- Почему так важно пройти обучение?
- Разложение оксида ртути (II)
- Разложение перманганата калия
- Kislorod
- Биологическая роль
- Документ по окончании обучения
- Законодательство
- Историческая справка
- История открытия кислорода
- Персонал по обслуживанию кислородных баллонов, кислородной рампы и газификатора — уц итц эксперт
- Положение в периодической системе химических элементов
- Получение
- Получение кислорода в промышленности
- Применение
- Программа курса
- Разложение нитратов
- Разложение пероксида водорода
- Разложение хлората калия
- Распространённость в природе.
- Свойства
- Соединения кислорода
- Способы получения и собирания кислорода в лаборатории
- Способы получения кислорода
- Электронное строение кислорода
Почему так важно пройти обучение?
Согласно требованиям безопасности ГОСТ 12.2.085-2002 «Сосуды, работающие под давлением. Клапаны предохранительные. Требования безопасности», лица, занятые обслуживанием, транспортировкой и хранением баллонов с пропан-бутановыми смесями (СУГ), метаном (СУГ), кислородом, азотом, аргоном, ацетиленом, углекислотой, водородом и другими газами, должны иметь соответствующее образование.
Cогласно КоАП РФ, предусмотрено наложение штрафа:
Согласно пункту 3 статьи 5.27.1 КоАП, допуск работника к исполнению им трудовых обязанностей без прохождения соответствующего обучения и проверки знаний, влечет за собой наложение штрафа:
- На должностных лиц в размере 15 000 — 25 000 рублей
- На лиц, осуществляющих предпринимательскую деятельность без образования юридического лица, в размере 15 000 – 25 000 рублей
- На юридических лиц в размере 110 000 — 130 000 рублей
Разложение оксида ртути (II)
Одним из способов получения кислорода в лаборатории, является его получение по описанной выше реакции разложения оксида ртути (II). Ввиду высокой токсичности соединений ртути и паров самой ртути, данный способ используется крайне редко.
Разложение перманганата калия
Перманганат калия (в быту мы называем его марганцовкой) – кристаллическое вещество темно-фиолетового цвета. При нагревании перманганата калия выделяется кислород. В пробирку насыплем немного порошка перманганата калия и закрепим ее горизонтально в лапке штатива.
Недалеко от отверстия пробирки поместим кусочек ваты. Закроем пробирку пробкой, в которую вставлена газоотводная трубка, конец которой опустим в сосуд- приемник. Газоотводная трубка должна доходить до дна сосуда-приемника. Ватка, находящаяся около отверстия пробирки нужна, чтобы предотвратить попадание частиц перманганата калия в сосуд-приемник (при разложении выделяющийся кислород увлекает за собой частички перманганата). Когда прибор собран, начинаем нагревание пробирки. Начинается выделение кислорода.
Уравнение реакции разложения перманганата калия:
2KMnO4 t° → K2MnO4 MnO2 O2↑
Как обнаружить присутствие кислорода? Воспользуемся способом Пристли. Подожжем деревянную лучину, дадим ей немного погореть, затем погасим, так, чтобы она едва тлела. Опустим тлеющую лучину в сосуд с кислородом. Лучина ярко вспыхивает!Газоотводная трубка была не случайно опущена до дна сосуда-приемника.
Кислород тяжелее воздуха, следовательно, он будет собираться в нижней части приемника, вытесняя из него воздух. Кислород можно собрать и методом вытеснения воды. Для этого газоотводную трубку необходимо опустить в пробирку, заполненную водой, и опущенную в кристаллизатор с водой вниз отверстием. При поступлении кислорода газ вытесняет воду из пробирки.
Kislorod
Хотелось бы начать с того, что я никогда не рассматривала рекламу, как сферу работы для себя. Мое мнение было непоколебимо — там только творческие люди, мне там делать нечего.
На отбор в Kislorod я попала случайно, просто вечером наткнулась на группу ВК и мне очень понравилось название, думаю: «Круто, это то, что надо мне сейчас», не читая и не вникая, что это, я подала заявку и неожиданно для себя прошла отбор. Но на первой лекции опять появилось ощущение, что это не мое. Когда спросили, кто технарь и только 2−3 человека из 60 подняли руку.
Но через месяц занятий и моего погружения в мир рекламы поступил звонок от Иры Щербаковой: «Маш, есть вариант стажировки в отделе Analytics & Insights». Я моментально согласилась, одного только слова «аналитика» было достаточно. Я считаю, что это лучший подарок года по двум причинам. Во-первых, это невероятная команда с потрясающими людьми, которые всегда поддержат, поймут и предложат решение, даже если это не относится к работе. Вторая причина — это профессиональное развитие, стажировка дала мне больше, чем четыре года обучения в Высшей Школе Экономики, и мне нравится, что развитие продолжается, это то, что должно присутствовать всегда!
Биологическая роль
К. как в свободном виде, так и в составе разл. веществ (напр., ферментов оксидаз и оксидоредуктаз) принимает участие во всех окислит. процессах, протекающих в живых организмах. В результате выделяется большое количество энергии, расходуемой в процессе жизнедеятельности.
Документ по окончании обучения
Слушатели, успешно обучение по программе «Персонал, занятый обслуживанием, транспортировкой и хранением баллонов с пропан-бутановыми смесями (СУГ), метаном (СУГ), кислородом, азотом, аргоном, ацетиленом, углекислотой, водородом и другими газами (целевая)», получают Удостоверение о повышении квалификации.
Законодательство
- ГОСТ 12.2.085-2002 «Сосуды, работающие под давлением. Клапаны предохранительные. Требования безопасности»
- Статья 5.27.1 КоАП
Историческая справка
К. получили в 1774 независимо К. Шееле (путём прокаливания нитратов калия KNO3 и натрия NaNO3, диоксида марганца MnO2 и др. веществ) и Дж. Пристли (при нагревании тетраоксида свинца Pb3О4 и оксида ртути HgО). Позднее, когда было установлено, что К. входит в состав кислот, А. Лавуазье предложил назв. oxygène (от греч. ὀχύς – кислый и γεννάω – рождаю, отсюда и рус. назв. «К.»).
История открытия кислорода
Открытие кислорода ознаменовало новый период в развитии химии. С глубокой древности было известно, что для горения необходим воздух. Процесс горения веществ долгое время оставался непонятным. В эпоху алхимии широкое распространение получила теория флогистона, согласно которой вещества горят благодаря их взаимодействию с огненной материей, то есть с флогистоном, который содержится в пламени.
Оксиды – бинарные соединения, в состав которых входит кислородПри внесении тлеющей лучины в сосуд с газом она ярко вспыхивала. Ученый считал, что тлеющая лучина вносит в газ флогистон, и он загорается. Д. Пристли пробовал дышать полученным газом, и был восхищен тем, как легко и свободно им дышится.
Имея хорошо оснащенную на то время лабораторию, А. Лавуазье повторил и усовершенствовал опыты Д. Пристли. А. Лавуазье измерил количество газа, выделяющееся при разложении определенной массы оксида ртути. Затем химик нагрел в герметичном сосуде металлическую ртуть до тех пор, пока она не превратилась в оксид ртути (II).
Он обнаружил, что количество выделившегося газа в первом опыте равно газу, поглотившемуся во втором опыте. Следовательно, ртуть реагирует с каким-то веществом, содержащимся в воздухе. И это же вещество выделяется при разложении оксида. Лавуазье первым сделал вывод, что флогистон здесь совершенно ни при чем, и горение тлеющей лучины вызывает именно неизвестный газ, который в последствии был назван кислородом. Открытие кислорода ознаменовало крах теории флогистона!
Персонал по обслуживанию кислородных баллонов, кислородной рампы и газификатора — уц итц эксперт

