Плотность кислорода в г л – Плотность кислорода (02), значение и примеры — Таловская средняя школа

Плотность кислорода в г л – Плотность кислорода (02), значение и примеры — Таловская средняя школа Кислород

Краткое описание химических свойств и плотность кислорода

Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия кислорода как с простыми, так и со сложными веществами зависит от природы вещества и от температуры.

Некоторые вещества, например оксид азота (II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре.

O2 2H2 = 2H2O (550oС, сгорание H2в O2);

O2 F2 = O2F2 (-183oС, электрический разряд);

O2 N2↔2NO (электрический разряд);

O2 S = SO2 (сгорание на воздухе);

5O2 4P = P4O10 (сгорание на воздухе);

O2 C = CO2 (600-700oС, сжигание на воздухе);

O2 2Na = Na2O2 (сжигание на воздухе);

O2 2Mg = 2MgO (сгорание на воздухе);

3O2 4Al = 2Al2O3 (сгорание на воздухе).

Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты, как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе.

В лаборатории

 Zn H2SO4 → ZnSO4 H2
 Ca 2H2O → Ca(OH)2 H2
 NaH H2O → NaOH H2↑ 
 2Al 2NaOH 6H2O → 2Na[Al(OH)4] 3H2
 Zn 2KOH 2H2O → K2[Zn(OH)4] H2
 2H3O 2e → 2H2O H2

В промышленности

На 2022 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м3 газа. Почти все остальное получают из угля.

 CH4 H2O  ⇄  CO 3H2 
 H2O C  ⇄  CO↑ H2↑ 
 2NaCl 2H2O →  2NaOH Cl2↑ H2↑ 
 2H2O →4e− 2H2↑ O2
Кроме того, существует промышленная технология электролиза химически чистой воды, без применения каких-либо добавок. Фактически, устройство представляет собой обратимый топливный элемент с твёрдой полимерной мембраной.
 2CH4 O2 ⇄  2CO 4H2 

Геохимия водорода

На Земле содержание водорода понижено по сравнению с Солнцем, планетами-гигантами и первичными метеоритами, из чего следует, что во время образования Земля была значительно дегазирована: основная масса водорода, как и других летучих элементов, покинула планету во время аккреции или вскоре после неё.

Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах. Известно содержание водорода в составе вулканических газов, истечение некоторых количеств водорода вдоль разломов в зонах рифтогенеза, выделение этого газа в некоторых угольных месторождениях.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и воды.

В атмосфере молекулярный водород непрерывно образуется в результате разложения формальдегида, образующегося в цепочке окисления метана или другой органики, солнечным излучением (31—67 гигатонн/год), неполного сгорания различных топлив и биомасс (по 5—25 гигатонн/год), в процессе фиксации азота микроорганизмами из воздуха (3−22 гигатонн/год).

Имея малую массу, молекулы водорода в составе воздуха обладают высокой тепловой скоростью (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут навсегда улететь в космическое пространство (см. Диссипация атмосфер планет). Объёмы потерь оцениваются в 3 кг в секунду.

Изотопы

Основная статья: Изотопы водорода

Наиболее известны три изотопа водорода: протий 1H (атомное ядро — протон), дейтерий 2H (ядро состоит из одного протона и одного нейтрона) и тритий 3H (ядро состоит из одного протона и двух нейтронов). Эти изотопы имеют собственные химические символы: протий — H, дейтерий — D, тритий — T.

Протий и дейтерий стабильны. Содержание этих изотопов в природном водороде составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 % соответственно. Оно может незначительно меняться в зависимости от источника и способа получения водорода. Тритий нестабилен, претерпевает бета-распад с периодом 12,32 года, превращаясь в стабильный гелий-3.

Тритий встречается в природе в следовых количествах, образуясь главным образом при взаимодействии космических лучей со стабильными ядрами, при захвате дейтерием тепловых нейтронов и при взаимодействии природного изотопа лития-6 с нейтронами, порождёнными космическими лучами.

Искусственно получены также тяжёлые радиоактивные изотопы водорода с массовыми числами 4—7 и периодами полураспада 10−21—10−23 с.

Природный молекулярный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание в нём молекул из чистого дейтерия D2 ещё меньше, отношение концентраций HD и D2 составляет примерно 6400:1.

Из всех изотопов химических элементов физические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

Температура
плавления,
K
Температура
кипения,
K
Тройная
точка
Критическая
точка
Плотность,
кг/м³
T, KP, кПаT, KP, МПажидкийгаз
H213,9620,3913,967,332,981,3170,8111,316
HD16,6522,1316,612,835,911,48114,01,802
HT22,9217,6317,737,131,57158,622,31
D218,6523,6718,7317,138,351,67162,502,23
DT24.3819,7119,439,421,77211,542,694
T220,6325,0420,6221,640,441,85260,173,136

Молекулы чистых протия, дейтерия и трития могут существовать в двух аллотропных модификациях (отличающихся взаимной ориентацией спинов ядер) — орто- и параводород: o-D2, p-D2, o-T2, p-T2. Молекулы водорода с другим изотопным составом (HD, HT, DT) не имеют орто- и парамодификаций.

