Все тесты
- Тест на темуАнализ стихотворения «Не с теми я, кто бросил землю» А. Ахматовой5 вопросов
- Тест на темуАнализ стихотворения «Перемена» Б. Пастернака5 вопросов
- Тест на темуАнализ стихотворения «Стихи о Петербурге» А. Ахматовой5 вопросов
- Тест на темуАнализ стихотворения «Стихи к Блоку» М. Цветаевой5 вопросов
- Тест на темуАнализ стихотворения «Клеветникам России» А. Пушкина5 вопросов
- Тест на темуАнализ стихотворения «Завещание» Н. Заболоцкого5 вопросов
- Тест на темуАнализ стихотворения «Стихи о Москве» М. Цветаевой5 вопросов
- Тест на темуАнализ стихотворения «Молитва» М. Цветаевой5 вопросов
- Тест на темуАнализ стихотворения «И. И. Пущину!» А. Пушкина5 вопросов
- Тест на темуАнализ стихотворения «День и ночь» Ф. Тютчева5 вопросов
- Тест на темуАнализ стихотворения «Весна в лесу» Б. Пастернака5 вопросов
- Тест на темуАнализ стихотворения «Журавли» Р. Гамзатова5 вопросов
- Тест на темуАнализ стихотворения «Люблю» В. Маяковского5 вопросов
- Тест на темуАнализ стихотворения «Когда на меня навалилась беда» К. Кулиева5 вопросов
- Тест на темуАнализ стихотворения «Гамлет» Б. Пастернака5 вопросов
- Тест на темуАнализ стихотворения «Русь» А. Блока5 вопросов
- Тест на темуАнализ стихотворения «Ночь» В. Маяковского5 вопросов
- Тест на темуАнализ стихотворения К. Симонова «Ты помнишь, Алёша, дороги Смоленщины…»5 вопросов
- Тест на темуАнализ стихотворения Жуковского «Приход весны»5 вопросов
- Тест на темуАнализ стихотворения Анны Ахматовой «Сероглазый король»5 вопросов
- Тест на темуАнализ стихотворения «Июль – макушка лета…»5 вопросов
- Тест на темуАнализ стихотворения «Мелколесье. Степь и дали…» С. Есенина5 вопросов
- Тест на темуАнализ стихотворения «Не позволяй душе лениться» Н. Заболоцкого5 вопросов
- Тест на темуАнализ стихотворения «На дне моей жизни» А. Твардовского5 вопросов
- Тест на темуАнализ стихотворения «Нивы сжаты, рощи голы…» С. Есенина5 вопросов
- Тест на темуАнализ стихотворения «Бабушкины сказки» С. Есенина5 вопросов
- Тест на темуАнализ стихотворения «Снежок» Н. Некрасова1 вопрос
- Тест на темуАнализ стихотворения «По вечерам» Н. Рубцова5 вопросов
- Тест на темуАнализ стихотворения «Вчерашний день, часу в шестом…» Н. Некрасова5 вопросов
- Тест на темуАнализ стихотворения «Цветы последние милей…» А. Пушкина5 вопросов
- Тест на темуАнализ стихотворения «Я знаю, никакой моей вины…» А. Твардовского5 вопросов
- Тест на темуАнализ стихотворения «Я не ищу гармонии в природе»Н. Заболоцкого5 вопросов
- Тест на темуАнализ стихотворения «Разбуди меня завтра рано» С. Есенина5 вопросов
- Тест на темуАнализ стихотворения «Снега потемнеют синие» А. Твардовского5 вопросов
- Тест на темуАнализ стихотворения «Осень» Н. Карамзина5 вопросов
- Тест на темуАнализ стихотворения «Молитва» А. Ахматовой5 вопросов
- Тест на темуАнализ стихотворения «Вечер» А. Фета5 вопросов
- Тест на темуАнализ стихотворения «Не жалею, не зову, не плачу» С. Есенина5 вопросов
- Тест на темуАнализ стихотворения «Тучи» М. Лермонтова5 вопросов
- Тест на темуАнализ стихотворения «Книга» Г. Тукая5 вопросов
- Тест на темуАнализ стихотворения «Необычайное приключение, бывшее с Владимиром Маяковским летом на даче» В. Маяковского5 вопросов
- Тест на темуАнализ стихотворения «Деревня» А. Пушкина5 вопросов
- Тест на темуАнализ стихотворения «Летний вечер» А. Блока5 вопросов
- Тест на темуАнализ стихотворения «Я убит подо Ржевом» А. Твардовского5 вопросов
- Тест на темуАнализ стихотворения «Элегия» А. Пушкина5 вопросов
- Тест на темуАнализ стихотворения «Зимнее утро» А. Пушкина5 вопросов
- Тест на темуАнализ стихотворения «Троица» И. Бунина5 вопросов
- Тест на темуАнализ стихотворения «Бабушке» М. Цветаевой5 вопросов
- Тест на темуАнализ стихотворения «О весна без конца и краю» А. Блока5 вопросов
- Тест на темуАнализ стихотворения «Море» В. Жуковского5 вопросов
Озон, физико-химические свойства, применение
ОБЩИЕ СВЕДЕНИЯ.
Озон — О3, аллотропная форма кислорода, являющаяся мощным окислителем химических и других загрязняющих веществ, разрушающихся при контакте. В отличие от молекулы кислорода, молекула озона состоит из трех атомов и имеет более длинные связи между атомами кислорода. По своей реакционной способности озон занимает второе место, уступая только фтору.
