных детей ситуация будет отличаться. У младенцев слабо развиты легкие, а в организме мало железа, поэтому сатурация кислорода 98 % и ниже вплоть до 92 % считается нормой.

Не всегда причины низкой сатурации кислорода связаны с какими-либо заболеваниями. Например, показатель может опускаться до 92-94% при интенсивных занятиях спортом, когда кислорода не хватает из-за высоких нагрузок.

Помимо низкой сатурации гипоксемия может проявляться учащенным сердцебиение и дыханием, сонливостью, бледными кожными покровами, снижением артериального давления, слабостью и головокружением. Человек может заметить повышенный уровень тревожности, бессонницу. Если гипоксемия ухудшается, то начинаются анаэробные процессы в клетках, сопровождающиеся выделением большого количества вредных веществ. Проявляются одышка, дыхательная недостаточность, тахикардия, отеки нижних конечностей, обмороки, тремор, синюшность кожных покровов.

В роли вспомогательных способов помощи организму при низкой сатурации могут выступать лекарственные препараты, которые обычно используются для увеличения гемоглобина и общего укрепления. Так, для лечения могут быть полезны антигипоксанты, нормализующие окислительно-восстановительные процессы в тканях, антикоагулянты, препятствующие образованию тромбов, препараты для снижения давления (предупреждают отек легких) и тд. Как общеукрепляющие средства используются препараты с железом, магнием, витамины группы B, витаминные комплексы и др. Но поскольку низкая сатурация кислорода может быть вызвана целым рядом заболеваний, решение о лечении принимаются доктором с учетом других симптомов.

В то же время есть общие рекомендации, которые будут полезны не только для людей с пониженной сатурацией, но и здоровых. Необходимо хорошо проветривать помещения, регулярно выходить на прогулки, причем желательно — в лес, где содержание кислорода в воздухе больше, чем в городе.

Так же, чтобы сатурация пришла в норму и насыщение крови кислородом происходило без патологий, врачи рекомендуют делать дыхательную гимнастику. Она будет полезна после любых тяжелых респираторных заболеваний. Ее можно использовать при отсутствии одышки и температуры. Основное назначение — стимуляция кровообращения, увеличение эластичности легочной ткани и укрепление дыхательной мускулатуры. Заниматься нужно, постепенно увеличивая продолжительность упражнений с 5 до 15 минут. Пульмонологи советуют следующие упражнения:

1)Лежа на спине, вдыхаем через нос на три счета, затем на пять счетов делаем продолжительный выдох.

2)Садимся на стул и опускаем руки. На вдохе поднимаем прямые руки над головой ладонями вверх, на выдохе медленно опускаем.

3)Стоим с согнутыми в локтях руками, кисти — на плечах. На вдохе на три счета разводим руки в стороны, затем медленно выдыхаем через рот, сложив губы трубочкой. Кисти при этом заводим за плечи.

Область применения и показания к проведению пульсоксиметрии

Диагностический метод применяется в самых различных областях медицины:

  • анестезиология, в ходе проведения реанимационных мероприятий;
  • пластическая и микрососудистая хирургия;
  • ортопедия;
  • педиатрия и неонатология (контроль состояния недоношенных младенцев и детей более старшего возраста);
  • акушерская практика (для предупреждения внутриутробной гипоксии плода);
  • терапевтическое лечение (выявление синдрома ночного апноэ, контроль дыхательной недостаточности, оценка эффективности проводимой медикаментозной терапии).

Решение о проведение пульсоксиметрии принимается лечащим врачом Центра, учитывая состояние здоровья пациента. Показанием к диагностике являются:

  • явная и вероятная дыхательная недостаточность;
  • проведение кислородной терапии;
  • пребывание пациента под наркозом в течение продолжительного времени;
  • реабилитационный период после хирургического вмешательства;
  • наличие хронических заболеваний сердечно-сосудистой и дыхательной систем с риском развития гипоксии;
  • подозрение на синдром обструктивного или центрального апноэ;
  • вероятность развития ночной гипоксемии на фоне имеющих пульмонологических заболеваний (при ХОБЛ, эмфиземе легких, бронхиальной астме и другие).

Дополнительными показаниями к пульсоксиметрии являются жалобы на такие симптомы:

  • храп и периодическая остановка дыхания во время сна;
  • частые позывы в туалет в ночное время суток (более двух раз);
  • жалобы на одышку и затрудненность дыхания в ночное время суток;
  • беспокойный сон, потливость, чувство усталости и разбитости после пробуждения;
  • головные боли различной интенсивности, отмечаемые в утреннее время суток;
  • цианоз (посинение) тканей;
  • чувство выраженной усталости и повышенная сонливость в течение дня;
  • гастроэзофагеальный рефлюкс, появление отрыжки в ночное время суток.

