Степени окисления атомов химических элементов (таблица)

Степени окисления атомов химических элементов (таблица) Кислород

Азотистая кислота

Азотистая кислота HNO2— слабая, одноосновная, химически неустойчивая кислота.

Получение азотистой кислоты.

Азотистую кислоту легко получить вытеснением из нитритов более сильной кислотой.

Например, соляная кислота вытесняет азотистую кислоту из нитрита серебра:

AgNO2      HCl   →    HNO2       AgCl

Химические свойства.

1.Азотистая кислота HNO2  существует только в разбавленных растворах, при нагревании она разлагается:

3HNO2   →  HNO3      2NO      H2O

без нагревания азотистая кислота также разлагается:

2HNO2    →    NO2       NO     H2O

2. Азотистая кислота взаимодействует с сильными основаниями.

Например, с гидроксидом натрия:

HNO2     NaOH   →   NaNO2      H2O

3.За счет азота в степени окисления 3 азотистая кислота проявляет слабые окислительные свойства. Окислительные свойства HNO2 проявляет только при взаимодействии с сильными восстановителями.

Например, HNO2 окисляет иодоводород:

2HNO2      2HI   →   2NO      I2       2H2O

Азотистая кислота также окисляет иодиды в кислой среде:

2НNO2      2KI     2H2SO4   →   K2SO4      I2   2NO    2H2O

Азотистая кислота окисляет соединения железа (II):

2HNO2       3H2SO4      6FeSO4  →   3Fe2(SO4)3      N2        4H2O

4. За счет азота в степени окисления 3 азотистая кислота проявляет сильные восстановительные свойства. Под действием окислителей азотистая кислота переходит в азотную.

Например, хлор окисляет азотистую кислоту до азотной кислоты:

HNO2     Cl2       H2O   →  HNO3     2HCl

Кислород и пероксид водорода также окисляют азотистую кислоту:

2HNO2       O2  →  2HNO3

HNO2       H2O2  →  HNO3      H2O

Соединения марганца (VII) окисляют HNO2:

5HNO2       2HMnO4  →   2Mn(NO3)2      HNO3       3H2O

Графический метод

  1. Нарисуйте структурную формулу соединения.

  2. Изобразите стрелками химические связи и смещение атомов (все связи между атомами углерода С−С считайте неполярными).

  3. Посчитайте, сколько стрелок ведет к атому (это «−») и сколько от него (это « »), а затем суммируйте « » и «−», чтобы узнать степень окисления.

  4. Графический метод определения степени окисления

    Валентность и степень окисления: в чем разница?

    Школьники, которые только начали изучать данные разделы химии, нередко путают степень окисления и валентность. Численно эти показатели могут совпадать (но далеко не всегда), а вот по смыслу они в корне различаются.

    Важно!

    Валентность показывает, какое количество связей способен образовать один атом, а степень окисления — сколько электронов перемещается в результате этих связей.

    Разница между валентностью и степенью окисления

    Между этими двумя понятиями есть следующие отличия:

    • валентность не имеет знака, в то время как у окислительного числа он есть (« » или «−»);

    • валентность равна нулю только в том случае, если атом не имеет связей с другими частицами, а степень окисления может быть равна нулю и при наличии таких связей;

    • вычисляя степень окисления, мы предполагаем, что в соединении ионные связи, хотя на самым деле это может быть не так, а валентность всегда имеет реальный смысл.

    Поэтому отождествлять эти два понятия ни в коем случае не стоит. Более того, не нужно ориентироваться на валентность, пытаясь определить окислительное число.

    Вопросы для самопроверки

    1. Почему степень окисления называют формальным зарядом, условным?

    2. Что отражает численная величина степени окисления?

    3. Чему равна сумма всех окислительных чисел в ионе?

    4. Как определить низшую степень окисления?

    5. Как найти две неизвестных степени окисления в одном веществе?

    6. Как определять степени окисления в органических веществах?

Давайте порассуждаем вместе

1. Атом азота в азотной кислоте имеет степень окисления:

1) 0

2) 3

3) 5

4) -5

Ответ: Формула азотной кислоты HNO3, степень окисления водорода равна 1, кислорода -2, степень окисления азота обозначим за х и рассчитаем ее по уравнению: 1 х 3* (-2) = 0

х = 5

2. Степень окисления -2 атом серы проявляет в каждом из соединений

1) CuSO4 и H2S

2) SO2 и Na2S

3) H2SO3 и SO3

4) CaS и FeS

Ответ: степень окисления -2 атом серы проявляет в бинарных соединениях с металлами (сульфидах) и водородом (H2S), поэтому правильный ответ CaS и FeS

3. Максимально возможную степень окисления атом хлора проявляет в соединении

1) HCl

2) HClO3

3) KClO4

4) Ba(ClO2)2

Ответ: атом хлора расположен в 7 группе, поэтому может иметь максимальную степень окисления 7. Такую степень окисления атом хлора проявляет в веществе KClO4. Проверим это. У калия степень окисления 1, у кислорода -2, у хлора х. Из уравнения: 1 х 4* (-2) = 0 находим х = 7

4. В соединениях NO2 и NH3 степени окисления азота соответственно равны:

1) 4 и -3

2) 2 и 3

3) 2 и -2

4) 5 и 3

Ответ: В оксиде азота (IV) у кислорода степень окисления -2, значит у азота степень окисления 4. В аммиаке у водорода степень окисления 1, значит у азота степень окисления -3.