Федеральный проект дистанционного образования.
Пройди тест, узнай свою будущую профессию и как её получить.

120 лет опыта подготовки

МКИК — современный колледж

Совместно с экспертами Wall Street English мы решили рассказать об английском языке так, чтобы его захотелось выучить.

Простые, но важные правила безопасного поведения в Сети.

Перечень, календарь, уровни, льготы.

Рассказываем о том, чем живёт и как устроен РЭУ имени Г.В. Плеханова.

Участвуй в конкурсе и выиграй поездку в Голландию на обучение в одной из летних школ Университета Радбауд.

Они создают интернет-сервисы, социальные сети, игры и приложения, которыми ежедневно пользуются миллионы людей во всём мире.

Как новые технологии, научные открытия и инновации изменят ландшафт на рынке труда в ближайшие 20-30 лет

Совместно с центром онлайн-обучения Фоксфорд мы решили узнать у школьников, кем они мечтают стать и куда планируют поступать.

О том, что собой представляет современная экономика, и какие карьерные перспективы открываются перед будущими экономистами.

Разговариваем с экспертами о важности гуманитарного образования и областях его применения на практике.

Инженерные специальности становятся всё более востребованными и перспективными.

Что такое гражданская служба, кто такие госслужащие и какое образование является хорошим стартом для будущих чиновников.

