- Смотреть что такое циклогексан в других словарях:
- Номенклатура и изомерия циклоалканов
- Окисление циклогексана
- Получение циклоалканов
- Реакции замещения (обычные циклы (n=5-7)) – сходство с алканами
- Реакции окисления
- Физические свойства циклоалканов
- Химические свойства циклоалканов
- Циклогексен, структурная формула, химические свойства
Смотреть что такое циклогексан в других словарях:
Циклогексан — находится готовым в бакинской (Марковников), в восточно- (Юнг, Фортей) и западноамериканской (калифорнийской) нефти (Мабери и Гудзон), равно как в румынской (Пони) и галицийской (Фортей). Может быть получен восстановлением йодциклогексана C <sub>6</sub>H<sub>11</sub> J цинком и уксусной кисл. (Байер), цинком и соляной кислотой (Зелинский), соляной кислотою в спиртовом (СН <sub>3</sub>.ОН или C <sub>2</sub>H<sub>5</sub>.OH) растворе в присутствии цинк-палладиевой пары (Зелинский), цинком в водно-спиртовом растворе (Зелинский). Он же образуется при нагревании в метаксилольном растворе 1,6-дибромгексана: BrH <sub>2</sub>C.[CH<sub>2</sub>]<sub>4</sub>.CH<sub>2</sub> Br с мелко раздробленным натрием (Перкин мл.) и при гидрогенизации бензола водородом в присутствии мелко раздробленного никеля (Сабатье и Сендеренс). Для выделения из бакинской нефти фракцию 80 — 82° хлорируют, превращают С <sub>6</sub> Н <sub>11</sub> Сl действием HJ в C <sub>6</sub>H<sub>11</sub> J и затем последний восстановляют (Марковников). Чистый углеводород может быть получен только из синтетического кетогексаметилена (кетона пимелиновой кислоты, см.), переходя через циклогексанол С <sub>6</sub> Н <sub>11</sub> (ОН) и йодюр (Зелинский). Ц. плав. при 6,4° [Из бакинской нефти Марковникову удалось выделить Ц. с темп. плавл. — 11°; углеводород Юнга и Фортея плав. при 4,7°. Ц. плавится, следовательно, выше бензола (темп. плав. 5,4° Линебаргер), но кипит при одной с ним температуре (80,2° — Лугинин); уд. вес С <sub>6</sub> Η <sub>6</sub> — d<sub>4</sub><sup>20</sup> = 0,8779 (Брюль).] и кипит при 80,8 — 80,9°; его уд. вес d <sub>4</sub><sup>19,5</sup> = 0,7788; коэфф. светопреломления для линии <i>D </i> (натриевой) <i>n<sub>D</sub><sup>19,5</sup></i> = 1,4266; молекулярное лучепреломление МR <sub>2</sub> = 27,67 (теория для Ц. — 27,62) [Зелинский], запах не неприятный, но не напоминающий бензола. Крепкая азотная кислота растворяет Ц. на холоду, окисляя его (Зелинский) и образуя при нагревании адипиновую кислоту — НО <sub>2</sub> С.[СН <sub>2</sub>]<sub>4</sub>.СО <sub>2</sub> Н (Марковников, Аскан); при нагревании (150 — 200°) Ц. дает с бромом симм. 1,2-4,5-тетрабромбензол: C<sub>6</sub>H<sub>12</sub> 7Вr <sub>2</sub> = C<sub>6</sub>H<sub>2</sub>Br<sub>4</sub> 10НВr (Зелинский). Несмотря на замкнутое строение, Ц. по химическому характеру гораздо энергичнее парафинов (ср. Полиметиленовые углеводороды) и, как показывает образование С <sub>6</sub> Н <sub>2</sub> Вr <sub>4</sub>, может быть непосредственно связан с бензолом. Из циклических изомеров Ц. известны: метилциклопентан и два триметилциклопропана. <i>Метилциклопентан </i> заключается в порции, кипящей при 69° — 71°, кавказской (Марковников), пенсильванской (Юнг) и калифорнийской нефти (Мабери и Гудзон [Последние неправильно называют свой углеводород гексаметиленом.]); он образуется при гидрогенизации йодистым водородом бензола (Вреден, Знатович, Кижнер; ср. Нафтены), почему и принимался вначале за гексагидробензол, т. е. за Ц.; изомерия выяснена работами Кижнера, Перкина мл., Зелинского и Марковникова с М. Коноваловым; он может быть еще получен восстановлением HJ-ом анилина (Кижнер), циклогексанона при 230° (Зелинский) и (при 210° — 250°) аминопентаметилена (Марковников); β-йодметилциклогексан дает его при действии цинк-медной пары (Марковников). Ц. — жидок, кип. при 71,5 — 72,5°, <i>d<sub>4</sub><sup>21</sup></i> = 0,7501 (Зелинский), <i>d</i><sub>0</sub><sup>20</sup> = 0,7489 (Кижнер), пахнет подобно бензину, сильно реагирует с красной азотной кислотой, образуя глутаровую, уксусную, муравьиную и янтарную кислоты (Кижнер); при нагревании со слабой азотной кислотой (d = l,075) при 100° образует третичный мононитропродукт, кипящий при 180 — 18 3° (Кижнер; ср. Нитронафтены), а при кипячении с обыкновенной азотной кислотой образуется небольшое количество нитробензола (Аскан [Так как Аскан нитровал погон нефти, кип. при 70°, то, вероятно, что нитробензол у него явился вследствие примеси бензола (Марковников).]) <i>Триметилциклопропан асимметричный</i> (1,1,2-триметилтриметилен) получается (Зелинский и Целиков) из диацетонамина (CH <sub>3</sub>)<sub>2</sub>C(NH<sub>2</sub>).CH<sub>2</sub>.CO.CH<sub>3</sub>, переходя через гликоль (СН <sub>3</sub>)<sub>2</sub>.С(ОН).СН <sub>2</sub>.СH(ОН).СН <sub>3 </sub> и бромюр (СН <sub>3</sub>)<sub>2</sub>. CBr. CH<sub>2</sub>.СНВr.СН <sub>3 </sub> и действуя на последний цинковой пылью в присутствии 80%-го спирта (метод Густавсона — см. Циклопропан). жидок. кип. 56 — 57°; уд. вес <i>d</i><sub>4</sub><sup>19,5</sup> = 0,6822. Марганцовокалиевой солью (1%-м раствором) окисляется очень медленно; с бромом реагирует легко; прямые опыты показали, что он не тождествен с углеводородами, получающимися при действии КОН на хлорюр пинаколинового спирта и описанными Кутюрье, как один углеводород формулы (СН <sub>3</sub>)<sub>3</sub> C:СН:СН, с темп. кипения 57 — 59°. <i>Триметилциклопропан симметричный</i> (1,2,3 триметилтриметилен) получен тем же методом Густавсона (Зелинский и Целиков) из метилацетилацетона СН <sub>3</sub>.СО.СН(СН <sub>3</sub>).СО.СН <sub>3 </sub> через гликол и бромюр. кип. при 65 — 66°; уд вес <i>d</i><sub>4</sub><sup>72</sup><i> </i> = 0,6921, с 1%-м раствором КМnО <sub>4</sub> реагирует очень медленно, но каждая капля сухого брома реагирует с углеводородом с треском, причем заметно выделение бромистого водорода. <i> А. И. Горбов.</i> Δ <i>. </i><br><br><br>… смотреть
Номенклатура и изомерия циклоалканов
Названия циклоалканов формируются путем добавления приставки «цикло-» к названию алкана с соответствующим числом:
циклопропан, циклобутан и т.д.
Как и у алканов, атомы углерода циклоалканов находятся в sp3 гибридизации.
Помимо изомерии углеродного скелета, для циклоалканов характерна межклассовая изомерия с алкенами и пространственная геометрическая изомерия в виде
существования цис- и транс-изомеров.
Окисление циклогексана
В основе современных представлений о реакциях окисления углеводородов молекулярным (несвязанным) кислородом лежит перекисная теория, сформулированная в 1896 – 1897 г.г. А.Н. Бахом и Энглером. Согласно этой теории кислород присоединяется к окисляемому соединению в виде молекулы О2, а не в виде атома О, так что при окислении не происходит диссоциации молекулы кислорода О2 → 2О, требующей подвода большого количества энергии, равной 117 ккал/ моль.
В условиях окисления углеводородов молекула кислорода переходит из стабильного состояния О = О в активированное – О – О –. Активированная молекула кислорода присоединяется к молекуле органического соединения R-Н с образованием гидроперекисей типа R-О-О-Н. Для гидроперекисей характерна нестабильность, вследствие чего они в процессе окисления могут претерпевать многочисленные превращения.
Основные закономерности процесса окисления молекулярным кислородом не могут быть объяснены на основе представлений о молекулярном и ионном механизме. Поэтому современные представления о механизме процессов окисления тесно связаны с теорией цепных реакций, разработанной Н.Н. Семеновым и его школой. В основе цепной теории лежит представление о свободных радикалах и их превращениях. Свободные радикалы отличаются от молекул наличием не спаренных электронов. Это обуславливает их высокую химическую активность и нестабильность.