5. Установите соответствие между схемами превращения веществ и изменением степени окисления хлора

Ответ:

В молекуле хлора Cl2 степень окисления хлора равна 0

В молекуле ClF3 у фтора степень окисления -1, значит у хлора 3

В молекуле ICl3 у хлора степень окисления -1

В молекуле ClO2 у кислорода степень окисления -2, значит у хлора 4

В молекуле HCl у водорода 1, а у хлора -1

6. Установите соответствие между схемами превращения веществ и изменением степени окисления серы

Ответ:

В молекуле сероводорода у водорода степень окисления 1, а у серы -2

В молекуле SO2 у кислорода степень окисления -2, а у серы 4

В молекуле сернистой кислоты у водорода степень окисления 1, у кислорода -2, значит у серы 4

В молекуле серной кислоты у водорода степень окисления 1, у кислорода -2, значит у серы 6

7. Установите соответствие между схемами превращения веществ и изменением степени окисления азота

Ответ:

В молекуле NO степень окисления у кислорода равна -2, а у азота 2

В молекуле азота N2 степень окисления азота равна 0

В молекуле NO2 степень окисления азота равна 4

В молекуле N2H4 степень окисления азота равна -2

8. В каких реакциях железо выступает в роли восстановителя?

1) Fe S = FeS

2) 2FeCl3 H2 = 2FeCl2 2HCl

3) 2Fe(OH)3 = Fe2O3 3H2O

4) 3Fe 2O2 = Fe3O4

5) 2FeCl2 Cl2 = 2FeCl3

Ответ: 1, 4, 5 , т.к. в этих реакциях железо отдает электроны и повышает свою степень окисления.

9. В каких реакциях сера не изменяет степень окисления?

1) Cu S = CuS

2) 2HCl Na2SO3 = 2NaCl SO2 H2O

3) Cu 2H2SO4 = CuSO4 SO2 2H2O

4) SO2 H2O = H2SO3

5) SO2 2H2 = S 2H2O

Ответ: 2, 4, т.к. в этих реакциях сера не изменяет свою степень окисления.

10. В каком соединении фосфор проявляет степень окисления -3

1) P2O3

2) Na3PO4

3)Ca3P2

4) PCl3

Ответ: степень окисления -3 фосфор проявляет в бинарных соединениях с металлами, значит в фосфиде кальция Ca3P2 у кальцая степень окисления 2, а у фосфора -3.

Оксид азота (i)

Оксид азота (I) –  это несолеобразующий оксид. Малые концентрации закиси азота вызывают лёгкое опьянение (отсюда название — «веселящий газ»). При вдыхании чистого газа быстро развиваются состояние опьянения и сонливость.

Строение молекулы оксида азота (I) нельзя описать методом валентных связей. Так как оксид азота (I) состоит из двух, так называемых резонансных структур, которые переходят одна в другую:

Общую формулу в таком случае можно задать, обозначая изменяющиеся связи в резонансных структурах пунктиром:

Получитьоксид азота (I) в лаборатории можно разложением нитрата аммония:

 NH4NO3  →   N2O      2H2O

Химические свойства оксида азота (I):

1. При нормальных условиях оксид азота (I) инертен. При нагревании проявляет свойства окислителя. Оксид азота (I) при нагревании окисляет водород, аммиак, металлы, сернистый газ и др. При этом азот восстанавливается в простое вещество.

N2O           H2    →  N2      H2O

N2O          Mg   →  N2      MgO

N2O         2Cu   →  N2      Cu2O

3N2O       2NH3  →   4N2     3H2O

N2O          H2O     SO2  →   N2      H2SO4

Еще пример: оксид азота (I) окисляет углерод и фосфор при нагревании:

N2O     C   →   N2      CO

5N2O     2Р   →   5N2      Р2O5

2. При взаимодействии с сильными окислителямиN2O может проявлять свойства восстановителя.

Например, N2O окисляется раствором перманганата в серной кислоте:

5N2O        3H2SO4       2KMnO4   →  10NO      2MnSO4        K2SO4      3H2O

Оксид азота (ii)

Оксид азота (II) –  это несолеобразующий оксид.  В нормальных условиях это бесцветный ядовитый газ, плохо растворимый в воде. На воздухе коричневеет из-за окисления до диоксида азота. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Способы получения.

1. В лаборатории оксид азота (II) получают действием разбавленной азотной кислоты (30%) на неактивные металлы.

Например, при действии 30 %-ной азотной кислоты на медь образуется NO:

3Cu      8HNO3(разб.)  →  3Cu(NO3)2     2NO   4H2O

Также NO можно получить при окислении хлорида железа (II) или иодоводорода азотной кислотой:

3FeCl2          NaNO3      4HCl   →   3FeCl3      NaCl      NO      2H2O

  2HNO3     6HI   →   2NO      I2       4H2O

2. В природе оксид азота (II) образуется из азота и кислорода под действием электрического разряда, например, во время грозы:

N2      O2  →   2NO

3. В промышленностиоксид азота (II) получают каталитическим окислением аммиака:

4NH3        5O2    →    4NO     6H2O

Химические свойства.

1. Оксид азота (II) легко окисляется под действием окислителей.

Например, горит в атмосфере кислорода:

2NO       O2   →   2NO2

Оксид азота (II) легко окисляется под действием хлора или озона:

2NO      Cl2  →  2NOCl

NO     O3  →   NO2      O2

2. В присутствии более сильных восстановителей проявляет свойства окислителя. В атмосфере оксида азота (II) могут гореть водород, углерод и т.п.

Например, оксид азота (II) окисляет водород и сернистый газ:

2NO      2H2  →  N2      2H2O

2NO     2SO2   →   2SO3      N2

Оксид азота (iv)

Оксид азота (IV) — бурый газ. Очень ядовит!  Для NO2  характерна высокая химическая активность.

Способы получения.

1. Оксид азота (IV) образуется при окислении оксида азота (I) и оксида азота (II) кислородом или озоном:

2NO     O2  →   2NO2

2. Оксид азота (IV) образуется при действии концентрированной азотной кислоты на неактивные металлы.

Например, при действии концентрированной азотной кислоты на медь:

4HNO3(конц.)        Cu   →    Cu(NO3)2        2NO2      2H2O

3. Оксид азота (IV) образуется также при разложении нитратов металлов, которые в ряду электрохимической активности расположены правее магния (включая магний) и при разложении нитрата лития.