Кислород плотность — справочник химика 21

    Установите молекулярную формулу вещества, содержащего 81,6% хлора и 18,4 % кислорода. Плотность этого вещества по водороду 43,5. 

[c.142]

    Соединение содержит 39,14% углерода, 8,7% водорода, 52,16% кислорода. Плотность паров по водороду равна 46. Определить истинную формулу соединения. [c.16]

    Пример. Анализ уксусной кислоты показывает, что в ней на 2,1 весовой части углерода приходится 0,35 весовой части водорода и 2,8 весовой части кислорода. Плотность пара уксусной кислоты по водороду равна [c.46]

    Один из оксидов хлора содержит 47,4% кислорода. Плотность по водороду этого оксида в газообразном состоянии равна 33,75. Установите формулу оксида. 

[c.219]

    Содержание кислорода, % Плотность при 20 °С, г/см з [c.540]

Электрофлотационный способ является одним из наиболее эффективных при очистке воды нефтепродуктов, тонкодисперсных частиц, растворенных органических соединений. Наиболее высокая степень очистки сточных вод достигается в электрофлотационных аппаратах, имеющих наряду с флотационной камерой и камеру электрокоагуляции.

В этом случае сточные воды предварительно подвергаются воздействию как электрического поля, так и образующихся при электрокоагуляции оксидов металлов — продуктов растворения анодных электродных пластин. В качестве таких пластин используют сталь Ст.З.

В камере электрокоагуляции в результате адсорбции загрязнений на хлопьях гидрооксида железа образуются агрегаты, которые включают также пузырьки выделяющихся при электролизе водорода и кислорода. Плотность этих агрегатов меньше, чем плотность воды. Однако скорость их флотационного отделения от воды невелика.

Для интенсификации отделения этих агрегатов от воды и доочистки осветленной жидкости используют электрофлотацию с применением нерастворимого анода. Как показали экспериментальные исследования, продолжительность электрокоагуляции и флотации сточных вод должна быть одинаковой.

Кислород малорастворим в воде (5 объемов в 100 объемах воды), ко все же лучше, чем другие газы атмосферы, поэтому вода обогащается кислородом. Плотность кислорода при нормальных условиях р = 1,429 г/л. При —183 °С кислород конденсируется в бледно-голубую жидкость (р = 1,13 г/см ), а при —218,7 С образует синие кристаллы. [c.111]

Кислород — наиболее распространенный элемент земной коры. Он составляет 89% массы воды, 23% массы воздуха (21% по объему) и почти 50% массы обычных минералов (силикатов). В элементном состоянии кислород состоит из двухатомных молекул, строение которых описано ниже.

Зто бесцветный газ, не имеющий запаха и слабо растворимый в воде 1 л еоды при 0°С и 1 атм растворяет 48,9 мл газообразного кислорода. Плотность кислорода при 0°С и 1 атм равна 1,429 Г-Л-. Кислород конденсируется в бледно-голубую жидкость при температуре кипения —183,0 °С и при дальнейшем охлаждении отвердевает при —218,4 °С, образуя бледно-голубое кристаллическое вещество. [c.178]

    Имеется смесь метана и кислорода плотностью [c.10]

В эвдиометре сожгли 20 мл газовой смеси, состоящей из азота, водорода и кислорода. Плотность смеси по водороду равна 14,0. После конденсации воды и приведения газовой смеси к начальным условиям объем ее был равен 17 мл. К образовавшейся смеси прибавили 50 мл воздуха и снова сожгли. Объем смеси не изменился. Определить процентный состав взятой газовой смеси. [c.11]

    Определить формулу соединения, содержащего 39,14% углерода, 8,7% водорода и 52,16% кислорода. Плотность пара этого вещества по водороду равна 46. [c.64]

Про кислород:  Таблица: плотности газов, химические формулы газов и молекулярные веса основных распространенных газов - ацетилен, воздух, метан, азот, кислород и многих других - Инженерный справочник / Технический справочник ДПВА / Таблицы для инженеров (ex DPVA-info)

    Задача 5. Анализ показал, что соединение состоит из 30,43% азота и69,57% кислорода. Плотность этого вещества по водороду равна 46. Определить его молекулярный вес и формулу. [c.56]

В обоих случаях защищаемая конструкция подвергается катодной поляризации, которая смещает ее потенциал к отрицательным значениям, а pH электролита, контактирующего непосредственно с металлом, сдвигается в щелочную область. Благодаря высокому pH на поверхности металла осаждаются гидроокись магния, карбонаты кальция и магния, образуя пленку подобно накипи.

    Вывести истинную формулу кислоты, в составе которой на 2,1 в. ч. углерода приходится 0,35 в. ч. водорода и 2,8 в. ч. кислорода. Плотность пара кислоты по водороду Вп = 30. [c.35]

    Составьте уравнение реакции получения кислорода из перманганата калия (КМпО ) и вычислите массу перманганата калия, необходимого для получения 10 л (при н.у.) кислорода (плотность кислорода 1,43 г/л). [c.36]

    Для цинкования берут железный гвоздь или стальную пластинку. Работу проводят, как и в предыдуш,ем опыте. На катоде выделяется цинк и водород, на аноде — кислород. Плотность тока около [c.254]

    Пример 3. Вывести молекулярную формулу вещества, содержащего 40,00% углерода, 6,70% водорода и 53,30%о кислорода. Плотность пара по водороду равна 30. [c.6]

Сила основания определяется стабильностью образующегося катиона (сопряженной кислоты). Чем стабильней катион, тем сильнее основание. Стабильность катиона определяется суммой тех же факторов, что и стабильность аниона, с той лишь разницей, что влияние этих факторов на основность противоположно тому влиянию, которое они оказывали на кислотность.