Нефтехимия — это инновации, реальное производство продукции, которая есть в каждом доме.
Положение в периодической системе химических элементов
Кислород расположен в главной подгруппе VI группы (или в 16 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.
Получение
В пром. масштабах К. производят путём сжижения и фракционной перегонки воздуха (см. в ст. Воздуха разделение), а также электролизом воды. В лабораторных условиях К. получают разложением при нагревании пероксида водорода (2Н2О2= 2Н2О О2), оксидов металлов (напр., оксида ртути: 2HgO=2Hg O2), солей кислородсодержащих кислот-окислителей (напр., хлората калия: 2KClO3=2KCl 3O2, перманганата калия: 2KMnO4=K2MnO4 MnO2 O2), электролизом водного раствора NaOH. Газообразный К. хранят и транспортируют в стальных баллонах, окрашенных в голубой цвет, при давлении 15 и 42 МПа, жидкий К. – в металлич. сосудах Дьюара или в спец. цистернах-танках.
Получение кислорода в промышленности
В промышленности кислород получают путем выделения его из воздуха.
Воздух – смесь газов, основные компоненты которой представлены в таблице.
Сущность этого способа заключается в глубоком охлаждении воздуха с превращением его в жидкость, что при нормальном атмосферном давлении может быть достигнуто при температуре около -192°С. Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Ткип.
N2 = -196°С (при нормальном атмосферном давлении).
При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения, и, по мере его выделения, жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией жидкого воздуха.
- В лаборатории кислород получают реакциями разложения
- Реакция разложения – реакция, в результате которой сложные вещества разлагаются на более простые
- Кислород можно собрать методом вытеснения воздуха или методом вытеснения воды
- Для обнаружения кислорода используют тлеющую лучину, она ярко вспыхивает в нем
- Катализатор – вещество, ускоряющее химическую реакцию, но не расходующееся в ней
Источник
Применение
Технич. К. используют как окислитель в металлургии (см., напр., Кислородно-конвертерный процесс), при газопламенной обработке металлов (см., напр., Кислородная резка), в химич. пром-сти при получении искусств. жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, пероксидов металлов и др. Чистый К. используют в кислородно-дыхательных аппаратах на космич. кораблях, подводных лодках, при подъёме на большие высоты, проведении подводных работ, в лечебных целях в медицине (см. в ст. Оксигенотерапия). Жидкий К. применяют как окислитель ракетных топлив, при взрывных работах. Водные эмульсии растворов газообразного К. в некоторых фторорганич. растворителях предложено использовать в качестве искусств. кровезаменителей (напр., перфторан).
Программа курса
В рамках обучения Вы узнаете:
- Требования охраны труда, пожарной и промышленной безопасности к обслуживанию, транспортировке и хранению баллонов с пропан-бутановыми смесями (СУГ), метаном (СУГ), кислородом, азотом, аргоном, ацетиленом, углекислотой, водородом и другими газами.
- Классификация и характеристики газов и газовых смесей.
- Требования безопасности и особенности обслуживания баллонов с газами.
- Требования безопасности и особенности транспортировке баллонов с пропан-бутановыми смесями (СУГ), метаном (СУГ), кислородом, азотом, аргоном, ацетиленом, углекислотой, водородом и другими газами.
- Требования безопасности и особенности хранения баллонов с газом.
Разложение нитратов
Нитраты – вещества, содержащие в своем составе ионы NO3⎺. Соединения данного класса используются в качестве минеральных удобрений, входят в состав пиротехнических изделий.
Нитраты – соединения термически нестойкие, и при нагревании разлагаются с выделением кислорода:
Обратите внимание, что все рассмотренные способы получения кислорода схожи. Во всех случаях кислород выделяется при разложении более сложных веществ.
Реакция разложения – реакция, в результате которой сложные вещества разлагаются на более простые В общем виде реакцию разложения можно описать буквенной схемой:
Реакции разложения могут протекать при действии различных факторов. Это может быть нагревание, действие электрического тока, применение катализатора. Существуют реакции, в которых вещества разлагаются самопроизвольно.
Разложение пероксида водорода