Например, при разложении нитрата серебра:

2AgNO3    →  2Ag      2NO2        O2

Химические свойства.

1. Оксид азота (IV) реагирует с водойс образованием двух кислот — азотной и азотистой:

2NO2       H2O   →  HNO3      HNO2

Если растворение NO2 в воде проводить в избытке кислорода, то образуется только азотная кислота:

4NO2      2H2O     O2   →  4HNO3

Поскольку азотистая кислота неустойчива, то при растворении NO2 в теплой воде образуются HNO3  и   NO:

3NO2       H2O   →  2HNO3      NO

2. При растворении оксида азота (IV) в щелочахобразуются нитраты и нитриты:

 2NO2       2NaOH   →  NaNO3      NaNO2      H2O

4NO2       2Ca(OH)2  →   Ca(NO2)2      Ca(NO3)2         2H2O

В присутствии кислорода образуются только нитраты:

4NO2       4NaOH     O2   →   4NaNO3      2H2O

3. Оксид азота (IV) – сильный окислитель. В атмосфере оксида азота (IV) горят фосфор, уголь, сера, оксид серы (IV) окисляется до оксида серы (VI):

2NO2       2S   →  N2      2SO2

2NO2       2C   →  N2      2CO2

10NO2       8P   →  5N2      4P2O5

NO2        SO2  →   SO3       NO

4. Оксид азота (IV) димеризуется:

2NO2  ⇄  N2O4

Оксид азота (v)

N2O5– оксид азота (V), ангидрид азотной кислоты – кислотный оксид.

Получение оксида азота (V).

1. Получить оксид азота (V) можно окислением диоксида азота:

2NO2 O3    →    N2O5 O2

2. Еще один способ получения оксида азота (V) – обезвоживание азотной кислоты сильным водоотнимающим веществом, оксидом фосфора (V):

2HNO3      P2O5      →   2HPO3       N2O5

Химические свойства оксида азота (V).

1.При растворении в воде оксид азота (V) образует азотную кислоту:

N2O5       H2O   →  2HNO3

2.Оксид азота (V), как типичный кислотный оксид, взаимодействует с основаниями и основными оксидами с образованием солей-нитратов.

Например, оксид азота (V) реагирует с гидроксидом натрия:

N2O5       2NaOH   →  2NaNO3     H2O

Еще пример: оксид азота (V) реагирует с оксидом кальция:

N2O5 CaO → Ca(NO3)2

3. За счет азота со степенью окисления 5 оксид азота (V) – сильный окислитель.

Например, он окисляет серу:

2N2O5      S   →   SO2      4NO2

4.Оксид азота (V) легко разлагается при нагревании (со взрывом):

2N2O5     →   4NO2     O2

Получение хлора в химии

Хлор, который производят, хранится в специальных «танках» или закачивается в стальные баллоны высокого давления. Баллоны с жидким хлором под давлением имеют специальную окраску — болотный цвет.

В настоящее время химические методы получения хлора не используют, так как они являются очень ресурсозатратными и малоэффективными.

Метод Дикона

В 1867 году ученым химиком Диконом был разработан метод получения хлора каталитическим окислением хлороводорода кислородом воздуха:  4HCl   O2 → 2H2O   2Cl2↑

Современные лабораторные методы

На данный момент хлор используется в лабораториях в баллонах.

Получение хлора в лабораториях осуществляется посредством реакции кислот на гипохлорит натрия:  4NaOCl   4CH3COOH = 4NaCH3COO   2Cl2↑   O2↑   2H2O.

Для того чтобы получить небольшое количество хлора, обычно используют процессы, основанные на окислении хлороводорода более сильными окислителями. Чаще всего это перманганат калия или диоксид марганца: 2KMnO4   16HCl → 2KCl   2MnCl2   5Cl2↑   8H2O

Электрохимические методы

При невозможности использования сжиженного хлора в баллонах, используют электрохимические методы.

Примечание 2

На сегодняшний день в промышленных масштабах хлор получают вместе с гидроксидом натрия и водородом путем электролиза раствора поваренной соли: 2NaCl   2H2O   2e- → 2NaOH   Cl2↑   H2↑

В промышленности применяются три варианта электрохимического метода: два из них — электролиз с твердым катодом, третий — электролиз с жидким ртутным катодом (ртутный метод производства). При таких методах качество получаемого хлора почти не отличается.

Мембранный метод

Мембранный метод производства хлора наиболее энергоэффективен, но при этом довольно сложен в организации и эксплуатации.

В мембранном методе катодное и анодное пространства полностью разделены непроницаемой для анионов катионообменной мембраной. Поэтому в мембранном электролизере два потока.

В анодное пространство поступает поток раствора соли. А в катодное — деионизированная вода. Все потоки предварительно очищаются от всевозможных примесей.

Соли азотистой кислоты — нитриты

Соли азотистой кислоты устойчивее самой кислоты, и все они ядовиты. Поскольку степень окисления азота в нитритах  равна 3, то они проявляют как окислительныесвойства, так и восстановительные.

Кислород, галогены ипероксид водорода окисляют нитриты до нитратов:

2KNO2       O2   →  2KNO3

KNO2       H2O2  →  KNO3      H2O

KNO2      H2O      Br2   →  KNO3       2HBr

Лабораторные окислители — перманганаты, дихроматы— также окисляют нитриты до нитратов:

5KNO2      3H2SO4      2KMnO4   →   5KNO3        2MnSO4       K2SO4    3H2O 

3KNO2      4H2SO4      K2Cr2O7   →   3KNO3        Cr2(SO4)3       K2SO4    4H2O  

В кислой среде нитриты выступают в качестве окислителей.