Например, наличие в углеводородном радикале электронодонорных заместителей будет способствовать стабилизации катиона и, следовательно, повышать силу основания. Напротив, электроноакцетхзрные заместители будут дестабилизировать катион и уменьшать основность соединения.

Исходя из природы атомов кислорода, азота и серы, можно сделать вывод, что наиболее электроотрицательный атом кислорода за счет более прочного удерживания неподеленной пары электронов менее склонен присоединять протон по сравнению, например, с атомом азота.

Действительно, амины обычно более сильные основания, чем спирты. Электроны атомов азота и серы менее прочно удерживаются ядром и более доступны для связи с протоном. Однако у атома серы электронная плотность рассредоточена в большем объеме по сравнению с атомом азота и кислорода.

www.chem21.info

Меры предосторожности

Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водород пожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Считается, что взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75 (74) % по объёму. Такие цифры фигурируют сейчас в большинстве справочников, и ими вполне можно пользоваться для ориентировочных оценок.

Источник этой широко растиражированной ошибки в том, что взрывоопасность исследовалась в лабораториях на малых объёмах. Поскольку реакция водорода с кислородом — это цепная химическая реакция, которая проходит по свободнорадикальному механизму, «гибель» свободных радикалов на стенках (или, скажем, поверхности пылинок) критична для продолжения цепочки.

Относительная плотность газа

Обозначим относительную плотность газа m1 / m2 буквой D. Тогда

D = M1 / M2,

откуда

M1 = D×M2.

Следовательно, молярная масса газа равна его плотности по отношению у другому газа, умноженной на молярную массу второго газа.

Часто плотности различных газов определяют по отношению к водороду, как самому легкому из всех газов. Поскольку молярная масса водорода равна 2,0158 г/моль, то в этом случае уравнение для расчета молярных масс принимает вид:

M = 2,0158 ×D

или, если округлить молярную массу водорода до 2:

M = 2 ×D.

Вычисляя, например, по этому уравнению молярную массу диоксида углерода, плотность которого по водороду, как указано выше равна 22, находим:

M(CO2) = 2 × 22 = 44 г/моль.

Плотность газа в лабораторных условиях самостоятельно можно определить следующим образом: необходимо взять стеклянную колбу с краном и взвесить её на аналитических весах. Первоначальный вес – вес колбы, из которой откачали весь воздух, конечный – вес колбы, наполненной до конкретного давления исследуемым газом. Разность полученных масс следует разделить на объем колбы. Вычисленное значение и есть плотность газа в данных условиях.

Чтобы рассчитать плотность газа при н.у. нужно воспользоваться уравнением состояния идеального газа:

p2 = pN;

V2 = VN;

T2 = TN.

p1/pN×V1/m×m/VN = T1/TN;

т.к. m/V1 = r1 и m/VN = rN, получаем, что

rN = r1×pN/p1×T1/TN.

В таблице ниже приведены значения плотностей некоторых газов.

Таблица 1. Плотность газов при нормальных условиях.

Газ

Плотность, кг/м3

Dair

DH2

Воздух

1,293

1

14,5

Водород

0,0899

0,00695

1

Азот

1,25

0,967

14

Кислород

1,43

1,11

16

Диоксид углерода

1,997

1,53

22

Гелий

0,179

0,139

2

Очистка

В промышленности реализованы несколько способов очистки водорода из углерод-содержащего сырья (т. н. водородсодержащий газ — ВСГ).

  • Низкотемпературная конденсация: ВСГ охлаждают до температур конденсации метана и этана, после чего водород отделяют ректификацией. Процесс ведут при температуре −158 °C и давлении 4 МПа. Чистота очищенного водорода составляет 93—94 % при его концентрации в исходном ВСГ до 40 %.
  • Адсорбционное выделение на цеолитах: Настоящий метод на сегодняшний день наиболее распространён в мире. Метод достаточно гибок и может использоваться как для выделения водорода из ВСГ, так и для доочистки уже очищенного водорода. В первом случае процесс ведут при давлениях 3,0—3,5 МПа. Степень извлечения водорода составляет 80-85 % с чистотой 99 %. Во втором случае часто используют процесс «PSA» фирмы «Union Carbide». Он впервые был реализован в промышленности в 1978 году. На настоящий момент функционирует более 250 установок от 0,6 до 3,0 млн м3 H2/сут. Образуется водород высокой чистоты 99,99 %.
  • Абсорбционное выделение жидкими растворителями: Этот метод применяется редко, хотя водород получается высокой чистоты 99,9 %.
  • Концентрирование водорода на мембранах: На лучших образцах метод позволяет получать водород чистотой 95-96 %, однако производительность таких установок невысока.
  • Селективное поглощение водорода металлами: Метод основан на способности сплавов лантана с никелем, железа с титаном, циркония с никелем и других поглощать до 30 объёмов водорода.