Пероксид водорода – вещество всем известное. В аптеке оно продается под названием «перекись водорода». Данное название является устаревшим, более правильно использовать термин «пероксид». Химическая формула пероксида водорода Н2О2 Пероксид водорода при хранении медленно разлагается на воду и кислород. Чтобы ускорить процесс разложения можно произвести нагрев или применить катализатор.
Катализатор – вещество, ускоряющее скорость протекания химической реакции
Нальем в колбу пероксид водорода, внесем в жидкость катализатор. Катализатором может служить порошок черного цвета – оксид марганца MnO2. Тотчас смесь начнет вспениваться вследствие выделения большого количества кислорода. Внесем в колбу тлеющую лучину – она ярко вспыхивает. Уравнение реакции разложения пероксида водорода:
2H2O2 MnO2 → 2H2O O2↑
Обратите внимание: катализатор, ускоряющий протекание реакции, записывается над стрелкой, или знаком «=», потому что он не расходуется в ходе реакции, а только ускоряет ее.
Разложение хлората калия
Хлорат калия – кристаллическое вещество белого цвета. Используется в производстве фейерверков и других различных пиротехнических изделий. Встречается тривиальное название этого вещества – «бертолетова соль». Такое название вещество получило в честь французского химика, впервые синтезировавшего его, – Клода Луи Бертолле.
2KClO3 t°, MnO2 → 2KCl 3O2↑.
Распространённость в природе.
К. – самый распространённый химич. элемент на Земле: содержание химически связанного К. в гидросфере составляет 85,82% (гл. обр. в виде воды), в земной коре – 49% по массе. Известно более 1400 минералов, в состав которых входит К. Среди них преобладают минералы, образованные солями кислородсодержащих кислот (важнейшие классы – карбонаты природные, силикаты природные, сульфаты природные, фосфаты природные), и горные породы на их основе (напр., известняк, мрамор), а также разл. оксиды природные, гидроксиды природные и горные породы (напр., базальт). Молекулярный К. составляет 20,95% по объёму (23,10% по массе) земной атмосферы. К. атмосферы имеет биологич. происхождение и образуется в зелёных растениях, содержащих хлорофилл, из воды и диоксида углерода при фотосинтезе. Количество К., выделяемое растениями, компенсирует количество К., расходуемое в процессах гниения, горения, дыхания. К. – биогенный элемент – входит в состав важнейших классов природных органич. соединений (белков, жиров, нуклеиновых кислот, углеводов и др.) и в состав неорганич. соединений скелета.
Свойства
Строение внешней электронной оболочки атома К. 2s22p4; в соединениях проявляет степени окисления –2, –1, редко 1, 2; электроотрицательность по Полингу 3,44 (наиболее электроотрицательный элемент после фтора); атомный радиус 60 пм; радиус иона О2– 121 пм (координац. число 2). В газообразном, жидком и твёрдом состояниях К. существует в виде двухатомных молекул О2. Молекулы О2 парамагнитны. Существует также аллотропная модификация К. – озон, состоящая из трёхатомных молекул О3.
В осн. состоянии атом К. имеет чётное число валентных электронов, два из которых не спарены. Поэтому К., не имеющий низкой по энергии вакантной d-орбитали, в большинстве химич. соединений двухвалентен. В зависимости от характера химич. связи и типа кристаллич. структуры соединения координац. число К. может быть разным: 0 (атомарный К.), 1 (напр., О2, СО2), 2 (напр., Н2О, Н2О2), 3 (напр., Н3О ), 4 (напр., оксоацетаты Ве и Zn), 6 (напр., MgO, CdO), 8 (напр., Na2O, Cs2O). За счёт небольшого радиуса атома К. способен образовывать прочные π-связи с др. атомами, напр. с атомами К. (О2, О3), углерода, азота, серы, фосфора. Поэтому для К. одна двойная связь (494 кДж/моль) энергетически более выгодна, чем две простые (146 кДж/моль).
Парамагнетизм молекул О2 объясняется наличием двух неспаренных электронов с параллельными спинами на дважды вырожденных разрыхляющих π*-орбиталях. Поскольку на связывающих орбиталях молекулы находится на четыре электрона больше, чем на разрыхляющих, порядок связи в О2 равен 2, т. е. связь между атомами К. двойная. Если при фотохимич. или химич. воздействии на одной π*-орбитали оказываются два электрона с противоположными спинами, возникает первое возбуждённое состояние, по энергии расположенное на 92 кДж/моль выше основного. Если при возбуждении атома К. два электрона занимают две разные π*-орбитали и имеют противоположные спины, возникает второе возбуждённое состояние, энергия которого на 155 кДж/моль больше, чем основного. Возбуждение сопровождается увеличением межатомных расстояний О–О: от 120,74 пм в осн. состоянии до 121,55 пм для первого и до 122,77 пм для второго возбуждённого состояния, что, в свою очередь, приводит к ослаблению связи О–О и к усилению химич. активности К. Оба возбуждённых состояния молекулы О2 играют важную роль в реакциях окисления в газовой фазе.