При окислении йодидов или соединений железа (II) нитриты восстанавливаются до оксида азота (II):

 2KNO2      2H2SO4      2KI   →  2NO       I2       2K2SO4    2H2O

  2KNO2    2FeSO4     2H2SO4 → Fe2(SO4)3 2NO K2SO4 2H2O

При взаимодействии с очень сильными восстановителями (алюминий или цинк в щелочной среде) нитриты восстанавливаются максимально – до аммиака:

NaNO2 2Al NaOH  6H2O → 2Na[Al(OH)4] NH3

Смесь нитратов и нитритов также проявляет окислительныесвойства. Например, смесь нитрата и нитрита калия окисляет оксид хрома (III) до хромата калия:

3KNO2      Cr2O3     KNO3  →   2K2CrO4      4NO

Соли азотной кислоты — нитраты

Нитраты металлов — это твердые кристаллические вещества. Большинство очень хорошо растворимы в воде.

1. Нитраты термически неустойчивы, причем все они разлагаются на кислород и соединение, характер которого зависит от положения металла (входящего в состав соли) в ряду напряжений металлов:

  • Нитраты щелочных и щелочноземельных металлов (до Mg в электрохимическом ряду) разлагаются до нитрита и кислорода.

Например, разложение нитрата натрия:

2KNO3   →  2KNO2      O2    

Исключение – литий.

Видеоопытразложения нитрата калия можно посмотреть здесь.

  • Нитраты тяжелых металлов (от Mg до Cu, включая магний и медь) и литийразлагаются  до оксида металла, оксида азота (IV) и кислорода:

Например, разложение нитрата меди (II):

  2Cu(NO3)2   →   2CuO        4NO2      O2

  • Нитраты малоактивных металлов (правее Cu) – разлагаются до металла, оксида азота (IV) и кислорода.

Например, нитрат серебра:

2AgNO3   →  2Ag      2NO2        O2

Исключения:

Нитрит железа (II) разлагается до оксида железа (III):

4Fe(NO3)2   →   2Fe2O3      8NO2      O2

Нитрат марганца (II) разлагается до оксида марганца (IV):

Mn(NO3)2   →   MnO2      2NO2 

2. Водные растворы не обладают окислительно-восстановительными свойствами, расплавы – сильные окислители.

Например, смесь 75%    KNO3,  15% C  и  10% S  называют «черным порохом»:

2KNO3       3C        S   →   N2       3CO2       K2S

Способы получения азота

1. Азот в лаборатории получают при взаимодействии насыщенных растворов хлорида аммония и нитрита натрия. Образующийся в результате реакции обмена нитрит аммония легко разлагается с образованием азота и воды.

NaNO2      NH4Cl   →   NH4NO2      NaCl

NH4NO2  →   N2       2H2O

Суммарное уравнение процесса:

NaNO2      NH4Cl   →   N2     NaCl     2H2O

Видеоопытвзаимодействия нитрита натрия с хлоридом аммония можно посмотреть здесь.

Азот также образуется при горении аммиака:

4NH3    3O2   →   2N2     6H2O

2. Наиболее чистый азот получают разложением азидовщелочныхметаллов.

Например, разложением азида натрия:

2NaN3   →   2Na        3N2

3.Еще один лабораторный способ получения азота — восстановление  оксида меди (II)  аммиаком при температуре ~700 °C:

3CuO    2NH3  →   3Cu   N2      3H2O

В промышленности азот получают, буквально, из воздуха. При промышленном производстве очень важно, чтобы сырье было дешевым и доступным. Воздуха много и он пока бесплатный.

Используются различные способы выделения азота из воздуха — адсорбционная технология, мембранная и криогенная технологии.

Адсорбционные методы разделения воздуха на компоненты основаны на  разделения газовых сред в азотных установках лежит явление связывания твёрдым веществом, называемым адсорбентом, отдельных компонентов газовой смеси.

Основным принципом работы мембранных систем является разница в скорости проникновения компонентов газа через вещество мембраны. Движущей силой разделения газов является разница парциальных давлений на различных сторонах мембраны.

В основе работы криогенных установок разделения воздуха лежит метод разделения газовых смеси, основанный на разности температур кипения компонентов воздуха и различии составов находящихся в равновесии жидких и паровых смесей.

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск

ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например, аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

2NH4Cl      Са(OH)2   →   CaCl2   2NH3     2Н2O

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопытполучения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторныйспособ получения аммиака – гидролиз нитридов.

Например, гидролиз нитрида кальция:

Ca3N2       6H2O  →  ЗСа(OH)2        2NH3

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

N2      3Н2    ⇄    2NH3

Процесс проводят при температуре 500-550оС и в присутствии катализатора.  Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Таблица степеней окисления химических элементов (1 часть):

Атомный номерХимический элементСимволСтепень окисления
1ВодородH 1, 0, -1
2ГелийHe0
3ЛитийLi 1
4БериллийBe0, 1, 2
5БорB-1, 0, 1, 2, 3
6УглеродC-4 , -3 , -2 , -1 , 0 , 1, 2, 3, 4
7АзотN-3 , -2, -1, 0, 1, 2,  3 , 4,  5
8КислородO-2, -1, -0,5, 0, 1, 2
9ФторF-1, 0
10НеонNe0
11НатрийNa-1, 0, 1
12МагнийMg0, 2
13АлюминийAl0, 1, 2, 3
14КремнийSi-4 , -3, -2, -1, 0, 1, 2, 3, 4
15ФосфорP-3 , -2, -1, 0, 1, 2, 3 , 4, 5
16СераS-2 , -1, 0 , 1 , 2 , 3, 4 , 5, 6
17ХлорCl-1 , 0, 1 , 2, 3 , 4, 5 , 6, 7
18АргонAr0
19КалийK0, 1
20КальцийCa0, 2
21СкандийSc0, 1, 2, 3
22ТитанTi-2, -1, 0, 1, 2, 3, 4
23ВанадийV-3, -1, 0, 1, 2, 3, 4, 5
24ХромCr-4, -2, -1, 0, 1, 2 , 3 , 4, 5, 6
25МарганецMn-3, -2, -1, 0, 1, 2 , 3, 4 , 5, 6, 7
26ЖелезоFe-4, -2, -1, 0, 1, 2 , 3 , 4, 5, 6 , 7
27КобальтCo-3, -1, 0, 1, 2 , 3 , 4, 5
28НикельNi-2, -1, 0, 1, 2 , 3, 4
29МедьCu-2, 0, 1, 2 , 3, 4
30ЦинкZn-2, 0, 1, 2
31ГаллийGa-5, -4, -3, -2, -1, 1, 2, 3
32ГерманийGe-4 -3, -2, -1, 0, 1, 2 , 3, 4
33МышьякAs-3, -2, -1, 0, 1, 2, 3, 4, 5
34СеленSe-2, -1, 0, 1, 2, 3, 4, 5, 6
35БромBr-1, 0, 1, 3, 4, 5, 7