Как следствие всех этих проблем со сном, пациенты отмечают повышенную раздражительность, депрессивный настрой, апатию.

Процедура пульсоксиметрии абсолютно безопасна для пациента, безболезненна и не имеет противопоказаний. Поэтому при имеющихся показаниях обследование проводят регулярно каждые 1-2 месяца.

Цена обследования обсуждается в индивидуальном порядке. Если процедура проводится в стационаре, ее стоимость может варьироваться.

Особенности проведения процедуры

Fingerpulsoximeter

Фиксация полученных данных осуществляется в течение 16 часов, при более раннем пробуждении пациент может отключить прибор самостоятельно.

В зависимости от продолжительности сна прибор фиксирует значения от 10 до 30 тысяч раз.

Алгоритм проведения процедуры:

  1. На запястье левой руки фиксируется блок, в который вмонтирован микропроцессор.
  2. На палец этой же руки устанавливается датчик прибора. Важно правильно расположить датчик, чтобы он находился выше ногтевой пластины, но на максимальном расстоянии от места соединения фаланги с ладонью.
  3. Датчик включается автоматически сразу после установки. Полученные значения отображаются на дисплее приемника.
  4. Датчик на пальце должен оставаться на протяжении всей ночи. Все пробуждения в течение ночи должны быть зафиксированы в дневнике.

Утром пациент самостоятельно отключает прибор, снимает датчик и приемник. Полученные результаты вместе с дневником исследования передаются врачу Центра респираторной медицины.

Причины отклонений

Еще раз назовем то, что негативно сказывается на сатурации:

  • курение;
  • употребление алкоголя;
  • хронические заболевания крови и легких;
  • низкий гемоглобин – анемия.

Ситуация, когда падает сатурация после коронавируса, объясняется тем, что «дышащая» ткань в легких заменяется соединительной. То есть организму просто нечем впитывать кислород. Можно провести аналогию с помещением, где наглухо закрыты форточки: хочется свежего воздуха, но нет возможности получить его.

Норма сатурации после коронавируса

Согласно обобщенной практике реаниматологов Москвы, насыщение крови пациента, у которого выявили ковид, должно быть на уровне не менее 90%. Если показатель ниже, то больного переворачивают на живот. Когда это не помогает и в таком положении сатурация остается на уровне 90%, то пациенту показана интубация трахеи.

Далее, медики наблюдают за состоянием больного, раз в несколько часов отключают от аппарата ИВЛ. Если насыщаемость легким кислородом падает ниже 80%, опять производят интубацию трахеи. Процедура показана при сатурации в 90–92%, если частота дыхательных движений превышает в минуту 26.

Медики считают, что при коронавирусной пневмонии показатель от 90% – это норма. Но всё, как и в ситуации со здоровыми людьми, индивидуально. Если воспаление прошло, то нельзя довольствоваться последними показателями.

Программы реабилитации после COVID-19

Пульсоксиметрия

Пульсоксиметрия.

(по материалам «Руководства ВОЗ по пульсоксиметрии»)

Периферическая кислородная сатурация (SpO2) – насыщение гемоглобина кислородом.

В норме насыщение артериальной крови кислородом (сатурация) – 95%-100%.

В норме венозная кровь имеет сатурацию около 75%.

Если сатурация ниже 94%, у пациента гипоксия и необходимо быстро принимать меры.

Сатурация ниже 90% является критическим состоянием и требует экстренной медицинской помощи.

Пульсоксиметр измеряет:

— периферическую сатурацию гемоглобина кислородом артериальной крови.

— частоту пульса в ударах в минуту, рассчитываемую в среднем за 5-20 секунд.

Например, информация на экране монитора пульсоксиметра:

%SpO2

98

HR♥

72

означает, что у пациента периферическая кислородная сатурация (SpO2) – 98%, частота пульса – 72/мин. На мониторе пульсоксиметра также отображается кривая пульсовой волны в виде неправильной синусоиды – индикатор пульса.

Звуковые сигналы тревоги пульсоксиметра предупреждают, что у пациента:

— Низкий уровень сатурации (гипоксия) – SpO2 <90%,

— Отсутствует пульс,

— Низкая ЧСС,

— Тахикардия.