История открытия
В 1785 г. голландский физик Ван Ма-рум, проводя опыты с электричеством, обратил внимание на запах при образовании искр в электрической машине и на окислительные способности воздуха после пропускания через него электрических искр.
В 1840 г. немецкий ученый Шейнбейн занимаясь гидролизом воды пытался с помощью электрической дуги разложить её на кислород и водород. И тогда он обнаружил, что образовался новый, доселе не известный науке газ со специфическим запахом. Имя “озон” было присвоено газу Шейнбейном из-за характерного запаха и происходит от греческого слова “озиен”, что значит “пахнуть”.
22 сентября 1896 г. изобретатель Н. Тесла запатентовал первый генератор озона.
Физические свойства озона.
Озон может существовать во всех трех агрегатных состояниях. При нормальных условиях озон — газ голубоватого цвета. Температура кипения озона — 1120С, а температура плавления составляет — 1920С .
Благодаря своей химической активности озон имеет очень низкую предельно-допустимую концентрацию в воздухе (соизмеримую с ПДК боевых отравляющих веществ) 5·10-8 % или 0,1 мг/м3, что в 10 раз больше обонятельного порога для человека.
Химические свойства озона.
Следует отметить прежде всего два основных свойства озона:
O3 -> О О 2
О3 О -> 2 О2
О2 E- -> О2-
Озон является одним из сильнейших природных окислителей. Окислительный потенциал озона составляет 2,07 В (для сравнения у фтора 2,4 В, а у хлора 1,7 В).
Озон окисляет все металлы за исключением золота и группы платины, доокисляет оксиды серы и азота, окисляет аммиак с образованием нитрита аммония.
Озон активно вступает в реакцию с ароматическими соединениями с разрушением ароматического ядра. В частности озон реагирует с фенолом с разрушением ядра. Озон активно взаимодействует с насыщенными углеводородами с разрушением двойных углеродных связей.
Взаимодействие озона с органическими соединениями находит широкое применение в химической промышленности и в смежных отраслях. Реакции озона с ароматическими соединениями легли в основу технологий дезодорации различных сред, помещений и сточных вод.
Биологические свойства озона.
Несмотря на большое количество исследований механизм недостаточно раскрыт. Известно, что при высоких концентрациях озона наблюдаются поражения дыхательных путей, легких и слизистой оболочки. Длительное воздействие озона приводит к развитию хронических заболеваний легких и верхних дыхательных путей.
Воздействие малыми дозами озона оказывает профилактическое и терапевтическое воздействие и начинает активно использоваться в медицине — в первую очередь для дерматологии и косметологии.
Кроме большой способности уничтожения бактерий озон обладает высокой эффективностью в уничтожении спор, цист (плотные оболочки, образующиеся вокруг одноклеточных организмов, например, жгутиковых и корненожек, при их размножении, а также в неблагоприятных для них условиях) и многих других патогенных микробов.
Технологическое применение озона
В последние 20 лет области применения озона значительно расширились и во всем мире ведутся новые разработки. Столь бурному развитию технологий с использованием озона способствует его экологическая чистота. В отличие от других окислителей озон в процессе реакций разлагается на молекулярный и атомарный кислород и предельные оксиды. Все эти продукты, как правило, не загрязняют окружающую среду и не приводят к образованию канцерогенных веществ как, например, при окислении хлором или фтором.
Вода:
В 1857 г. с помощью созданной Вернером фон Сименсом «совершенной трубки магнитной индукции» удалось построить первую техническую озоновую установку. В 1901 г. фирмой «Сименс» построена первая гидростанция с озонаторной установкой в Висбанде.
Исторически применение озона началось с установок по подготовке питьевой воды, когда в 1898 году в городе Сан Мор (Франция) прошли испытания первой опытно-промышленной установки. Уже в 1907 году был построен первый завод по озонированию воды в городе Бон Вуаяж (Франция) для нужд города Ниццы. В 1911 году была пущена в эксплуатацию станция озонирования питьевой воды в Санкт-Петербурге.
В настоящее время 95% питьевой воды в Европе проходит озонную подготовку. В США идет процесс перевода с хлорирования на озонирование. В России действуют несколько крупных станций (в Москве, Нижнем Новгороде и других городах).
Воздух:
Применение озона в системах очистки воды доказано в высшей степени эффективным, однако до сих пор не создано таких же эффективных и доказано безопасных воздухоочистительных систем. Озонирование считается нехимическим способом очистки и поэтому популярно среди населения. Вместе с тем, хроническое воздействие микро-концентраций озона на организм человека достаточно не изучено.
При очень незначительной концентрации озона воздух в помещении чувствуется приятным и свежим, а неприятные запахи ощущаются гораздо слабее. В противоположность распространенному мнению о благоприятном воздействии этого газа, которое приписывают в некоторых проспектах богатому озоном лесному воздуху, в действительности озон даже при большом разбавлении представляет собой очень токсичный и опасный раздражающий газ. Даже малые концентрации озона могут оказывать раздражающее действие на слизистые оболочки и вызывать нарушения центральной нервной системы, что ведет к появлению бронхита и головных болей.
Медицинское применение озона
В 1873 г. Фоке наблюдал уничтожение микроорганизмов под воздействием озона и это уникальное свойство озона привлекло к себе внимание медиков.