Таблица степеней окисления химических элементов (2 часть):

36КриптонKr0, 1, 2
37РубидийRb-1, 0, 1
38СтронцийSr0, 1, 2
39ИттрийY0, 1, 2, 3
40ЦирконийZr-2, 0, 1, 2, 3, 4
41НиобийNb-3, -1, 0, 1, 2, 3, 4, 5
42МолибденMo-4, -2, -1, 0, 1, 2, 3, 4, 5, 6
43ТехнецийTc-3, -1, 0, 1, 2, 3, 4, 5, 6, 7
44РутенийRu-4, -2, 0, 1,  2,  3,  4, 5, 6, 7, 8
45РодийRh-3, -1, 0, 1, 2, 3, 4, 5, 6
46ПалладийPd0, 1, 2, 3, 4, 5, 6
47СереброAg-2, -1,  1, 2, 3
48КадмийCd-2, 1, 2
49ИндийIn-5, -2, -1, 1, 2, 3
50ОловоSn-4, -3, -2, -1, 0, 1, 2, 3, 4
51СурьмаSb-3, -2, -1, 0, 1, 2, 3, 4, 5
52ТеллурTe2, -1, 1, 2, 3, 4, 5, 6
53ЙодI-1, 0, 1, 2, 3, 4, 5, 6, 7
54КсенонXe0, 1, 2, 4, 6, 8
55ЦезийCs-1, 1
56БарийBa 1, 2
57ЛантанLa0, 1, 2, 3
58ЦерийCe 1, 2, 3, 4
59ПразеодимPr0, 1, 2, 3, 4, 5
60НеодимNd0, 2, 3, 4
61ПрометийPm 2, 3
62СамарийSm0, 2, 3
63ЕвропийEu 1, 2, 3
64ГадолинийGd0, 1, 2, 3
65ТербийTb0, 1, 2, 3, 4
66ДиспрозийDy0, 1, 2, 3, 4
67ГольмийHo0, 1, 2, 3
68ЭрбийEr0, 1, 2, 3
69ТулийTm 2, 3
70ИттербийYb 1, 2, 3

Таблица степеней окисления химических элементов (3 часть):

71ЛютецийLu0, 1, 2, 3
72ГафнийHf-2, 0, 1, 2, 3, 4
73ТанталTa-3, -1, 1, 2, 3, 4, 5
74ВольфрамW-4, -2, -1, 0, 1, 2, 3, 4, 5, 6
75РенийRe-3, -1, 0, 1, 2, 3, 4, 5, 6, 7
76ОсмийOs-4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8
77ИридийIr-3, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
78ПлатинаPt-3, -2, -1, 0, 1,  2, 3,  4, 5, 6
79ЗолотоAu-3, -2, -1, 0, 1, 2, 3, 5
80РтутьHg-2, 1, 2
81ТаллийTl-5, -2, -1, 1, 2, 3
82СвинецPb-4, -2, -1, 0, 1, 2, 3, 4-4, -2, -1, 0, 1, 2, 3, 4
83ВисмутBi-3, -2, -1, 1, 2, 3, 4, 5
84ПолонийPo-2, 2, 4, 5, 6
85АстатAt-1, 1, 3, 5, 7
86РадонRn0, 2, 6, 8
87ФранцийFr0, 1
88РадийRa 2
89АктинийAc 3
90ТорийTh 1, 2, 3, 4
91ПротактинийPa 2, 3, 4, 5
92УранU 1, 2, 3, 4, 5, 6
93НептунийNp 2, 3, 4, 5, 6, 7
94ПлутонийPu 2, 3, 4, 5, 6, 7
95АмерицийAm 2, 3, 4, 5, 6, 7
96КюрийCm 3, 4, 5, 6
97БерклийBk 2, 3, 4, 5
98КалифорнийCf 2, 3, 4, 5
99ЭйнштейнийEs 2, 3, 4
100ФермийFm 2, 3
101МенделевийMd 2, 3
102НобелийNo 2, 3
103ЛоуренсийLr 3
104Резерфордий (Курчатовий)Rf 2, 3, 4 – предположительно
105Дубний (Нильсборий)Db 3, 4, 5 – предположительно
106СиборгийSg0, 3, 4, 5, 6 – предположительно
107БорийBh 3, 4, 5, 7 – предположительно
108ХассийHs 2, 3, 4, 6, 8 – предположительно
109МейтнерийMt 1, 3, 4, 6, 8, 9 – предположительно
110ДармштадтийDs0, 2, 4, 6, 8 – предположительно

Коэффициент востребованности 2 898

Таблица степени окисления химических элементов

Максимальную положительную и минимальную отрицательную степень окисления можно определить с помощью Периодической таблицы Д.И. Менделеева. Они равны номеру группы, в которой расположен элемент, и разнице между значением «высшей» степени окисления и числом 8, соответственно.

Если рассматривать химические соединения более конкретно, то в веществах с неполярными связями степень окисления элементов равна нулю (N2, H2, Cl2).

Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно.

В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому: Na 1I-1, Mg 2Cl-12, Al 3F-13, Zr 4Br-14.

При определении степени окисления элементов в соединениях с полярными ковалентными связями сравнивают значениях их электроотрицательностей. Поскольку при образовании химической связи электроны смещаются к атомам более электроотрицательных элементов, то последние имеют в соединениях отрицательную степень окисления.