Если вы сомневаетесь в правильной работе датчика пульсоксиметра, проверьте его, надев на свой палец!

Возраст

Нормы ЧСС

Нормы уровня сатурации (SpO2)

Новорожденные – 2 года

110-180

Все пациенты должны иметь (SpO2) 95% или выше.

2 – 10 лет

70-140

10 лет – взрослые

60-90

Что следует предпринять, если сатурация падает?

Во всех случаях, когда у пациента низкий уровень сатурации (SpO2<95%), необходимо увеличить объем вдыхаемого кислорода и действовать по ABCDE:

— А – дыхательные пути (AIRWAY) проходимы? Обеспечить проходимость ВДП, проверить положение ЭТТ (при наличии), купировать ларингоспазм при его развитии.

— В – дыхание (BREATHING) присутствует? Проверить ЧД, проверить дыхательный объем, провести аускультацию легких, проверить наличие бронхоспазма (купировать бронходилятаторами).

— С – кровообращение (CIRCULATION) в норме? Проверить пульс, проверить АД, проверить ЭКГ, проверить наличие кровопотери, дегидратации (при необходимости – инфузионная терапия).

D – воздействие препаратов (DRUG EFFECTS) не является ли причиной? Опиоиды, летучие анестетики, седативные, мышечные релаксанты.

— Е – оборудование (EQUIPMENT) работает правильно? Проверить подачу кислорода, проверить герметичность и проходимость дыхательного контура

Пульсоксиметрия. правила измерения.

Кислород  для людей жизненно необходим, так как требуется всем органам в процессе жизнедеятельности, а мозг и сердце особенно чувствительны к его недостатку. Нехватка кислорода в организме называется гипоксией.

Попав в легкие во время вдоха, кислород связывается в легочных капиллярах с гемоглобином в эритроцитах. Сердце непрерывно перекачивает кровь по всему телу, чтобы доставить кислород к тканям.

Пульсоксиметри́я (оксигемометрия, гемоксиметрия) — неинвазивный метод определения степени насыщения крови кислородом. В основе метода лежит спектрофотометрический способ определения насыщения крови кислородом.

Основу метода пульсоксиметрии составляют два ключевых физиологических явления:

  1. Способность гемоглобина в зависимости от его оксигенации в разной степени поглощать свет определенной длины волны при прохождении этого света через участок ткани (оксиметрия).
  2. Пульсация артерий и артериол в соответствии с ударным объемом сердца (пульсовая волна).

Прибор состоит из датчика, имеющего два светодиода, фотодетектора и микропроцессора. Датчик фиксируется на пальце или мочке уха пациента. При прохождении светового потока через кровь оксигемоглобин интенсивно поглощает инфракрасное излучение, а дезоксигемоглобин – красное. Показатель сатурации отражается на дисплее пульсоксиметра (в норме SpO2 = 95-98 %).

Какие показатели отражает пульсоксиметрия?

Обыкновенные пульсоксиметры, рассчитанные на применение в больницах и домашних условиях, могут регистрировать два основных показателя — сатурация (насыщение) крови кислородом и частоту пульса. Во многих случаях уже эта информация дает общее представление о состоянии пациента,

В условную подготовку пациента к пульсоксиметрии входят следующие рекомендации:

  • Не употреблять стимулирующие вещества. Любые стимулирующие вещества (наркотические препараты, кофеин, энергетические напитки) влияют на работу нервной системы и внутренних органов.
  • Отказ от курения. Курение непосредственно перед процедурой может повлиять на глубину вдоха, частоту сердцебиения, тонус сосудов. Это изменения повлекут снижение насыщения крови кислородом, которое отразит пульсоксиметрия.
  • Отказ от алкоголя. Печень ответственна за выработку многих компонентов крови и ферментов. Таким образом, результат пульсоксиметрии будет несколько искажен.
  • Не использовать крема для рук и лак для ногтей. В большинстве случаев датчик пульсоксиметра крепится на палец. Использование различных кремов для рук может повлиять на «прозрачность» кожи. Световые волны, которые должны определить насыщение крови кислородом, могут встретить препятствие, что отразится на результате исследования. Лаки для ногтей (особенно синий и фиолетовый цвета) и вовсе делают палец непроницаемым для света, и прибор не будет работать.
    Для получения достоверных результатов при использовании пульсоксиметра нужно придерживаться следующих рекомендаций:
  • Правильный выбор места исследования. Желательно проводить пульсоксиметрию в комнате с умеренным освещением. Тогда яркий свет не будет влиять на работу светочувствительных датчиков. Интенсивный свет (особенно красный, синий и других цветов) может существенно исказить результаты исследования.
  • Правильное расположение пациента. Основным требованием во время пульсоксиметрии является статичное положение пациента. Желательно проводить процедуру лежа на кушетке с минимальным количеством движений. Быстрые и резкие движения могут привести к смещению датчика, ухудшению его контакта с телом и искажению результата.
  • Включение и питание прибора. Некоторые современные пульсоксиметры включаются автоматически после надевания датчика. В других моделях аппарат нужно включить самостоятельно. В любом случае, перед использованием пульсоксиметра, нужно проверить уровень зарядки (для моделей на аккумуляторах или батарейках). Исследование может длиться довольно долго, в зависимости от информации, которую хочет получить врач. Если аппарат разрядится до окончания процедуры, ее придется повторить.
  • Прикрепление датчика. Датчик пульсоксиметра крепят на часть тела, указанную в инструкции. В любом случае он должен хорошо держаться, чтобы не упасть случайно при движениях пациента. Также датчик не должен слишком сильно зажимать палец или стягивать запястье.
  • Правильная интерпретация результатов. Пульсоксиметр выдает результаты в понятном для пациента виде. Обычно это частота сердечных сокращений и уровень насыщения крови кислородом. Однако грамотно интерпретировать результат может только лечащий врач. Он сопоставляет показатели с результатами других исследований и состоянием пациента.
    Техника проведения пульсоксиметрии включает следующие этапы:
  • пациента «готовят» к процедуре, объясняя, что и как будет происходить;
  • на палец, мочку уха или другую часть тела (по необходимости) устанавливают датчик;
  • аппарат включают, и начинается, собственно, процесс измерения, который длится не менее 20 – 30 секунд;
  • аппарат выводит результат измерений на монитор в удобной для врача или пациента форме.
    Попутно пульсоксиметры считывают и частоту сердечных сокращений (ЧСС), регистрируя пульсацию сосудов.
    Наиболее часто допускают следующие ошибки при проведении пульсоксиметрии:
  • наличие лака на ногтях;
  • неправильное прикрепление датчика (слабая фиксация, плохой контакт с тканями);
  • некоторые заболевания крови (о которых не знали до начала исследования);
  • низкая температура тела;
  • движения пациента во время исследования;
  • использование датчиков неподходящей модели (по возрасту, весу и др.).
    На точность измерений могут оказывать отрицательное влияние ряд факторов:
  • яркий внешний свет и движения могут нарушать работу прибора;
  • неправильное расположение датчика: для трансмиссионных оксиметров необходимо, чтобы обе части датчика находились симметрично относительно просвечиваемого участка ткани, иначе путь между фотодетектором и светодиодами будет неравным, и одна из длин волн будет «перегруженной»;
  • значительное снижение перфузии периферических тканей ведет к уменьшению или исчезновению пульсовой волны. В этой ситуации увеличивается ошибка измерения SpO2;
  • при значениях SaO2 ниже 70% также возрастает погрешность измерений сатурации методом пульсоксиметрии – SpO2. В связи с этим следует отметить, что в практической работе врача терапевтической специальности вероятность столкнуться со значениями SaO2 ниже 70% у пациента крайне мала;