История использования озона в медицинских целях берет свое начало в 1885 г., когда Чарли Кенворф впервые опубликовал свой доклад в Медицинской Ассоциации Флориды, США. Краткие сведения о применении озона в медицине обнаружены и до этой даты.
В 1911 г. М. Eberhart использовал озон при лечении туберкулеза, анемии, пневмонии, диабета и др. заболеваний. А. Вольф (1916) в период первой мировой войны применяет кислородно-озоновую смесь у раненых при сложных переломах, флегмонах, абсцессах, гнойных ранах. Н. Kleinmann (1921) применил озон для общего лечения “полостей тела”. В 30-х гг. 20 века Е.А. Фиш, зубной врач, начинает лечение озоном на практике.
В заявке на изобретение первого лабораторного прибора Фишем был предложен термин «CYTOZON», который и сегодня значится на генераторах озона, используемых в зубоврачебной практике. Йоахим Хэнзлер (1908-1981) создал первый медицинский генератор озона, который позволял точно дозировать озоно-кислородную смесь, и тем самым дал возможность широко применять озонотерапию.
Р. Auborg (1936) выявил эффект рубцевания язв толстой кишки под действием озона и обратил внимание на характер его общего воздействия на организм. Работы по изучению лечебного действия озона во время второй мировой войны активно продолжались в Германии, немцы успешно применяли озон для местного лечения ран и ожогов. Однако после войны практически на два десятилетия исследования были прерваны, что обусловлено появлением антибиотиков, отсутствием надежных, компактных генераторов озона и озоно-стойких материалов. Обширные и систематические исследования в области озонотерапии начались в середине 70-х гг., когда в повседневной медицинской практике появились стойкие к озону полимерные материалы и удобные для работы озонаторные установки.
Исследования in vitro, то есть в идеальных лабораторных условиях, показали что при взаимодействии с клетками организма озон окисляет жиры и образует пероксиды — вещества, губительные для всех известных вирусов, бактерий и грибков. По действию озон можно сравнить с антибиотиками, с той разницей, что он не “сажает” печень и почки, не имеет побочных явлений. Но, к сожалению, in vivo — в реальных условиях всё обстоит гораздо сложнее.
Озонотерапия одно время была весьма популярна — многие считали озон чуть ли панацеей от всех недугов. Но детальное изучение воздействия озона показало, что вместе с больными озон поражает и здоровые клетки кожи, легких. В результате в живых клетках начинаются непредвиденные и непрогнозируемые мутации. Озонотерапия так и не прижилась в Европе, а в США и Канаде официальное медицинское применение озона не легализовано, за исключением альтернативной медицины.
В России, к сожалению, официальная медицина так и не отказалась от столь опасного и недостаточно проверенного способа терапии. В настоящее время воздушные озонаторы и озонаторные установки получили широкое распространение. Малые генераторы озона используются в присутствии людей.
ПРИНЦИП ДЕЙСТВИЯ.
Озон образуется из кислорода. Существует несколько способов получения озона, среди которых наиболее распространенными являются: электролитический, фотохимический и электросинтез в плазме газового разряда. Дабы избежать нежелательных окисей предпочтительнее получать озон из чистого медицинского кислорода используя электросинтез. Концентрацию получаемой озоно-кислородной смеси в таких аппаратах легко варьировать — либо задавая определенную мощность электрического разряда, либо регулируя поток входящего кислорода (чем быстрее кислород проходит через озонатор, тем меньше озона образуется).
Электролитический метод синтеза озона осуществляется в специальных электролитических ячейках. В качестве электролитов используются растворы различных кислот и их соли (H2SO4, HClO4, NaClO4, KClO4). Образование озона происходит за счет разложения воды и образования атомарного кислорода, который присоединяясь к молекуле кислорода образует озон и молекулу водорода. Этот метод позволяет получить концентрированный озон, однако он весьма энергоемкий, и поэтому он не нашел широкого распространения.
Фото-химический метод получения озона представляет из себя наиболее распространенный в природе способ. Образование озона происходит при диссоциации молекулы кислорода под действием коротковолнового УФ излучения. Этот метод не позволяет получать озон высокой концентрации. Приборы, основанные на этом методе, получили распространение для лабораторных целей, в медицине и пищевой промышленности.
Электросинтез озона получил наибольшее распространение. Этот метод сочетает в себе возможность получения озона высоких концентраций с большой производительностью и относительно невысокими энергозатратами.
В результате многочисленных исследований по использованию различных видов газового разряда для электросинтеза озона распространение получили аппараты использующие три формы разряда:
- Барьерный разряд — получивший наибольшее распространение, представляет из себя большую совокупность импульсных микроразрядов в газовом промежутке длиной 1-3 мм между двумя электродами, разделенными одним или двумя диэлектрическими барьерами при питании электродов переменным высоким напряжением частотой от 50 Гц до нескольких килогерц. Производительность одной установки может составлять от граммов до 150 кг озона в час.
- Поверхностный разряд— близкий по форме к барьерному разряду, получивший распространение в последнее десятилетие благодаря своей простоте и надежности. Так же представляет из себя совокупность микроразрядов, развивающихся вдоль поверхности твердого диэлектрика при питании электродов переменным напряжением частотой от 50 Гц до 15-40 кГц.
- Импульсный разряд — как правило стримерный коронный разряд, возникающий в промежутке между двумя электродами при питании электродов импульсным напряжением длительностью от сотен наносекунд до единиц микросекунд.