Плотность — кислород

Cтраница 2

Какой объем озона следует добавить к 1 л воздуха, чтобы получить газовую смесь, плотность которой равна плотности кислорода при той же температуре.
 [16]

Для отделения азота от кислорода нельзя воспользоваться различием в плотностях обоих газов, потому что они очень близки: плотность кислорода в 16, азота в 14 раз более плотности водорода, а потому здесь нельзя употребить пористых сосудов; разность во времени просачивания для обоих газов будет ничтожною.
 [17]

К — температура газа, / 71 6 — 105 н / м2 — давление газа, ро1 43 кг / м3 — плотность кислорода при нормальных условиях, ро 1 013 — 105 н / м2 — нормальное атмосферное давление, i 32 кг / кмоль — масса киломоля кислорода, R 8314 дж / кмоль-град — универсальная газовая постоянная.
 [18]

Статья Рэлея, написанная в марте 1893 г. [18], свидетельствует о новом подходе к исследованию плотности газа, а именно вместо измерений отношения плотностей кислорода и водорода на первый план выступило измерение отношения плотностей кислорода и азота.
 [19]

Далее, Беккером, применившим для исследования эмиссионный микроскоп-проектор [18], было опубликовано доказательство существования на поверхности вольфрама адсорбционных центров двух видов, различающихся по плотности кислорода. Эти два вида центров характеризуются различными энергиями связи, причем одна из них соответствует теплоте адсорбции 4 эв, а вторая — 2 эв.

Подобное доказательство можно вывести из данных по адсорбции азота, полученных Гринхальфом и сотрудниками [19], которые показали, что на некоторых металлах наблюдается необратимый и обратимый тип хемосорб-ции, особенности которой зависят от рода металла и адсорбата.

Дано: У 200 0 м8 — объем газа, Г300 К — температура газа, р1 6 105 Па — давление газа, р01 43 кг / м3 — плотность кислорода при нормальных условиях, р0 1 013 — 105 Па — нормальное атмосферное давление, М 32 — 10 3 кг / моль — молярная масса кислорода, R 8 314 Дж / ( моль — К) — газовая постоянная.
 [21]

Дано: У200 0м3 — объем газа, Г300 К — температура газа, р1, 6 — 105 Па — давление газа, р 1 43 кг / м3 — плотность кислорода при нормальных условиях, р0 1 013 — 105 Па — нормальное атмосферное давление, р32 — 10 3 кг / моль — молярная масса кислорода, 8 314 Дж / ( моль — К) — молярная газовая постоянная.
 [22]

Дано: V200 0 м3 — объем газа, Г300 К — температура газа, р1 6 — 105 Па — давление газа, р 1 43 кг / м3 — плотность кислорода при нормальных условиях, рв1 013 — 105 Па — нормальное атмосферное давление, ц32 — 10 — 3 кг / моль — молярная масса кислорода, Я8 314 Дж / ( моль — К) — молярная газовая постоянная.
 [23]

Статья Рэлея, написанная в марте 1893 г. [18], свидетельствует о новом подходе к исследованию плотности газа, а именно вместо измерений отношения плотностей кислорода и водорода на первый план выступило измерение отношения плотностей кислорода и азота.
 [24]

Про кислород:  ОКОФ, код 330.26.51.52 — Приборы для измерения или контроля расхода, уровня, давления или прочих переменных характеристик жидкостей и газов

Дано: V-50 л5 0 — 10-а м — 8 — объем выделенного кислорода, Т300 К — температура кислорода, р0Ю1 3 кПа — нормальное атмосферное давление, р01 43 кг / м3 — плотность кислорода при нормальных условиях, 8 29 — 10 — 8 кг / Кл — электрохимический эквивалент кислорода.
 [25]

Дано: V5 л5 — 10 — 3 м — 3 — объем выделенного кислорода, Т300 К — температура кислорода, ра 101 3 кПа — нормальное атмосферное давление, р01 43 кг / м3 — плотность кислорода при нормальных условиях, / г — 8 29 X X 10 — 8 кг / Кл — электрохимический эквивалент кислорода.
 [26]

Дано: V 5 0 л — 5 0 — 10 — 3 м — объем выделенного кислорода, / 27 С; Т 300 К — температура кислорода, ро 760 мм рт. ст. — нормальное атмосферное давление, ро 1 43 кг / л3 — плотность кислорода при нормальных условиях, Дг 8 29 — 10 — кг / к — электрохимический эквивалент кислорода.
 [27]

При температуре 20 С в одном литре воды растворяется 28 см3 кислорода. Какова плотность кислорода в воде, свободная поверхность которой граничит с атмосферным воздухом, при нормальном давлении. Принять, что масса кислорода составляет 23 % массы воздуха.
 [28]

Кислород ( как и любой из газов) в зависимости от условий может находиться в газообразном, жидком или твердом состоянии. В каком из состояний плотность кислорода наибольшая; наименьшая.
 [29]

Одновременно он указал на возможность использования ее для установления атомного состава сложных газообразных веществ и дал новый метод определения атомных и молекулярных весов: Исходя из этой гипотезы, видно, что мы имеем средство легко определять относительные массы молекул для тех веществ, которые можно перевести в газообразное состояние, а также относительное число молекул в соединениях, потому что отношения молекулярных масс те же самые, что и отношения плотностей различных газов, при одинаковой температуре и давлении, а относительное число молекул в соединении дано непосредственно отношением объемов тех газов, которые образуют данное соединение.

