- Внешность
- Давление газа
- Конформация циклобутана
- Межмолекулярные взаимодействия
- Молекулярная масса
- Номенклатура и изомерия циклоалканов
- Объяснение строения циклобутана
- Плотность
- Плотность паров
- Показатель преломления
- Получение циклоалканов
- Приложения
- Растворимость
- Реакции замещения (обычные циклы (n=5-7)) – сходство с алканами
- Реакции окисления
- Реакции присоединения (малые циклы (n=3,4)) — сходство с алкенами
- Синтез
- Ссылки
- Температура плавления
- Тепло образования
- Точка воспламенения
- Точка кипения
- Форма бабочки или морщинистая форма
- Циклобутан в биологии и биотехнологии
- Энтальпия горения
- Этилциклобутан, структурная формула, химические свойства
Внешность
Бесцветный газ.
Давление газа
1180 мм рт. Ст. При 25 ° C.
Конформация циклобутана
Углы связей между атомами углерода значительно напряженны и как таковые имеют более низкие энергии связи, чем линейные или ненапряженные углеводороы, например, бутана или циклогексана. Таким образом, циклобутан неустойчива выше примерно 500$^circ$C.
Четыре атома углерода в циклобутане находятся не в одной плоскости, т.е. не образуют типичную циклическую систему, а как правило принимает складчатую или «сморщенную» конформацию. Один из атомов углерода составляет угол 25$^circ$ с плоскостью, образованной тремя другими атомами углерода.
Рисунок 3.
Межмолекулярные взаимодействия
Предположим, вы на мгновение забываете о квадратах, и вместо них их заменяют газированные бабочки. Их взмахи могут удерживаться вместе в жидкости только дисперсионными силами Лондона, которые пропорциональны площади их крыльев и их молекулярной массе.
Молекулярная масса
56,107 г / моль.
Номенклатура и изомерия циклоалканов
Названия циклоалканов формируются путем добавления приставки «цикло-» к названию алкана с соответствующим числом:
циклопропан, циклобутан и т.д.
Как и у алканов, атомы углерода циклоалканов находятся в sp3 гибридизации.
Помимо изомерии углеродного скелета, для циклоалканов характерна межклассовая изомерия с алкенами и пространственная геометрическая изомерия в виде
существования цис- и транс-изомеров.
Объяснение строения циклобутана
Общая энергия напряжения циклобутана близка к энергии напряжения циклопропана, хотя угловое напряжение имеет в циклобутане меньший вклад, поскольку даже в плоской конформации циклобутана валентный угол был бы 90$^circ$. Но в гипотетической плоской структуре циклобутана должно находится восемь пар заслоненных $C-H$ связей, что соответственно дает 8 ккал/моль (1 ккал/моль за каждую такую связь) энергии торсионного напряжения.
Рисунок 4.
При этом атомы водорода оказываются уже не в заслоненном, а в несколько скошенном положении, что отчетливо видно на проекции Ньюмена:
Рисунок 5.
Складчатая форма циклобутана является гибкой и легко превращается в другую складчатую форму через плоскую квадратную форму:
Рисунок 6.
Замена одной метиленовой группы циклобутана на атом кислорода приводит к оксетану.
Рисунок 7.
В оксетане исчезают четыре заслоненных $C-H$ взаимодействия и молекула становится плоской.
Плотность
0,7125 при 5 ° C (на 1 часть воды).
Плотность паров
1,93 (по отношению к 1 воздуху). Это означает, что он более плотный, чем воздух, и поэтому, если не будет токов, он не будет повышаться.
Показатель преломления
1,3625 при 290 ° С.
Получение циклоалканов
В промышленности циклоалканы получают несколькими способами:
В лабораторных условиях циклоалканы можно получить реакцией дегалогенирования дигалогеналканов.
Приложения
Сам по себе циклобутан не имеет другого применения, кроме как служить источником тепла; но его производные входят в сложные области органического синтеза с применением в фармакологии, биотехнологии и медицине. Не вдаваясь в чрезмерно сложные структуры, пенитремы и грандизол являются примерами циклобутанов.
Циклобутаны обычно обладают свойствами, которые полезны для метаболизма бактерий, растений, морских беспозвоночных и грибов. Они биологически активны, поэтому их использование очень разнообразно, и их трудно определить, поскольку каждый из них оказывает свое особое воздействие на определенные организмы.
Грандисол, например, представляет собой феромон долгоносика (разновидность жука). Выше и, наконец, показана его структура, рассматриваемая как монотерпен с квадратным основанием из циклобутана.
Растворимость
Нерастворим в воде, что неудивительно, учитывая его неполярную природу; но он слабо растворим в спиртах, эфире и ацетоне, которые являются менее полярными растворителями. Ожидается, что он будет растворим (хотя не сообщается) логически в неполярных растворителях, таких как четыреххлористый углерод, бензол, ксилол и т. Д.
Реакции замещения (обычные циклы (n=5-7)) – сходство с алканами
1. Галогенирование
Хлорирование циклогексана.
2. Нитрование
Нитрование циклогексана.
Реакции отщепления (обычные циклы (n=5-7)) – сходство с алканами
1. Дегидрирование
Эти соединения, подобно алканам, вступают в реакции дегидрирования.
Дегидрирования циклогексана (реакция Зелинского-Казанского) и его алкильных производных.
Реакции окисления
1. Реакциягорения
2. Окисление в присутствии катализатора.
При действии сильных окислителей (например, 50%-ной азотной кислоты) на циклогексан в присутствии катализатора образуется адипиновая (гександиовая) кислота.
Сравнение свойств
Столь резкое отличие в свойствах циклоалканов в зависимости от размеров цикла приводит к необходимости рассматривать не общий гомологический ряд циклоалканов, а отдельные их ряды по размерам цикла.