ЭФФЕКТ СТЕРИЛИЗАЦИИ.
К стерилизующим достоинствам озона относят широкий спектр его биоцидного действия при низкой концентрации, возможность использования для обеззараживания труднодоступных поверхностей, более короткий период полураспада в сравнении с другими газами, а также наличие дезодорирующего эффекта.
Механизм инактивации воздушной микрофлоры озоном очень похож на действие озона в воде. Сперва озон воздействует на оболочку микроорганизмов путем реакции с двойными связями липоидов. Затем, благодаря способности разрушать дегидрогеназы клетки, озон воздействует на ее дыхание. В результате нарушения проницаемости оболочки и изменения растворимости белков клетка лизируется. Обнаружено проникновение озона внутрь микробной клетки, вступление его в реакцию с веществами цитоплазмы и превращение замкнутого плазмида ДНК в открытую ДНК, что снижает пролиферацию бактерий.
Противовирусное действие озона связывается с разрушением вирусных частиц, инактивацией обратной транскриптазы и влиянием на способность вируса связываться с клеточными рецепторами. Капсулированные вирусы более чувствительны к действию озона, чем некапсулированные. Это объясняется тем, что капсула содержит много липидов, которые легко взаимодействуют с озоном.
Наблюдается известное различие между разными видами микроорганизмов по их сопротивляемости действию озона. Довольно быстро погибают возбудители ангины, дифтерии, различные плесени. Как правило, наиболее устойчивы микробы, покрытые оболочкой, как например туберкулезная палочка и микробные споры.
Эффективность стерилизующего действия озона зависит от его концентрации, экспозиции, температуры, влажности, вида микроорганизма, pH и исходной обсемененности обеззараживаемого воздуха.
Озон в низких концентрациях (около 0,2 мг/м3) не очень эффективен для уничтожения бактерий, т.к. они восстанавливаются спустя некоторое время после обработки. В этих случаях озон оказывает лишь поверхностное действие (контактируя с внешней оболочкой клетки) и незначительно проникает вглубь. Для полной инактивации микрофлоры помещения необходима высокая концентрация озона и длительное время для контакта с микроорганизмами.
Оксиды азота (N2О, N2O5, NO и др.) усиливают бактерицидные свойства озона, которые в значительной степени зависят от влажности воздуха. При относительной влажности воздуха ниже 45 % озон почти не оказывает бактерицидного действия, а оптимум его активности лежит между 60-80 % влажности.
В профессиональных целях для стерилизации воздуха помещения в присутствии людей генератор озона служить не может, поскольку концентрация озона в несколько раз превышает ПДК для человека. Высокая концентрация выделяющегося озона приводит к деструкции полимеров и натуральной резины, окислению металлов и порче электронного оборудования.
ЭФФЕКТ ФИЛЬТРАЦИИ.
Способность озона окислять органический и неорганический материал еще окончательно не доказана и его эффективность при удалении загрязняющих веществ типа пыльцы, пыли, оксида углерода, формальдегидов из воздуха весьма сомнительна (вопреки заявлениям некоторых производителей). Озон, как показывает практика, взаимодействуя с другими загрязняющими веществами, способен произвести даже более вредные химические соединения чем те, которые намеревались удалить из воздуха.
На основе проведённых испытаний Федеральная Торговая Комиссия США выпустила специальное постановление 5 января 1998 г., в котором производителям озонаторных установок запретили заявлять в рекламе о способности их устройств очищать воздух.
ПРИСУТСТВИЕ ЛЮДЕЙ.
Наружные методы озонотерапии применяются при различных ранах, гнойниках, воспалениях, язвенных поражениях, варикозах, ожогах, атопическом дерматите, тяжелых формах экземы, диабетической гангрене. На конечности надевается герметичный “сапог” или “рукав”, в который подается озон высокой концентрации — до 80 мг на литр кислорода. Газ “убивает” гнойный налет, рана очищается и заживает. После процедуры количество бактерий на пораженных участках уменьшается в несколько десятков раз. При наружном (на кожные покровы и раневую поверхность), энтеральном (per os et per rectum) и парентеральном введении в терапевтическом диапазоне концентраций озон не оказывает токсического действия на организм человека.
Озон — газ, токсичный при вдыхании. Он раздражает слизистую оболочку глаз и дыхательных путей, повреждает сурфактант легких. Последовательность болезненных проявлений при вдыхании озона была описана Флюгге. Сначала наступает сонливость, затем изменяется дыхание: оно становится глубоким, неритмичным. В конце появляются перерывы в дыхании. Смерть наступает, видимо, в результате паралича дыхания. Патологоанатомические исследования показали характерную картину отравления озоном: кровь не свертывается, легкие пронизаны множеством сливных кровоизлияний.
Озон ядовит, имеет очень низкую предельно-допустимую концентрацию в воздухе, соизмеримую с ПДК боевых отравляющих веществ и поэтому необходим тщательный контроль его содержания в окружающей среде. Требуемая для уничтожения патогенных агентов концентрация озона в несколько раз превышает ПДК для человека. По этой причине присутствие людей в озонируемом помещении запрещено.
На сегодняшний день применение озонирующих воздух установок в помещениях с людьми не было одобрено или рекомендовано ни одним агентством федерального правительства США, Канады, Европы. Ассоциации здравоохранения США и Канады обратились к своим гражданам с призывом не использовать озонаторы в помещениях с людьми.