Например, числа 1 10359 и 0 07321 выражают плотности кислорода и водорода, если принять плотность воздуха равной единице; отношение же этих двух чисел показывает, следовательно, отношение между массами двух равных объемов данных газов; это же самое отношение выразит, согласно Предложенной гипотезе, отношение масс их молекул.

Так, масса молекулы кислорода будет приблизительно в 15 раз больше массы молекулы водорода [ 20, стр. С другой стороны, так как мы знаем, что отношение объемов водорода и кислорода при образовании воды равняется 2: 1, то отсюда следует, что вода образуется путем соединения одной молекулы кислорода с двумя молекулами водорода.

Таким же образом — согласно объемным отношениям, установленным Гей-Люссаком для элементов, составляющих аммиак, окись азота, селитряный газ и азотную кислоту — аммиак должен образовываться путем соединения одной молекулы азота с тремя молекулами водорода, закись азота — из одной молекулы кислорода и двух молекул азота, селитряный газ — из одной молекулы азота и одной молекулы кислорода…
 [30]

Страницы:  

   1

   2

   3

Плотность газов при нормальных условиях – таблица

Плотность газов при н.у.
Газ
(газовая фаза)
Хим.
формула
Плотность
г/см3г/лкг/м3
АзотN21.251⋅10−31.2511.251
АммиакNH37,723⋅10−40,77230,7723
АргонAr1,784⋅10−31,7841,784
Арсин (мышьяковистый водород)H3As3,48⋅10−33,483,48
АцетиленC2H21,16⋅10−31,161,16
Бромоводород (бромистый водород)HBr3.664⋅10−33.6643.664
БутанC4H102,7⋅10−32,72,703
ВодородH28,987⋅10−50.089870.08987
ГелийHe1,785⋅10−40,17850,1785
Герман (германия тетрагидрид)GeH43,42⋅10−33,423,420
Диметиламин(CH3)2NH2,0125⋅10−32,01252,0125
Диметиловый эфир (метиловый эфир, метоксиметан, древесный эфир)C2H6O2,1098⋅10−32,10982,1098
Диоксид углерода (двуокись углерода, углекислый газ, углекислота, оксид углерода(IV), угольный ангидрид)CO21,9768⋅10−31,97681,9768
Диоксид хлора (двуокись хлора)ClO23,01⋅10−33,013,01
Дифтордихлорметан (дихлордифторметан, Фреон R 12, Фреон-12, Хладон-12, CFC-12, R-12)CF2Cl25,51⋅10−35,515,510
Закись азота (оксид диазота, оксид азота(I), веселящий газ)N2O1,978⋅10−31,9781,978
ИзобутанC4H102,673⋅10−32,6732,673
Иодоводород (водород иодистый)HI5,789⋅10−35,7895,789
КислородO21,429⋅10−31,4291,429
Кремния гексагидридSi2H62,85⋅10−32,852,85
КриптонKr3,74⋅10−33,743,74
КсенонXe5,89⋅10−35,895,89
МетанCH47,168⋅10−40,71680,7168
МетиламинCH5N1,388⋅10−31,3881,388
МетилфторидCH3F1,545⋅10−31,5451,545
Монооксид углерода (угарный газ, окись углерода, оксид углерода(II))CO1,25⋅10−31,251,25
Моносилан (тетрагидрид кремния)SiH41,44⋅10−31,441,44
НеонNe0,9⋅10−30,90,900
ОзонO32,14⋅10−32,142,14
Оксид азота(II) (мон(о)оксид азота, окись азота, нитрозил-радикал)NO1,3402⋅10−31,34021,3402
Оксид серы(IV) (диоксид серы, двуокись серы, сернистый газ, сернистый ангидрид)SO22,9263⋅10−32,92632,9263
Оксид хлора(I) (окись хлора)Cl2O3,88⋅10−33,883,88
Оксифторид фосфораPOF34,8⋅10−34,84,8
ПропанC3H82,0037⋅10−32,00372,0037
ПропиленC3H61,915⋅10−31,9151,915
РадонRn9,81⋅10−39,819,81
СеленоводородH2Se3,6643⋅10−33,66433,6643
Сероводород (сернистый водород)H2S1,5206⋅10−31,52061,5206
Сероокись углерода (карбонилсульфид)COS2,72⋅10−32,722,72
Стибин (сурьмянистый водород)H3Sb5,48⋅10−35,485,48
Теллуроводород (теллуран)H2Te5,81⋅10−35,815,81
Тетрафторид кремнияSiF44,96⋅10−34,964,96
ТриметиламинC3H9N2,64⋅10−32,642,64
ТриметилборC3H9B2,52⋅10−32,522,52
Трифторид мышьяка (мышьяк фтористый)AsF57,71⋅10−37,717,71
Фосфин (фосфористый водород, фосфид водорода, гидрид фосфора)PH31,53⋅10−31,531,53
ФторF21,695⋅10−31,6951,695
Фторид бора (III), (трифторид бора, бор трехфтористый)BF33,028⋅10−33,0283,028
Фторид нитрила (фторокись азота)(NO2)F2,9⋅10−32,902,90
Фторид нитрозила (нитрозил фтористый)(NO)F2,1875⋅10−32,18752,1875
Фторид серы(VI) (Гексафторид серы, элегаз, шестифтористая сера)SF66,56⋅10−36,566,56
Фторид фосфора(III)PF33,91⋅10−33,913,91
Фторид фосфора(V) (пентафторид фосфора)PF55,81⋅10−35,815,81
ХлорCl23,22⋅10−33,223,22
Хлорид нитрозила (нитрозилхлорид, хлористый нитрозил, оксид-хлорид азота)NOCl2,992⋅10−32,9922,992
Хлорметан (метилхлорид)CH3Cl2,307⋅10−32,3072,307
Хлороводород (хлористый водород)HCl1,6391⋅10−31,63911,6391
Хлорокись азотаNO2Cl2,57⋅10−32,572,57
Циан (дициан)C2N22,38⋅10−40,2380,238
ЭтанC2H61,356⋅10−31,3561,356
ЭтиленC2H41,26⋅10−31,261,2605