Существуют элементы, для которых характерно только одно значение степени окисления (фтор, металлы IA и IIA групп и т.д.). Фтор, характеризующийся наибольшим значением электроотрицательности, в соединениях всегда имеет постоянную отрицательную степень окисления (-1).

Щелочные и щелочноземельные элементы, для которых свойственно относительно невысокое значение электроотрицательности, всегда имеют положительную степень окисления, равную соответственно ( 1) и ( 2).

Однако, имеются и такие химические элементы, для которых характерны несколько значений степени окисления (сера – (-2), 0, ( 2), ( 4), ( 6) и др.).

Для того, чтобы легче было запомнить сколько и какие степени окисления характерны для конкретного химического элемента используют таблицы степеней окисления химических элементов, которые выглядят следующим образом:

Порядковый номер

Русское / англ. название

Химический символ

Степень окисления

1

Водород / Hydrogen

H

( 1), (-1)

2

Гелий / Helium

He

0

3

Литий / Lithium

Li

( 1)

4

Бериллий / Beryllium

Be

( 2)

5

Бор / Boron

B

(-1), 0, ( 1), ( 2), ( 3)

6

Углерод / Carbon

C

(-4), (-3), (-2), (-1), 0, ( 2), ( 4)

7

Азот / Nitrogen

N

(-3), (-2), (-1), 0, ( 1), ( 2), ( 3), ( 4), ( 5)

8

Кислород / Oxygen

O

(-2), (-1), 0, ( 1), ( 2)

9

Фтор / Fluorine

F

(-1)

10

Неон / Neon

Ne

0

11

Натрий / Sodium

Na

( 1)

12

Магний / Magnesium

Mg

( 2)

13

Алюминий / Aluminum

Al

( 3)

14

Кремний / Silicon

Si

(-4), 0, ( 2), ( 4)

15

Фосфор / Phosphorus

P

(-3), 0, ( 3), ( 5)

16

Сера / Sulfur

S

(-2), 0, ( 4), ( 6)

17

Хлор / Chlorine

Cl

(-1), 0, ( 1), ( 3), ( 5), ( 7), редко ( 2) и ( 4)

18

Аргон / Argon

Ar

0

19

Калий / Potassium

K

( 1)

20

Кальций / Calcium

Ca

( 2)

21

Скандий / Scandium

Sc

( 3)

22

Титан / Titanium

Ti

( 2), ( 3), ( 4)

23

Ванадий / Vanadium

V

( 2), ( 3), ( 4), ( 5)

24

Хром / Chromium

Cr

( 2), ( 3), ( 6)

25

Марганец / Manganese

Mn

( 2), ( 3), ( 4), ( 6), ( 7)

26

Железо / Iron

Fe

( 2), ( 3), редко ( 4) и ( 6)

27

Кобальт / Cobalt

Co

( 2), ( 3), редко ( 4)

28

Никель / Nickel

Ni

( 2), редко ( 1), ( 3) и ( 4)

29

Медь / Copper

Cu

1, 2, редко ( 3)

30

Цинк / Zinc

Zn

( 2)

31

Галлий / Gallium

Ga

( 3), редко ( 2)

32

Германий / Germanium

Ge

(-4), ( 2), ( 4)

33

Мышьяк / Arsenic

As

(-3), ( 3), ( 5), редко ( 2)

34

Селен / Selenium

Se

(-2), ( 4), ( 6), редко ( 2)

35

Бром / Bromine

Br

(-1), ( 1), ( 5), редко ( 3), ( 4)

36

Криптон / Krypton

Kr

0

37

Рубидий / Rubidium

Rb

( 1)

38

Стронций / Strontium

Sr

( 2)

39

Иттрий / Yttrium

Y

( 3)

40

Цирконий / Zirconium

Zr

( 4), редко ( 2) и ( 3)

41

Ниобий / Niobium

Nb

( 3), ( 5), редко ( 2) и ( 4)

42

Молибден / Molybdenum

Mo

( 3), ( 6), редко ( 2), ( 3) и ( 5)

43

Технеций / Technetium

Tc

( 6)

44

Рутений / Ruthenium

Ru

( 3), ( 4), ( 8), редко ( 2), ( 6) и ( 7)

45

Родий / Rhodium

Rh

( 4), редко ( 2), ( 3) и ( 6)

46

Палладий / Palladium

Pd

( 2), ( 4), редко ( 6)

47

Серебро / Silver

Ag

( 1), редко ( 2) и ( 3)

48

Кадмий / Cadmium

Cd

( 2), редко ( 1)

49

Индий / Indium

In

( 3), редко ( 1) и ( 2)

50

Олово / Tin

Sn

( 2), ( 4)

51

Сурьма / Antimony

Sb

(-3), ( 3), ( 5), редко ( 4)

52

Теллур / Tellurium

Te

(-2), ( 4), ( 6), редко ( 2)

53

Иод / Iodine

I

(-1), ( 1), ( 5), ( 7), редко ( 3), ( 4)

54

Ксенон / Xenon

Xe

0

55

Цезий / Cesium

Cs

( 1)

56

Барий / Barium

BA

( 2)

57

Лантан / Lanthanum

La

( 3)

58

Церий / Cerium

Ce

( 3), ( 4)

59

Празеодим / Praseodymium

Pr

( 3)

60

Неодим / Neodymium

Nd

( 3), ( 4)

61

Прометий / Promethium

Pm

( 3)

62

Самарий / Samarium

Sm

( 3), редко ( 2)

63

Европий / Europium

Eu

( 3), редко ( 2)

64

Гадолиний / Gadolinium

Gd

( 3)

65

Тербий / Terbium

Tb

( 3), ( 4)

66

Диспрозий / Dysprosium

Dy

( 3)

67

Гольмий / Holmium

Ho

( 3)

68

Эрбий / Erbium

Er

( 3)

69

Тулий / Thulium

Tm

( 3), редко ( 2)