С 1995 г. Федеральной Торговой Комиссией США (в целях защиты национального здоровья населения) производителям озонаторов запрещено заявлять, что их устройства:
- Эффективны в очистке воздуха помещений.
- Не производят вредных побочных продуктов.
- Облегчают условия для аллергиков, астматиков и др.
В 1997 г. компании-производители озонаторов Living Air Corporation, Alpine Industries Inc.(ныне “Ecoguest”), Quantum Electronics Corp. и другие, нарушившие предписание ФТК США, решением судов были наказаны в административном порядке, включая запрет на дальнейшую деятельность некоторых из них на территории США. В тоже время частные предприниматели, продававшие генераторы озона c рекомендациями использовать их в помещениях с людьми, получили тюремные сроки заключения от 1 до 6 лет.
В настоящее время некоторые из этих западных компаний успешно развивают активную деятельность по реализации своей продукции в России.
Недостатки озонаторов:
Любая система стерилизации, использующая озон, требует тщательного контроля техники безопасности, тестирование константы концентрации озона газоанализаторами, а также аварийного управления чрезмерной концентрацией озона.
Озонатор не рассчитан для работы в:
- среде, насыщенной электропроводящей пылью и водяными парами,
- местах, содержащих активные газы и пары, разрушающие металл,
- местах с относительной влажностью свыше 95 %,
- во взрыво- и пожароопасных помещениях.
Применение озонаторов для стерилизации воздуха в помещениях:
- удлиняет по времени процесс стерилизации,
- увеличивает токсичность и окисление воздушной среды,
- приводит к опасности взрыва,
- возращение людей в продезинфицированное помещение возможно только после полного разложения озона.
РЕЗЮМЕ.
Озонирование высокоэффективно для стерилизации поверхностей и воздушной среды помещения, однако эффект очистки воздуха от механических примесей отсутствует. Невозможность использования метода в присутствии людей и необходимость проводить обеззараживание в герметичном помещении серьезно ограничивает сферу его профессионального применения.
Примечания
- ↑ 12345678910111213141516171819202122Лунин, 1998.
- ↑Holleman, Wiberg: Lehrbuch der Anorganischen Chemie. ss. 91—100. Auflage. de Gruyter, 1985, S. 460.
- ↑Takehiko Tanaka; Yonezo Morino. Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states // Journal of Molecular Spectroscopy. — 1970. — Vol. 33. — P. 538—551.
- ↑Kenneth M. Mack; J. S. Muenter. Stark and Zeeman properties of ozone from molecular beam spectroscopy // Journal of Chemical Physics. — 1977. — Vol. 66. — P. 5278—5283.
- ↑ 123С. С. Колотов, Д. И. Менделеев.Озон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- ↑ 12Получение озона и его определение (неопр.). Дата обращения: 29 сентября 2022.Архивировано 6 октября 2022 года.
- ↑
Справочник химика, т. II. — Л.: «Химия», 1971. - ↑Карякин Ю. В., Ангелов И. И. Чистые химические вещества. — М.: Химия, 1974.
- ↑Earth Science FAQ: Where can I find information about the ozone hole and ozone depletion?Архивировано 1 июня 2006 года.
- ↑Платина не окисляется озоном, но катализирует его разложение.
- ↑Некрасов Б. В. Н48 Основы общей химии. В 2 томах. Том 1.4-е изд., стер.-СПб.: Издательство «Лань», 2003. — 656 с. — (Учебники для вузов, специальная литература).
- ↑ 12Horvath M., Bilitzky L., & Huttner J., 1985. «Ozone.» pg 44-49
- ↑Housecroft & Sharpe, «Inorganic Chemistry». — 2005. — P. 439.
- ↑Housecroft & Sharpe, «Inorganic Chemistry». — 2005. — P. 265
- ↑Horvath M., Bilitzky L., & Huttner J., 1985. «Ozone.» pg 259, 269—270
- ↑ 12Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населённых мест. Гигиенические нормативы 2.1.6.1338-03 (неопр.) (недоступная ссылка). Дата обращения: 21 ноября 2022.Архивировано 3 декабря 2022 года.
- ↑ 12Тышкевич Е. В. Озон — мирное оружие XXI векаАрхивная копия от 1 апреля 2009 на Wayback Machine[неавторитетный источник?]
- ↑Questionable methods of cancer management: hydrogen peroxide and other ’hyperoxygenation’ therapiesАрхивная копия от 7 июля 2022 на Wayback Machine, American Cancer Society
- ↑Перспективные окислители. (неопр.) (недоступная ссылка). Дата обращения: 24 декабря 2009.Архивировано 3 ноября 2009 года.
- ↑The Dynamics of Unsteady Detonation in Ozone (неопр.). Дата обращения: 23 января 2022.Архивировано 16 января 2022 года.
- ↑Фотохимический смог
- ↑Погода, климат и воздух, которым мы дышим
Физические свойства
- Молекулярная масса — 48 а. е. м.
- Плотность газа при нормальных условиях 2,1445 г/дм³. Относительная плотность газа по кислороду 1,5; по воздуху 1,62 (1,658[7]).
- Плотность жидкости при −188 °C (85,2 К) составляет 1,59(7) г/см³[1].
- Плотность твёрдого озона при −195,7 °С (77,4 К) равна 1,73(2) г/см³[1].