В различных источниках информация может немного различаться.
Нормальные условия (н. у.) — физические условия, определяемые давление p=0,1013 МПа = 760 мм рт. ст. (нормальная атмосфера) и температурой 273,15 К (0 °С).

Плотность кислорода жидкого — справочник химика 21

    Кислород жидкий — прозрачная легкоподвижная жидкость голубоватого цвета, быстро испаряющаяся при обычных т-рах. Кипит при —183° С имеет плотность 1,13. 

[c.274]

    Плотность жидкого кислорода при—183°С 1,14 г/см . Во сколько раз увеличится объем кислорода при переходе его из жидкого в газообразное состояние при нормальных условиях  [c.28]

Метод пьезометра постоянного объема был использован при исследовании плотности жидкого кислорода при низких температурах [17]. Количество вещества, выпускаемого из пьезометра, измерялось в специальном термостатированном устройстве (газометре) следующим образом.

Предварительно точно устанавливался объем газометра. Измерялось давление кислорода, заполнившего газометр. После установления равновесия массу вещества в газометре определяли по известной плотности кислорода при низком давлении и температуре термостата.

[c.438]

Озон — один из наиболее сильных окислителей. Он является аллотропическим видоизменением кислорода. Молекула его содержит три атома кислорода. Жидкий озон имеет темно-синий цвет, кипит при температуре —112 и замерзает при температуре —251° С, плотность его равна 1,46. [c.125]

    Для выявления условий накопления опасных примесей В воздухоразделительных аппаратах немаловажную роль играют данные по их плотности в жидком кислороде. [c.95]

    Так, плотность кислорода в жидком состоянии при температуре кипения равна 1,14, а жидкого фтора — 1,51. Этим отчасти и объясняется большая эффективность фтора как окислителя по сравнению с кислородом. 

[c.225]

Помимо удельной тяги, на скорость и дальность полета ракеты в значительной степени влияет плотность топлива, определяющаяся плотностью его компонентов. Плотность фтора в жидком состоянии при температуре кипения 1,51, а соответствующая плотность кислорода 1,14. Этим отчасти объясняется большая эффективность фтора как окислителя по сравнению с кислородом. [c.36]

Эти свойства кислорода требуют применения специальных материалов для изготовления сосудов, трубопроводов, арматуры и деталей, соприкасающихся с кислородом. Кроме того, при работе с жидким и газообразным кислородом в помещениях, в которых производится, хранится и газифицируется кислород, а также там, где проходят кислородопроводы, требуется соблюдать специальные меры предосторожности.

Следует иметь в виду во всех случаях, что плотность кислорода больше, чем воздуха (плотность кислорода по отношению к воздуху составляет 1,1). При утечках кислород вытесняет воздух и смешивается с ним, создавая опасность взрыва, особенно в нижней части помещений, в траншеях и углублениях, где может оставаться долгое время. [c.369]

Про кислород:  Абсолютная температура и средняя кинетическая энергия молекул | Физика

    На рис. 14 представлены кривые распределения средней плотности пропитанного жидким кислородом [c.33]

Кремнийорганическими соединениями называют большую группу веществ, представляющих собой соединения кремния с водородом или кислородом и различными органическими радикалами. Кремнийорганические соединения являются продуктами различной плотности —от жидких до твердых.

Этот же метод позволяет проверить, в какой степени различные исследуемые парафиновые углеводороды — метан, этан, пропан и бутан — смешиваются между собой в пределах изучаемой температуры. Из соображений удобства опыты проводились при температуре кипения сжиженного кислорода (—183° С) и сжиженного метана (—161° С).