70

Иттербий / Ytterbium

Ib

( 3), редко ( 2)

71

Лютеций / Lutetium

Lu

( 3)

72

Гафний / Hafnium

Hf

( 4)

73

Тантал / Tantalum

Ta

( 5), редко ( 3), ( 4)

74

Вольфрам / Tungsten

W

( 6), редко ( 2), ( 3), ( 4) и ( 5)

75

Рений / Rhenium

Re

( 2), ( 4), ( 6), ( 7), редко (-1), ( 1), ( 3), ( 5)

76

Осмий / Osmium

Os

( 3), ( 4), ( 6), ( 8), редко ( 2)

77

Иридий / Iridium

Ir

( 3), ( 4), ( 6), редко ( 1) и ( 2)

78

Платина / Platinum

Pt

( 2), ( 4), ( 6), редко ( 1) и ( 3)

79

Золото / Gold

Au

( 1), ( 3), редко ( 2)

80

Ртуть / Mercury

Hg

( 1), ( 2)

81

Талий / Thallium

Tl

( 1), ( 3), редко ( 2)

82

Свинец / Lead

Pb

( 2), ( 4)

83

Висмут / Bismuth

Bi

( 3), редко ( 3), ( 2), ( 4) и ( 5)

84

Полоний / Polonium

Po

( 2), ( 4), редко (-2) и ( 6)

85

Астат / Astatine

At

86

Радон / Radon

Ra

0

87

Франций / Francium

Fr

88

Радий / Radium

Ra

( 2)

89

Актиний / Actinium

Ac

( 3)

90

Торий / Thorium

Th

( 4)

91

Проактиний / Protactinium

Pa

( 5)

92

Уран / Uranium

U

( 3), ( 4), ( 6), редко ( 2) и ( 5)

Физические и химические свойства

К физическим свойствам хлора относят:

  1. Цвет — желто-зеленый.
  2. Тяжелее воздуха.
  3. Резкий сладковатый запах.
  4. Температура кипения: -34 °С.
  5. Температура плавления: -100 °С.
  6. Плотность 3,214 г/л.
  7. Устойчивые степени окисления -1, 0, 1, 3, ( 4), 5, ( 6), 7.
  8. Хлор в состоянии газа легко сжимается. При давлении в 0,8 МПа (8 атмосфер), хлор будет жидким уже при температуре от 20 °С. Жидкий хлор — желто-зеленая жидкость, обладающая очень высоким коррозионным действием.

К химическим свойствам относят:

  • хлор реагирует почти что со всеми металлами (чтобы взаимодействовать с некоторыми из них, нужны условия влаги или нагревания):

Cl2   2HBr → Br2   2HCl— при таких реакциях хлор вытесняет бром из соединений с водородом или металлом;

 2Na   Cl2 → 2NaCl— при взаимодействии натрия и хлора мы получаем хлорид натрия;

 2Fe   3Cl2 → 2FeCl3— при взаимодействии железа и хлора мы получим хлорид железа(III);

Cl2  H2O ⇄ HCl   HClO

Cl2    2NaOH → NaCl   NaClO   H2O;

 H2   Cl2 → 2HCl;

Химические свойства

Азотная кислота – это сильная кислота. За счет азота со степенью окисления 5 азотная кислота проявляет сильные окислительные свойства.

1. Азотная кислота практически полностью диссоциируетв водном растворе.

 HNO3 → H NO3–

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами. 

Например, азотная кислота взаимодействует с оксидом меди (II):

CuO     2HNO3   →   Cu(NO3)2     H2O

Еще пример: азотная кислота реагирует с гидроксидом натрия:

HNO3      NaOH   →   NaNO3     H2O

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов). 

Например, азотная кислота взаимодействует с карбонатом натрия:

2HNO3     Na2CO3   →  2NaNO3     H2O     CO2

4. Азотная кислота частично разлагается при кипении или под действием света:

4HNO3  →   4NO2      O2      2H2O

5.Азотная кислота активно взаимодействует с металлами. При этом  никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот 5.

металл HNO3 → нитрат металла вода газ (или соль аммония)

С алюминием, хромом и железомна холодуконцентрированная HNO3  не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления 4:

Fe       6HNO3(конц.)  →   Fe(NO3)3      3NO2     3H2O

 Al      6HNO3(конц.)   →  Al(NO3)3      3NO2     3H2O

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 :  3 (по объему):

HNO3         3HCl      Au   →   AuCl3      NO      2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

4HNO3(конц.)        Cu   →    Cu(NO3)2        2NO2      2H2O

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

10HNO3          4Ca   →    4Ca(NO3)2        2N2O      5H2O

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

8HNO3 (разб.)          3Cu   →    3Cu(NO3)2        2NO      4H2O

С активными металлами (щелочными и щелочноземельными), а также оловоми железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

12HNO3(разб)        10Na   →    10NaNO3       N2       6H2O

При взаимодействии кальцияи магнияс азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

10HNO3          4Ca    →   4Ca(NO3)2        2N2O      5H2O

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

10HNO3            4Zn   →    4Zn(NO3)2        NH4NO3      3H2O

Таблица. Взаимодействие азотной кислоты с металлами.

Азотная кислота
КонцентрированнаяРазбавленная
с Fe, Al, Crс неактивными металлами и металлами средней активности (после Al)с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al)с металлами до Al в ряду активности, Sn, Fe 
пассивация при низкой Тобразуется NO2образуется N2O образуется NO образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3  обычно восстанавливается до NO  или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например, азотная кислота окисляет серу, фосфор, углерод, йод:

6HNO3           S     →   H2SO4      6NO2        2H2O

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

5HNO3          P   →    H3PO4        5NO2        H2O

5HNO3          3P         2H2O   →    3H3PO4        5NO

Видеоопытвзаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

4HNO3         C   →   CO2        4NO2        2H2O

Видеоопытвзаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

10HNO3      I2  →   2HIO3      10NO2       4H2O

7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др.