- Температура кипения −111,8(3) °C (161,3 К)[1]. Жидкий озон — тёмно-фиолетового цвета.
- Температура плавления −197,2(2) °С (75,9 К). Приводимая иногда температура плавления −251,4 °C (21,7 К) ошибочна, так как при её определении не учитывалась большая способность озона к переохлаждению[8]. По другим сведениям[1]
- Критическая температура −12,0 °С (261,1 К)[1].
- Критическое давление 51,6 атм[1].
- Коэффициент диффузии (при 300 К, 1 атм) 0,157 см²/с[1].
- Теплота плавления 2,1 кДж/моль[1].
- Теплота испарения при температуре кипения в различных источниках указывается от 11,17 до 15,19 кДж/моль[1]; при 90 К от 15,27 до 16,6 кДж/моль[1].
- Растворимость в воде при 0 °С — 0,394 кг/м³ (0,494 л/кг), она в 10 раз выше по сравнению с кислородом. Кажущаяся растворимость сильно зависит от чистоты воды, поскольку примеси катализируют распад озона.
- Жидкий озон смешивается во всех отношениях с жидкими аргоном, азотом, фтором, метаном, углекислотой, тетрахлоруглеродом. Смешивается с жидким кислородом во всех отношениях при температуре выше 93 К, ниже этой температуры раствор расслаивается на две фазы[1].
- Хорошо растворяется в фреонах, образуя стабильные растворы (используется для хранения и перевозки).
- Потенциал ионизации молекулы 12,52 эВ[1].
- В газообразном состоянии озон диамагнитен, в жидком — слабопарамагнитен.
- Запах — резкий, специфический «металлический» (по Менделееву — «запах раков»). При больших концентрациях напоминает запах хлора. Запах ощутим даже при разбавлении 1:100 000.
Tпл = −192,5(4) °С (80,6 К). В твёрдом состоянии — чёрного цвета с фиолетовым отблеском.
Химические свойства
Образование озона проходит по обратимой реакции:
- 3O2 68kcal/mol(285kJ/mol)→2O3{displaystyle {mathsf {3O_{2} 68kcal/mol(285kJ/mol)rightarrow 2O_{3}}}}
Молекула О3 неустойчива и при достаточных концентрациях в воздухе при нормальных условиях самопроизвольно за несколько десятков минут[9] превращается в O2 с выделением тепла.
Повышение температуры и понижение давления увеличивают скорость перехода в двухатомное состояние. При больших концентрациях переход может носить взрывной характер. Контакт озона даже с малыми количествами органических веществ, некоторых металлов или их окислов резко ускоряет превращение.
В присутствии небольших количеств азотной кислоты озон стабилизируется, а в герметичных сосудах из стекла, некоторых пластмасс или чистых металлов озон при низких температурах (−78 °С) практически не разлагается.
Озон — мощный окислитель, намного более реакционноспособный, чем двухатомный кислород. Окисляет почти все металлы (за исключением золота, платины[10] и иридия) до их высших степеней окисления (после некоторого поверхностного окисления довольно хорошо противостоят действию озона Ni, Cu, Sn)[11]. Окисляет многие неметаллы. Продуктом реакции в основном является кислород.
- 2Cu2 2H3O O3→2Cu3 3H2O O2{displaystyle {mathsf {2Cu^{2 } 2H_{3}O^{ } O_{3}rightarrow 2Cu^{3 } 3H_{2}O O_{2}}}}
Озон повышает степень окисления оксидов:
- NO O3→NO2 O2{displaystyle {mathsf {NO O_{3}rightarrow NO_{2} O_{2}}}}
Эта реакция сопровождается хемилюминесценцией. Диоксид азота может быть окислен до азотного ангидрида:
- 2NO2 O3→N2O5 O2{displaystyle {mathsf {2NO_{2} O_{3}rightarrow N_{2}O_{5} O_{2}}}}
Озон не реагирует с молекулярным азотом при комнатной температуре, но при 295°С вступает с ним в реакцию:
- N2 O3→N2O O2{displaystyle {mathsf {N_{2} O_{3}rightarrow N_{2}O O_{2}}}}
Озон реагирует с углеродом при нормальной температуре с образованием диоксида углерода:
- 2C 2O3→2CO2 O2{displaystyle {mathsf {2C 2O_{3}rightarrow 2CO_{2} O_{2}}}}
Озон не реагирует с аммониевыми солями, но реагирует с аммиаком с образованием нитрата аммония:
- 2NH3 4O3→NH4NO3 4O2 H2O{displaystyle {mathsf {2NH_{3} 4O_{3}rightarrow NH_{4}NO_{3} 4O_{2} H_{2}O}}}
Озон реагирует с водородом с образованием воды и кислорода:
- O3 H2→O2 H2O{displaystyle {mathsf {O_{3} H_{2}rightarrow O_{2} H_{2}O}}}
Озон реагирует с сульфидами с образованием сульфатов:
- PbS 4O3→PbSO4 4O2{displaystyle {mathsf {PbS 4O_{3}rightarrow PbSO_{4} 4O_{2}}}}