Например, в гомологический ряд циклопропана входят: циклопропан С3Н6, метилциклопропан С4Н8, этилциклопропан С5Н10 и т.д.
Циклоалканы
Реакции присоединения (малые циклы (n=3,4)) — сходство с алкенами
1. Гидрирование
Циклопропан, циклобутан довольно легко присоединяют водород, образуя соответствующие нормальные алканы.
2. Галогенирование
Малые циклы (С3 — С4) способны присоединять бром (хотя реакция и идет труднее, чем с пропеном или бутеном). С алкенами реакция идет при комнатной температуре, для циклоалканов необходимо нагревание.
3. Гидрогалогенирование
В реакцию присоединения с галогеноводородами опять де вступают только малые циклы при нагревании.
Присоединение к гомологам циклопропана происходит по правилу Марковникова.
Синтез
Циклобутан синтезируется путем гидрирования циклобутадиена, структура которого практически такая же, с той лишь разницей, что он имеет двойную связь; и поэтому он даже более реактивен. Это, пожалуй, самый простой синтетический путь его получения, или, по крайней мере, исключительно к нему, а не к производному.
Получение его в сырой нефти маловероятно, поскольку в конечном итоге он отреагирует таким образом, что разорвет кольцо и образует линейную цепь, то есть н-бутан.
Другой метод получения циклобутана — воздействие ультрафиолетового излучения на молекулы этилена, CH2= CH2, которые димеризуются. Эта реакция предпочтительна фотохимически, но не термодинамически:
Изображение выше очень хорошо суммирует сказанное в предыдущем абзаце. Если бы вместо этилена в одном были, например, любые два алкена, был бы получен замещенный циклобутан; или что то же самое, производное циклобутана. Фактически, этим методом было синтезировано много производных с интересными структурами.
Однако другие производные включают ряд сложных синтетических стадий. Поэтому циклобутаны (так называют их производные) являются объектом исследования для органических синтезов.
Ссылки
- Кэри Ф. (2008). Органическая химия. (Издание шестое). Мак Гроу Хилл.
- Грэм Соломонс, T.W .; Крейг Б. Фрайл. (2022). Органическая химия. (11th издание). Вайли.
- Википедия. (2022). Циклобутан. Получено с: en.wikipedia.org
- PubChem. (2022). Циклобутан. Получено с: pubchem.ncbi.nlm.nih.gov
- Пейрис Николь. (2022, 29 ноября). Физические свойства циклоалканов. Химия LibreTexts. Получено с: chem.libretexts.org
- Виберг Б. Кеннет. (2005). Циклобутанфизические свойства и теоретические исследования. Химический факультет Йельского университета.
- Клемент Фу. (н.д.). Циклобутаны в органическом синтезе. Получено с: scripps.edu
- Майерс. (н.д.). Синтез циклобутанов. Chem 115. Получено с: hwpi.harvard.edu
Температура плавления
-91 ° С.
Тепло образования
6,6 Ккал / моль при 25 ° C.
Точка воспламенения
50ºC в закрытом стакане.
Точка кипения
12,6 ° С. Следовательно, в холодных условиях с ней можно обращаться как с любой жидкостью; с той лишь деталью, что он будет очень летучим, а его пары по-прежнему представляют опасность, которую следует принимать во внимание.
Форма бабочки или морщинистая форма
Истинные конформации циклобутана показаны выше. В них уменьшаются угловые и крутильные напряжения; поскольку, как можно заметить, теперь не все атомы водорода затмеваются. Однако есть затраты энергии: угол его звеньев заостряется, то есть уменьшается с 90 до 88º.
Обратите внимание, что это можно сравнить с бабочкой, треугольные крылья которой состоят из трех атомов углерода; и четвертый, расположенный под углом 25º по отношению к каждому крылу. Двусторонние стрелки указывают на наличие равновесия между обоими конформерами. Как будто бабочка опускается и поднимается крыльями.
В производных циклобутана, с другой стороны, можно ожидать, что это колебание будет намного медленнее и пространственно затруднено.
Циклобутан в биологии и биотехнологии
Пентациклоанаммоксиевая кислота и ладдераны.
Несмотря на присущие деформации циклобутановой структуры она все же встречается в природе. Одним из примеров является необычная пентациклоанаммоксиевая кислота, который представляет собой ладдеран состоящий из 5 объединенных циклобутановых единиц.
Рисунок 8.
Это соединение обнаружено в бактериях в процессе выполнения процесса анаэробного окисления аммония, где оно образуется в клеточных оболочках, и как полагают, имеет защищитную функцию от токсического действия гидроксиламина и гидразина, участвующих в производстве азота и воды из нитрит ионов и аммиака. Некоторые родственные этой кислоте фенестраны также встречаются в природе.
Рисунок 9.
Циклобутановые фотодимеры образуются в результате фотохимических реакций, которые приводят к связью двойных $C = C$ связей пиримидинов. Димеры тимина (Т-Т димеры), которые образуются между двумя тиминами являются наиболее распространенными из фотодимерами. Такие фотодимеры легко вступают в процес нуклеотидной эксцизионной репарации ферментов. У большинства организмов они также могут быть восстановлены с помощью фотолиазиса.
Рисунок 10.
Карбоплатин (платины (II) циклобутан-1,1-дикарбоксилато)диамин) — производное от циклобутан-1,1-дикарбоновой кислоты, является популярным противоопухолевым лекарством.
Рисунок 11.
Энтальпия горения
-655,9 кДж / моль.
Этилциклобутан, структурная формула, химические свойства
1
H
1,008
1s1
2,2
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
4,0
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,93
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.