Например, азотная кислота окисляет оксид серы (IV):

2HNO3        SO2  →   H2SO4        2NO2

Еще пример: азотная кислота окисляет йодоводород:

6HNO3      HI   →  HIO3      6NO2      3H2O

Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.

3С        4HNO3   →    3СО2       4NO       2H2O

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты. 

Например, сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

2HNO3        H2S     →  S        2NO2      2H2O

При нагревании до серной кислоты:

2HNO3        H2S     →  H2SO4         2NO2      2H2O

8HNO3         CuS   →   CuSO4       8NO2       4H2O

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

4HNO3         FeS   →   Fe(NO3)3     NO       S       2H2O

8. Азотная кислота окрашивает белкив оранжево-желтый цвет («ксантопротеиновая реакция»).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Химические свойства азота

При нормальных условиях азот химически малоактивен.

1. Азот проявляет свойства окислителя(с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя(с элементами, расположенными выше и правее). Поэтому азот реагирует с металлами и неметаллами.

1.1. Молекулярный азот при обычных условиях с кислородом не реагирует. Реагирует с кислородом только при высокой температуре (2000оС),  на электрической дуге  (в природе – во время грозы):

N2    O2  ⇄   2NO –  Q

Процесс эндотермический, т.е. протекает с поглощением теплоты.

1.2. При сильном нагревании (3000оС-5000оС или действие электрического разряда) образуется атомарный азот, который реагирует с серой, фосфором, мышьяком, углеродом с образованием бинарных соединений:

2С   N2  →  N≡C–C≡N

Молекулярный азот, таким образом, не реагирует с серой, фосфором, мышьяком, углеродом.

1.3.Азот взаимодействует с водородом при высоком давлении и высокой температуре, в присутствии катализатора. При этом образуется аммиак:

N2     ЗН2   ⇄    2NH3

Этот процесс экзотермический, т.е. протекает с выделением теплоты.

1.4. Азот реагирует с активными металлами: с литием при комнатной температуре, кальцием, натрием и магнием при нагревании. При этом образуются бинарные соединения-нитриды.

Например, литий реагирует с азотом с образованием нитрида лития:

N2      6Li   →   2Li3N

2.Со сложными веществами азот практически не реагирует из-за крайне низкой реакционной способности.

Взаимодействие возможно только в жестких условиях с активными веществами, например, сильными восстановителями.

Например, азот окисляет гидрид лития:

N2      3LiH  →   Li3N      NH3

Химические свойства аммиака

1.В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

:NH3      H2O    ⇄    NH4       OH–

Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20 градусах один объем воды поглощает до 700 объемов аммиака.

Видеоопытрастворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Например, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

NH3       H2SO4    →    NH4HSO4

2NH3      H2SO4    →   (NH4)2SO4

Еще один пример: аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

NH3       H2O    CO2  →    NH4HCO3

2NH3      H2O    CO2    →   (NH4)2CO3

Видеоопытвзаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть  здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония. 

NH3      HCl  →   NH4Cl

Видеоопытвзаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.

Например, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

FeSO4   2NH3  2H2O  →  Fe(OH)2  (NH4)2SO4

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.

Например, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

4NH3      CuCl2  →  [Cu(NH3)4]Cl2

Гидроксид меди (II) растворяется в избытке аммиака:

4NH3       Cu(OH)2   → [Cu(NH3)4](OH)2

5.Аммиак горит на воздухе, образуя азот и воду:

4NH3        3O2    →  2N2      6H2O

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

4NH3        5O2    →    4NO     6H2O

6. За счет атомов водорода в степени окисления 1 аммиак может выступать в роли окислителя, например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.

Например, жидкий аммиак реагирует с натрием с образованием амида натрия:

2NH3       2Na   →   2NaNH2     H2

 Также возможно образование Na2NH,  Na3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

2NH3        2Al   →   2AlN      3H2

7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

Например, аммиак окисляется хлором до молекулярного азота:

2NH3        3Cl2    →  N2      6HCl

Пероксид водорода также окисляет аммиак до азота:

2NH3        3H2O2    →  N2      6H2O

Оксиды металлов, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

Например, оксид меди (II) окисляет аммиак:

2NH3       3CuO   →    3Cu      N2      3H2O

Химические свойства солей аммония

1. Все соли аммония – сильные электролиты, почти полностью диссоциируют на ионы в водных растворах:

NH4Cl   ⇄   NH4 Cl–

2.Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями, если в продуктах образуется газ, осадок или образуется слабый электролит.

Например, карбонат аммония  реагирует с соляной кислотой. При этом выделяется углекислый газ:

(NH4)2CO3      2НCl →   2NH4Cl Н2O CO2

Соли аммония реагируют с щелочами с образованием аммиака.

Например, хлорид аммония реагирует с гидроксидом калия:

NH4Cl        KOH   →   KCl       NH3       H2O

Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.

3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:

NH4Cl      Н2O    ↔   NH3 ∙ H2O      HCl

NH4           HOH    ↔   NH3 ∙ H2O         H

4. При нагревании соли аммония разлагаются. При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:

NH4Cl   →    NH3      HCl

NH4HCO3    →   NH3      CO2       H2O

  (NH4)2SO4    →   NH4HSO4     NH3

NH4HS  →   NH3      H2S

Если соль  содержит анион-окислитель, то разложение сопровождается  изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:

NH4NO2   →   N2        2H2O  

190 – 245° C:

NH4NO3  →   N2O      2H2O

При температуре 250 – 300°C:

 2NH4NO3  →   2NO       4H2O

При температуре выше 300°C:

2NH4NO3    →   2N2      O2       4H2O

Разложение бихромата аммония («вулканчик»).Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):

(NH4)2Cr2O7  →   Cr2O3       N2      4H2O

Окислитель –  хром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду.

Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив.

Видеоопытразложения дихромата аммония можно посмотреть здесь.

Оцените статью
Кислород
Добавить комментарий