С помощью озона можно получить серную кислоту как из элементарной серы, так и из диоксида серы и сероводорода:
- S H2O O3→H2SO4{displaystyle {mathsf {S H_{2}O O_{3}rightarrow H_{2}SO_{4}}}}
- 3SO2 3H2O O3→3H2SO4{displaystyle {mathsf {3SO_{2} 3H_{2}O O_{3}rightarrow 3H_{2}SO_{4}}}}
В газовой фазе озон взаимодействует с сероводородом с образованием диоксида серы:
- H2S O3→SO2 H2O{displaystyle {mathsf {H_{2}S O_{3}rightarrow SO_{2} H_{2}O}}}
В водном растворе проходят две конкурирующие реакции с сероводородом, одна с образованием элементарной серы, другая с образованием серной кислоты:
- H2S O3→S O2 H2O{displaystyle {mathsf {H_{2}S O_{3}rightarrow S O_{2} H_{2}O}}}
- 3H2S 4O3→3H2SO4{displaystyle {mathsf {3H_{2}S 4O_{3}rightarrow 3H_{2}SO_{4}}}}
Все три атома кислорода в озоне могут реагировать по отдельности в реакции хлорида олова с соляной кислотой и озоном:
- 3SnCl2 6HCl O3→3SnCl4 3H2O{displaystyle {mathsf {3SnCl_{2} 6HCl O_{3}rightarrow 3SnCl_{4} 3H_{2}O}}}
Обработкой озоном раствора иода в холодной безводной хлорной кислоте может быть получен перхлорат иода(III):
- I2 6HClO4 O3→2I(ClO4)3 3H2O{displaystyle {mathsf {I_{2} 6HClO_{4} O_{3}rightarrow 2I(ClO_{4})_{3} 3H_{2}O}}}
Твёрдый перхлорат нитрония (англ.) (рус. может быть получен реакцией газообразных NO2, ClO2 и O3:
- 2NO2 2ClO2 2O3→2NO2ClO4 O2{displaystyle {mathsf {2NO_{2} 2ClO_{2} 2O_{3}rightarrow 2NO_{2}ClO_{4} O_{2}}}}
Озон может участвовать в реакциях горения, при этом температуры горения выше, чем с двухатомным кислородом:
- 3C4N2 4O3→12CO 3N2{displaystyle {mathsf {3C_{4}N_{2} 4O_{3}rightarrow 12CO 3N_{2}}}}
Озон может вступать в химические реакции и при низких температурах. При 77 K (−196 °C, температура кипения жидкого азота), атомарный водород взаимодействует с озоном с образованием гидропероксидного радикала с димеризацией последнего[12]:
- H O3→HO2⋅ O{displaystyle {mathsf {H O_{3}rightarrow HO_{2}cdot O}}}
- 2HO2⋅→H2O2 O2{displaystyle {mathsf {2HO_{2}cdot rightarrow H_{2}O_{2} O_{2}}}}
Озон может образовывать неорганические озониды, содержащие анион O3−. Эти соединения взрывоопасны и могут храниться только при низких температурах. Известны озониды всех щелочных металлов (кроме франция). KO3, RbO3 и CsO3 могут быть получены из соответствующих супероксидов:
- KO2 O3→KO3 O2{displaystyle {mathsf {KO_{2} O_{3}rightarrow KO_{3} O_{2}}}}
Озонид калия может быть получен и другим путём из гидроксида калия[13]:
- 2KOH 5O3→2KO3 5O2 H2O{displaystyle {mathsf {2KOH 5O_{3}rightarrow 2KO_{3} 5O_{2} H_{2}O}}}
NaO3 и LiO<sub>3</sub> могут быть получены действием CsO3 в жидком аммиаке NH3 на ионообменные смолы, содержащие ионы Na или Li [14]:
- CsO3 Na →Cs NaO3{displaystyle {mathsf {CsO_{3} Na^{ }rightarrow Cs^{ } NaO_{3}}}}
Обработка озоном раствора кальция в аммиаке приводит к образованию озонида аммония, а не кальция[12]:
- 3Ca 10NH3 7O3→Ca⋅6NH3 Ca(OH)2 Ca(NO3)2 2NH4O3 3O2 2H2O{displaystyle {mathsf {3Ca 10NH_{3} 7O_{3}rightarrow Cacdot 6NH_{3} Ca(OH)_{2} Ca(NO_{3})_{2} 2NH_{4}O_{3} 3O_{2} 2H_{2}O}}}
Озон может быть использован для удаления железа и марганца из воды с образованием осадка (соответственно гидроксида железа(III) и диоксигидрата марганца), который может быть отделён фильтрованием:
- 2Fe2 O3 5H2O→2Fe(OH)3↓ O2 4H {displaystyle {mathsf {2Fe^{2 } O_{3} 5H_{2}Orightarrow 2Fe(OH)_{3}downarrow O_{2} 4H^{ }}}}
- 2Mn2 2O3 4H2O→2MnO(OH)2↓ 2O2 4H {displaystyle {mathsf {2Mn^{2 } 2O_{3} 4H_{2}Orightarrow 2MnO(OH)_{2}downarrow 2O_{2} 4H^{ }}}}
В кислых средах окисление марганца может идти до перманганата.
Озон превращает токсичные цианиды в менее опасные цианаты:
- CN− O3→CNO− O2{displaystyle {mathsf {CN^{-} O_{3}rightarrow CNO^{-} O_{2}}}}
Озон может полностью разлагать мочевину[15] :
- (NH2)2CO O3→N2 CO2 2H2O{displaystyle {mathsf {(NH_{2})_{2}CO O_{3}rightarrow N_{2} CO_{2} 2H_{2}O}}}
Взаимодействие озона с органическими соединениями с активированным или третичным атомом углерода при низких температурах приводит к соответствующим гидротриоксидам. Реакция озона с непредельными соединениями с образованием органических озонидов находит применение в анализе органических веществ.