К. – газ без цвета, запаха и вкуса; tпл –218,3 °C, tкип –182,9 °C, плотность газообразного К. 1428,97 кг/дм3 (при 0 °C и нормальном давлении). Жидкий К. – бледно-голубая жидкость, твёрдый К. – синее кристаллич. вещество. При 0 °C теплопроводность 24,65·10—3 Вт/(м·К), молярная теплоёмкость при постоянном давлении 29,27 Дж/(моль·К), диэлектрич. проницаемость газообразного К. 1,000547, жидкого 1,491. К. плохо растворим в воде (3,1% К. по объёму при 20 °C), хорошо растворим в некоторых фторорганич. растворителях, напр. перфтордекалине (4500% К. по объёму при 0 °C). Значит. количество К. растворяют благородные металлы: серебро, золото и платина. Растворимость газа в расплавленном серебре (2200% по объёму при 962 °C) резко понижается с уменьшением темп-ры, поэтому при охлаждении на воздухе расплав серебра «закипает» и разбрызгивается вследствие интенсивного выделения растворённого кислорода.
К. обладает высокой реакционной способностью, сильный окислитель: взаимодействует с большинством простых веществ при нормальных условиях, в осн. с образованием соответствующих оксидов (мн. реакции, протекающие медленно при комнатной и более низких темп-рах, при нагревании сопровождаются взрывом и выделением большого количества теплоты). К. взаимодействует при нормальных условиях с водородом (образуется вода Н2О; смеси К. с водородом взрывоопасны – см. Гремучий газ), при нагревании – с серой (серы диоксид SO2 и серы триоксид SO3), углеродом (углерода оксид СО, углерода диоксид СО2), фосфором (фосфора оксиды), мн. металлами (оксиды металлов), особенно легко со щелочными и щёлочноземельными (в осн. пероксиды и надпероксиды металлов, напр. пероксид бария BaO2, надпероксид калия KO2). С азотом К. взаимодействует при темп-ре выше 1200 °C или при воздействии электрич. разряда (образуется монооксид азота NO). Соединения К. с ксеноном, криптоном, галогенами, золотом и платиной получают косвенным путём. К. не образует химич. соединений с гелием, неоном и аргоном. Жидкий К. также является сильным окислителем: пропитанная им вата при поджигании мгновенно сгорает, некоторые летучие органич. вещества способны самовоспламеняться, когда находятся на расстоянии нескольких метров от открытого сосуда с жидким кислородом.
К. образует три ионные формы, каждая из которых определяет свойства отд. класса химич. соединений: $ce{O2^-}$– супероксидов (формальная степень окисления атома К. –0,5), $ce{O2^2^-}$ – пероксидных соединений (степень окисления атома К. –1, напр. водорода пероксид Н2О2), О2– – оксидов (степень окисления атома К. –2). Положительные степени окисления 1 и 2 К. проявляет во фторидах O2F2 и ОF2 соответственно. Фториды К. неустойчивы, являются сильными окислителями и фторирующими реагентами.
Молекулярный К. является слабым лигандом и присоединяется к некоторым комплексам Fe, Co, Mn, Cu. Среди таких комплексов наиболее важен железопорфирин, входящий в состав гемоглобина – белка, который осуществляет перенос К. в организме теплокровных.
Соединения кислорода
Основные степени окисления кислород 2, 1, 0, -1 и -2.
Степень окисления | Типичные соединения |
2 | Фторид кислорода OF2 |
1 | Пероксофторид кислорода O2F2 |
-1 | Пероксид водорода H2O2 Пероксид натрия Na2O2 и др. |
-2 | Вода H2O Оксиды металлов и неметаллов Na2O, SO2 и др. Соли кислородсодержащих кислот Кислородсодержащие органические вещества Основания и амфотерные гидроксиды |
Способы получения и собирания кислорода в лаборатории
Лабораторные способы получения кислорода весьма разнообразны. Существует много веществ, из которых можно получить кислород. Рассмотрим наиболее распространенные способы.
Способы получения кислорода
В промышленности кислород получают перегонкой жидкого воздуха.
Лабораторные способы получения кислорода:
- Разложение некоторых кислородосодержащих веществ:
Разложение перманганата калия:
Разложение бертолетовой соли в присутствии катализатора MnO2:
2KClO3 → 2KCl 3O2
Разложение пероксида водорода:
2HgO → 2Hg O2
Электронное строение кислорода
Электронная конфигурация кислорода в основном состоянии :
😯 1s22s 2 2p 4 1s
Атом кислорода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 2 неподеленные электронные пары в основном энергетическом состоянии.