Чистота всех изучаемых газов находилась в пределах 99—99,9%. Полученные значения плотности наносились на график (рис. 10), где одновременно представлены взятые из литературы плотности в жидком состоянии чистых метана, этана, пропана и бутана при различных температурах. Плотность чистого бутана, [c.44]

Плотность растворов кислорода во фторе найдена при допущении, что растворы являются идеальными. При этом плотность жидкого фтора принята согласно работе Джерри и Миллера [47], а плотность кислорода взята из справочника Варгафтика [14]. [c.20]

На рис. V. 9 показан общий вид контактного трехзажимного (трехэлектродного) коаксиального преобразователя для опреде-j ления диэлектрической проницаемости криогенных жидкостей и газов в широком диапазоне температур и давлений [137] на осно- вании отношения измеренной емкости преобразователя с веществом к емкости с вакуумом (и

www.chem21.info

Плотность кислорода и другие его физические свойства

Кислород растворяется в воде, хотя и в небольших количествах: 100 объемов воды при 0oC растворяют 4,9, а при 20oC – 3,1 объема кислорода. Важнейшие константы кислорода представлены в таблице ниже:

Таблица 1. Физические свойства и плотность кислорода.

Плотность, кг/м3

1,42987 – газ

1141 – жидкость

Температура плавления, oС

-218,35

Температура кипения, oС

-182,96

Энергия ионизации атома, эВ

9,32

Относительная электроотрицательность

1,51

Радиус атома, нм

112

Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью: стандартная энтальпия атомизации кислорода равна 498 кДж/моль. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500oC она становится заметной.

Твердый кислород синего цвета, а жидкий – голубого. Окраска обусловлена взаимным влиянием молекул.

Известны три аллотропные формы кислорода: кислород O2, озон O3 и крайне неустойчивый тетракислород O4.

Свойства изотопов

Свойства изотопов водорода представлены в таблице.

ИзотопZNМасса, а. е. м.Период полураспадаСпинСодержание в природе, %Тип и энергия распада
1H101,007 825 032 07(10)стабилен12 99,9885(70)
2H112,014 101 777 8(4)стабилен1 0,0115(70)
3H123,016 049 277 7(25)12,32(2) года12 β18,591(1) кэВ
4H134,027 81(11)1,39(10)⋅10−22 с2-n23,48(10) МэВ
5H145,035 31(11)более 9,1⋅10−22 с(12 )-nn21,51(11) МэВ
6H156,044 94(28)2,90(70)⋅10−22 с2−3n24,27(26) МэВ
7H167,052 75(108)2,3(6)⋅10−23 с12 -nn23,03(101) МэВ

В круглых скобках приведено среднеквадратическое отклонение значения в единицах последнего разряда соответствующего числа.

Свойства ядра 1H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Таблица плотности веществ

Плотность — физическая величина, которая равна отношению массы тела к его объему:

таблица плоттности веществПлотности некоторых твердых тел
(при норм. атм. давл., t = 20ºC)

Твердое телоρ, кг / м 3ρ, г / cм 3Твердое телоρ, кг / м 3ρ, г / cм 3
Осмий22 60022,6Мрамор27002,7
Иридий22 40022,4Стекло оконное2 5002,5
Платина21 50021,5Фарфор2 3002,3
Золото19 30019,3Бетон2 3002,3
Свинец11 30011,3Кирпич1 8001,8
Серебро10 50010,5Сахар-рафинад1 6001,6
Медь8 9008,9Оргстекло1 2001,2
Латунь8 5008,5Капрон1 1001,1
Сталь, железо7 8007,8Полиэтилен9200,92
Олово7 3007,3Парафин9000,90
Цинк7 1007,1Лёд9000,90
Чугун7 0007,0Дуб (сухой)7000,70
Корунд4 0004,0Сосна (сухая)4000,40
Алюминий2 7002,7Пробка2400,24

Плотности некоторых жидкостей
(при норм. атм. давл., t = 20ºC)

Жидкостьρ, кг / м 3ρ, г / cм 3Жидкостьρ, кг / м 3ρ, г / cм 3
Ртуть13 60013,60Керосин8000,80
Серная кислота1 8001,80Спирт8000,80
Мёд1 3501,35Нефть8000,80
Вода морская1 0301,03Ацетон7900,79
Молоко цельное1 0301,03Эфир7100,71
Вода чистая10001,00Бензин7100,71
Масло подсолнечное9300,93Жидкое олово(при t = 400ºC)6 8006,80
Масло машинное9000,90Жидкий воздух(при t = -194ºC)8600,86

Плотности некоторых газов
(при норм. атм. давл., t = 20ºC)

Газρ, кг / м 3ρ, г / cм 3Газρ, кг / м 3ρ, г / cм 3
Хлор3,2100,00321Оксид углерода (II)(угарный газ)1,2500,00125
Оксид углерода (IV)(углекислый газ)1,9800,00198Природный газ0,8000,0008
Кислород1,4300,00143Водяной пар (приt = 100ºC)0,5900,00059
Воздух (при 0ºC)1,2900,00129Гелий0,1800,00018
Азот1,2500,00125Водород0,0900,00009