  • анемия требует более высоких уровней кислорода для обеспечения транспорта кислорода. При значениях гемоглобина ниже 50 г/л может отмечаться 100% сатурация крови даже при недостатке кислорода;
  • отравление угарным газом (высокие концентрации карбоксигемоглобина могут давать значение сатурации около 100%);
  • красители, включая лак для ногтей, могут спровоцировать заниженное значение сатурации;
  • сердечные аритмии могут нарушать восприятие пульсоксиметром пульсового сигнала;
  • возраст, пол, желтуха и темный цвет кожи не влияют на работу пульсоксиметра.
    Требования стандартов по пульсоксиметрии устанавливают основную погрешность измерения сатурации в диапазоне (80…99)% равную ± 2%, (50…79)% — ± 3%, для сатурации ниже 50% погрешность обычно не нормируется. Высокая точность пульсоксиметрии для значений сатурации более 80% необходима для надежной дифференциации развития состояния гипоксемии и гипоксии. В этом диапазоне кривая диссоциации гемоглобина имеет малую крутизну (рис.38) и небольшое уменьшение сатурации означает сильное изменение напряжения кислорода в крови, что является предвестником гипоксии. Увеличение допустимой погрешности при низких уровнях оксигенации (менее 80%) является клинически обоснованным, так как в этом диапазоне наибольшей ценностью обладает не абсолютное значение сатурации, а оценка динамики процесса, т.е. изменение сатурации в течение определенного времени.
    Требования быстродействия измерений сатурации связаны с тем, что на определенных стадиях ведения наркоза, например, интубации, возможно быстрое развитие эпизодов гипоксемии, которые могут привести к гипоксическим состояниям, чреватым серьезными осложнениями. Реальным требованием анестезиологической практики является длительность процесса измерения и оценки сатурации, составляющая не более 6…10с.
    Основные помехи, влияющие на точность измерения сатурации, имеют электрическую, оптическую и физиологическую природу.
  • Электрические помехи (“наводки”) возникают в усилительном тракте пульсоксиметра в результате влияния внешних электромагнитных полей, создаваемых, в частности, питающей сетью 50 Гц, электрохирургическим инструментом, физиотерапевтической аппаратурой. Подавление помех осуществляется путем частотной фильтрации сигналов, так как полезная информация в ФПГ сигнале сосредоточена, в основном, в диапазоне до 10 Гц, т.е. значительно ниже частотного диапазона помех. Для этой цели используются аналоговые фильтры нижних частот в усилительном тракте, а также цифровая фильтрация, дающая высокую крутизну спада частотной характеристики фильтров.
  • Помехи оптического происхождения возникают в случае попадания света от посторонних источников излучения (от хирургических ламп, ламп дневного света и т.п.) на фотоприемник датчика. Под действием данных помех уровень сигнала, снимаемого с фотоприемника, может изменяться, искажая сигнал, обусловленный абсорбцией излучения светодиодов в тканях. Для подавления оптических помех используют метод трехфазной коммутации светодиодов датчика. В первые две фазы коммутации поочередно включаются либо “красный”, либо “инфракрасный” светодиод датчика, в третьей фазе оба светодиода выключаются и фотоприемник регистрирует фоновую засветку датчика, включающую оптические помехи. Напряжение фоновой засветки запоминается и вычитается из сигналов “красного” и “инфракрасного” каналов, получаемых в первые две фазы коммутации. Таким образом, действие фоновой засветки датчика на полезный сигнал ослабляется.
  • Коммутация светодиодов с достаточно высокой частотой (намного превышающей частоты оптических помех) позволяет при выделении сигналов различных каналов в усилительном тракте использовать принципы синхронного детектирования, существенно улучшающие соотношения сигнал/шум. Сильная фоновая засветка датчика может стать причиной возникновения искажений в усилительном тракте, поэтому фотоприемник и первые каскады усиления должны обладать линейностью характеристики в большом динамическом диапазоне входных сигналов. Это необходимо для устранения амплитудных искажений переменной составляющей сигнала и подавления перекрестных помех. Ослабление фоновых засветок достигается также конструктивным построением датчика с использованием оптического экранирования.
  • Помехи физиологической природы оказывают наиболее сильное влияние на показания пульсоксиметров. К таким помехам можно отнести влияние двигательных артефактов, в том числе и дыхания, непостоянство формы пульсовой волны и снижение ее амплитуды у различных пациентов. Движение конечности с закрепленным на ней датчиком вызывает, например, перераспределение объема крови, находящегося в поле зрения датчика, что дает на выходе фотоприемника помеховый сигнал. Ослабление указанных помех особенно важно при выделении максимумов артериальных пульсаций фотоплетизмографических сигналов обоих каналов.
     