Химические свойства озона
Озон химически более активен, чем кислород, и может окислять благородные металлы: золото, серебро, платину:
Активность озона обусловлена его разложением на молекулярный и атомарный кислород:
Этим же объясняется свежесть воздуха после грозы в сосновом бору. Атомарный кислород – более сильный окислитель, чем молекулярный. Данное свойство применяется при обеззараживании питьевой воды и при отбеливании ткани, бумаги, соломы и т. д.
В верхних слоях атмосферы на высоте 25 км над землей (в стратосфере) образуется тонкий слой озона , который защищает Землю от чрезмерной дозы ультрафиолетовых лучей (УФО) Солнца (рис. 38). Этот слой разрушается под воздействием различных факторов («озоновые дыры»).
Оксид азота (II) вступает в реакцию с озоном:
Это приводит к всевозможным природным катаклизмам (глобальное потепление, таяние ледников и айсбергов, цунами, тайфуны, сели, торнадо и т. д.).
Практическая работа №3 Получение кислорода и изучение его свойств
Цель: учащиеся самостоятельно проводят работу, изучают свойства кислорода. Знать свойства кислорода как окислителя.
Ход работы
1. Соберите прибор по рис. 30 (с. 88).
2. В колбу наберите немного раствора пероксида водорода с помощью капельной воронки.
3. Всыпьте в колбу заранее приготовленный диоксид марганца. Затем колбу закройте пробкой с газоотводной трубкой. Что наблюдаете?
4. Соберите выделившийся кислород в большие пробирки.
5. В железную ложку положите небольшой кусочек серы, зажгите его в пламени спиртовки и внесите в сосуд с кислородом, постепенно опуская ложечку.
6. После сжигания серы влейте в сосуд немного воды, закройте сосуд и хорошо взболтайте, затем подействуйте индикатором – метилоранжем.
Услуги по химии:
- Заказать химию
- Заказать контрольную работу по химии
- Помощь по химии
Лекции по химии:
- Основные понятия и законы химии
- Атомно-молекулярное учение
- Периодический закон Д. И. Менделеева
- Химическая связь
- Скорость химических реакций
- Растворы
- Окислительно-восстановительные реакции
- Дисперсные системы
- Атомно-молекулярная теория
- Строение атома в химии
- Простые вещества
- Химические соединения
- Электролитическая диссоциация
- Химия и электрический ток
- Чистые вещества и смеси
- Изменения состояния вещества
- Атомы. Молекулы. Вещества
- Воздух
- Химические реакции
- Закономерности химических реакций
- Периодическая таблица химических элементов
- Относительная атомная масса химических элементов
- Химические формулы
- Движение электронов в атомах
- Формулы веществ и уравнения химических реакций
- Химическая активность металлов
- Количество вещества
- Стехиометрические расчёты
- Энергия в химических реакциях
- Вода
- Необратимые реакции
- Кинетика
- Химическое равновесие
- Разработка новых веществ и материалов
- Зеленая химия
- Термохимия
- Правило фаз Гиббса
- Диаграммы растворимости
- Законы Рауля
- Растворы электролитов
- Гидролиз солей и нейтрализация
- Растворимость электролитов
- Электрохимические процессы
- Электрохимия
- Кинетика химических реакций
- Катализ
- Строение вещества в химии
- Строение твердого тела и жидкости
- Протекание химических реакций
- Комплексные соединения
Лекции по неорганической химии:
- Важнейшие классы неорганических соединений
- Водород и галогены
- Подгруппа кислорода
- Подгруппа азота
- Подгруппа углерода
- Общие свойства металлов
- Металлы главных подгрупп
- Металлы побочных подгрупп
- Свойства элементов первых трёх периодов периодической системы
- Классификация неорганических веществ
- Углерод
- Качественный анализ неорганических соединений
- Металлы и сплавы
- Металлы и неметаллы
- Производство металлов
- Переходные металлы
- Элементы 1 (1А), 2 IIA и 13 IIIA групп и соединения
- Элементы 17(VIIA), 16(VIA) 15(VA), 14(IVA) групп и их соединения
- Важнейшие S -элементы и их соединения
- Важнейшие d элементы и их соединения
- Важнейшие р-элементы и их соединения
- Производство неорганических соединений и сплавов
- Главная подгруппа шестой группы
- Главная подгруппа пятой группы
- Главная подгруппа четвертой группы
- Первая группа периодической системы
- Вторая группа периодической системы
- Третья группа периодической системы
- Побочные подгруппы четвертой, пятой, шестой и седьмой групп
- Восьмая группа периодической системы
- Водород
- Кислород
- Водород
- Галогены
- Естественные семейства химических элементов и их свойства
- Химические элементы и соединения в организме человека
- Геологические химические соединения
Лекции по органической химии:
- Органическая химия
- Углеводороды
- Кислородсодержащие органические соединения
- Азотсодержащие органические соединения
- Теория А. М. Бутлерова
- Соединения ароматического ряда
- Циклические соединения
- Карбонильные соединения
- Амины и аминокислоты
- Химия живого вещества
- Синтетические полимеры
- Органический синтез
- Элементы 14(IVA) группы
- Азот и сера
- Растворы кислот и оснований