Другие заметки по химии

Таблица плотности газов

ГазыФормулаПлотность при нормальных условиях ρ, кг/м3
АзотN21,2505
АммиакNH30,7714
АргонAr1,7839
АцетиленC2H21,1709
АцетонC3H6O2,595
Бор фтористыйBF32,99
Бромистый водородHBr3,664
Н-бутанC4H102,703
Изо-бутанC4H102,668
Н-бутиловый спиртC4H10O3,244
ВодаH2O0,768
ВодородH20,08987
Воздух (сухой)1,2928
Н-гексанC6H143,845
ГелийHe0,1785
Н-гептанC7H164,459
Германия тетрагидридGeH43,42
Двуокись углеродаCO21,9768
Н-деканC10H226,35
Диметиламин(CH3)2NH1,966*
ДифтордихлорметанCF2Cl25,51
ДифенилC12H106,89
Дифениловый эфирC12H10O7,54
ДихлорметанCH2Cl23,79
Диэтиловый эфирC4H10O3,30
Закись азотаN2O1,978
Йодистый водородHI5,789
КислородO21,42895
Кремний фтористыйSiF44,9605
Кремний гексагидридSi2H52,85
Кремний тетрагидридSiH41,44
КриптонKr3,74
КсенонXe5,89
МетанCH40,7168
МетиламинCH5N1,388
Метиловый спиртCH4O1,426
Мышьяк фтористыйAsF57,71
НеонNe0,8999
НитрозилфторидNOF2,176*
НитрозилхлоридNOCl2,9919
ОзонO32,22
Окись азотаNO1,3402
Окись углеродаCO1,25
Н-октанC8H185,03
Н-пентанC5H12   (CH3(CH2)3СН3)3,457
Изо-пентанC5H12   (СН3)2СНСН2СН33,22
ПропанC3H82,0037
ПропиленC3H61,915
РадонRn9,73
Силан диметилSiH2(CH3)22,73
Силан метилSiH3CH32,08
Силан хлористыйSiH3Cl3,03
Cилан трифтористыйSiHF33,89
Стибин (15°С, 754 мм.рт.ст.)SbH35,30
Селеновая кислотаH2Se3,6643
Сернистый газSO22,9263
Сернистый ангидридSO33,575
СероводородH2S1,5392
Сероокись углеродаCOS2,72
Сульфурил фтористыйSO2F23,72*
Триметиламин(CH3)3N2,58*
Триметилбор(CH3)3B2,52
Фосфористый водородPH31,53
Фосфор фтористыйPF33,907*
Фосфор оксифторидPOF34,8
Фосфор пентафторидPF55,81
Фреон-11CF3CI6,13
Фреон-12 (дифтордихлорметан)CF2CI25,51
Фреон-13CFCI35,11
ФторF21,695
Фтористый кремнийSiF44,6905
Фтористый метилCH3F1,545
Фторокись азотаNO2F2,9
ХлорCl23,22
Хлор двуокисьClO23,09*
Хлор окисьCl2O3,89*
Хлористый водородHCl1,6391
Хлористый метил (метилхлорид)CH3Cl2,307
Хлористый этилC2H5Cl2,88
ХлороформCHCl35,283
Хлорокись азотаNO2Cl2,57
Циан, дицианC2N22,765 (2,335*)
Цианистая кислотаHCN1,205
ЭтанC2H61,356
ЭтиламинC2H7N2,0141
ЭтиленC2H41,2605
Этиловый спиртC2H6O2,043

Физика. таблица плотностей

Плотность — это скалярная физическая величина, которая определяется как отношение массы тела к занимаемому этим теломобъёму или площади (поверхностная плотность). Для обозначения плотности обычно используется символ Таблица плотностей.

НаименованиеПлотность, кг/м3
Алюминий2,7·103
Барий3,5·103
Бензин0.750 · 103
Ванадий6,0·103
Вольфрам19,1 ·103
Вода дистилированая0.998 · 103
Вода морская1.020 · 103
Висмут9,8·103
Дизельное топливо0.850 · 103
Железо7,8·103
Литий0,53·103
Медь8,9·103
Никель8,9·103
Свинец11,3·103
Серебро10,5·103
Цезий1,9·103
Цинк7,1·103
Вода (при 40С)1,00·103
Глицерин1,26·103
Гранит 2600
Дерево (Дуб)810
Ртуть13,6·103
Спирт0,80·103
Сероуглерод1,26·103
Водород0,09
Воздух1,29
Гелий0,18
Кислород1,43
Керосин800
Эфир0.720 · 103
Нефтьизменяемая 730—1040
Мрамор2700
Керосин0.800 · 103
Серная кислота 1.830 · 103
Сера2070 кг/м³
Золото19320
Гипс1500
Бетон2000
Молоко1050
Стекло2500
Чугун7000

Химические свойства

Молекулы водорода достаточно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

 H2 → 2H− 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например, с кальцием, образуя гидрид кальция:

 Ca H2 → CaH2 

и с единственным неметаллом — фтором, образуя фтороводород:

 F2 H2 → 2HF 

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например, при освещении:

 O2 2H2 → 2H2

Записанное уравнение отражает восстановительные свойства водорода.

 CuO H2 →  H2O Cu 

С галогенами образует галогеноводороды:

 H2 F2 →  2HF , реакция протекает со взрывом в темноте и при любой температуре,
 H2 Cl2 →  2HCl , реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

 C 2H2 →  CH4
Оцените статью
Кислород
Добавить комментарий