         Возможные источники погрешностей при пульсоксиметрии
  • Особенность определения уровня оксигенации крови с помощью пульсоксиметра заключается в том, что, в соответствии с принципом действия прибора, в нем производится измерение величины поглощения света, прошедшего через ткани, содержащие артериальные сосуды, в красном и инфракрасном диапазоне и вычисление R — отношения измеренных величин. Значение сатурации определяется по величине R в соответствии с калибровочной зависимостью, устанавливаемой параллельными градуировочными измерениями функциональной или фракционной сатурации у добровольцев с помощью отбора проб крови и их анализа в кюветном оксиметре.
  • Показания пульсоксиметра при определении оксигенации крови у пациентов соответствуют градуировочной сатурации только тогда, когда доля дисгемоглобинов у пациентов и у лиц, участвующих в градуировке прибора, совпадают. В большинстве случаев предполагается, что фракция дисгемоглобинов (СОНb, МеtНb) не превышает 2% и ее долей в определении сатурации можно пренебречь. Однако при колебаниях этой фракции показания пульсоксиметра отличаются от величин SaО2функ или SaО2фр, по которым производилась градуировка прибора. Поэтому для более корректного обозначения показаний пульсоксиметров используется термин SрО2, применяемый большинством изготовителей аппаратуры, который подчеркивает возможность ошибок определения сатурации при возрастании фракции дисгемоглобинов.
  • Влияние СОНb на показания сатурации определяются спектром его поглощения (рис.40). На волне 940нм СОНb обладает очень низким поглощением и не вносит вклад в общее поглощение. На волне 660нм СОНb обладает поглощением очень близким к поглощению НвО2. Следовательно, показания пульсоксиметра будут ошибочно завышены по отношению к величине SаО2фр. Это может маскировать опасные для жизни состояния с низким значением фракционной сатурации (например, при присутствии во вдыхаемом газе СО). Так при содержании СОНb — 50% SрО2 оказывается равным 95% / 96 /.
  • Фракция МеtНb поглощает больше света на волне 940нм чем Нb, но на волне 660нм имеет почти равное с ним поглощение. Это приводит к завышению SрО2 при низких значениях SaО2фр и к занижению показаний при больших значениях. При высоких концентрациях МеtНb SрО2 приближается к 85% (отношение близко к 1) и не зависит от реальной оксигенации артериальной крови.
  • Высокий уровень билирубина не оказывает влияние на поглощение света на используемых длинах волн и не искажает показания пульсоксиметра. Однако для кюветных оксиметров ошибки возникают при более низких длинах волн и могут привести к занижению показаний.
  • Фетогемоглобин (НвF), имеющийся у новорожденных в первые несколько месяцев после рождения, и Нb имеют очень близкие характеристики поглощения, совпадающие на волне 940нм и различающиеся на несколько процентов на волне 660нм / 87 /. Это требует небольшого уточнения калибровочной зависимости, используемой в приборах фетального мониторинга / 88 /.
  • Красящие вещества, вводимые в кровь, оказывают влияние на показания пульсоксиметров. Метилен голубой дает уменьшение величины SрО2, более значительно влияет введение индигокармина, используемого для измерения сердечного выброса.
  • Ошибки в определении состояния пациента по данным SрО2 могут возникнуть из-за маскирования снижения величины РО2, которое может наступить прежде, чем начнется значительное падение SрО2. Это обстоятельство объясняется ходом кривых диссоциации НвО2 (рис.38). При больших сдвигах PО2 (в диапазоне выше 60 мм рт.ст.) наблюдаются небольшие изменения SаО2, но если PО2 становится меньше 60 мм рт.ст., малые изменения PО2 приводят к большим сдвигам SаО2 .Поэтому нижняя граница уровня тревожной сигнализации должна быть установлена равной 94%, что соответствует безопасному значению PО2.
  • Ошибки могут возникать при низкой тканевой перфузии или выраженной вазоконстрикции вследствие слабости пульсации в месте расположения датчика прибора. Следует отметить, что при выраженной гемодилюциианемии и кровопотере высокие показатели SpО2 отнюдь не гарантируют безопасный уровень доставки кислорода к тканям, т.к. общая кислородная емкость крови при этом может оказаться недостаточной.

Список литературы:

1.Шурыгин, И.А. Мониторинг дыхания: пульсоксиметрия, капног- рафия, оксиметрия. – СПб.: Невский Диалект; М.: БИНОМ, 2000. – 301 с
2.«Руководство ВОЗ по пульсоксиметрии». Женева, Швейцария. 2009 год. 1- 23;
3.«Базовый курс анестезиолога». Учебное пособие, электронный вариант / под ред. Э. В. Недашковского, В. В. Кузькова. — Архангельск: Северный государственный медицинский университет, 2022 год. 184 — 188.
4. «Стандартизация клинических и неклинических производственных процессов в медицинских организациях, их внедрение и мониторинг» Методические рекомендации, РГП «РЦРЗ», Астана, 2022 год);
5.«Компьютерная пульсоксиметрия. В диагностике нарушений дыхания во сне.» Р.В.Бузунов, И.Л.Иванова, Ю.Н.Кононов, С.Л.Лопухин, Л.Т.Пименов. Учебно-методическое пособие для врачей.
6.Инструкция производителя по эксплуатации прибора «Пульсоксиметр»

26 марта 2021 г.

Оцените статью
Кислород
Добавить комментарий