Процесс окисления состоит из четырех основных стадий:
1. зарождение цепи, приводящее к образованию первичных свободных радикалов;
2. продолжение цепи (образование промежуточной гидроперекиси R-О-О-Н);
3. разветвление цепи в результате распада гидроперекиси R-О-О-Н на свободные радикалы;
4. обрыв цепи с рекомбинацией радикалов и образованием молекулярных продуктов.
В качестве первичных продуктов окисления циклогексана по радикально-цепному механизму образуются перекиси, главным образом, гидроперекись циклогексила.
Эта перекись нестойка при температуре реакции и разлагается с образованием циклогексанона и циклогексанола, а также побочных продуктов.
Ускорению разложения перекисей способствует катализатор. При дальнейшем окислении первичных продуктов происходит разрыв углеродного кольца, что ведет к образованию кислот: адипиновой, глутаровой, оксикапроновой, масляной, валериановой, пропионовой, уксусной, муравьиной и наряду с ними – двуокиси углерода и воды.
Состав побочных продуктов очень сложен.
При повышении температуры реакции до 155-156 оС увеличивается в продуктах окисления содержание монокарбоновых кислот (муравьиной, уксусной, пропионовой, валериановой, масляной и капроновой) и уменьшается содержание дикарбоновых кислот (щавелевой, малоновой, янтарной, глутаровой, адипиновой и др.).
При температуре реакции ниже 145 оС образуется больше дикарбоновых кислот, чем монокарбоновых кислот. Кислоты реагируют с циклогексанолом или низшими спиртами, которые получаются в процессе окисления циклогексана (бутанол, пентанол и др.) с образованием сложных эфиров: циклогексилформиата С7Н12О2, циклогексилпропионата С9Н16О2, циклогексилбутирата С10Н18О2, дициклогексиладипината С18Н30О4 и других эфиров. Скорость образования эфиров изменяется в зависимости от длины цепи и концентрации реагентов. При окислении циклогексана образуется много побочных продуктов вследствие того, что в реакции одновременно участвует большое количество радикалов, которые реагируют друг с другом. В продуктах реакции имеются также нейтральные высококипящие углеводородные соединения (дициклогексил, дициклогексиловый эфир и др.).
Некоторые примеси в циклогексане и в воздухе вредно отражаются либо на процессе окисления, либо могут повлиять на качество капролактама. К таким примесям, прежде всего, относятся фенол и н-гептан. Фенол, который может попасть в систему с воздухом, дезактивирует радикалы и, тем самым, тормозит реакцию окисления циклогексана.
Н-гептан, который может находиться в циклогексане, окисляется с образованием гептанона-2. То же самое происходит с метилциклогексаном. Температура кипения гептанона-2 очень близка к температурам кипения циклогексанона и циклогексанола. Поэтому при ректификации очень трудно циклогексанол и циклогексанон отделить от гептанона-2.
Продукты окисления окисляются легче, чем циклогексан. Количество побочных продуктов возрастает с ростом степени превращения циклогексана. По этой причине степень превращения принимается низкой и составляет 4-5%. Остальное количество циклогексана не подвергается превращению. Непрореагировавший циклогексан отгоняется из реакционной смеси и снова возвращается в процесс окисления. Общий выход полезных продуктов составляет не более 78% от превращенного циклогексана.
Влияние давления на реакцию окисления циклогексана невелико. Рабочее давление поддерживается равным 0,7-0,9 МПа (7-9 кгс/см2).
При указанном давлении обеспечивается автотермичность процесса. Это означает, что тепло реакции будет отводиться за счет испаряющегося циклогексана без внешнего отвода тепла.
Повышение температуры до 180-200 оС и одновременное снижение времени пребывания реагентов в зоне реакции приводит к увеличению скорости реакции и к росту выхода полезных продуктов – циклогексанона и циклогексанола – за счет снижения образования моно — и дикарбоновых кислот. В качестве катализатора в данном процессе применяется нафтенат кобальта, растворенный в свежем циклогексане. Для растворения катализатора необходимо применять только свежий циклогексан, применение оборотного циклогексана недопустимо, т.к. в нем присутствуют органические кислоты и вода. Кислоты реагируют с солями кобальта и выводят его из реакции. Например, кобальт может переходить в нерастворимое состояние в виде адипата кобальта. С водой кобальт образует комплексы, которые катализируют процессы образования побочных продуктов (смол).
Количество смол в значительной степени зависит также от количества подаваемого катализатора, причем, часть смолы не выводится с продуктами реакции (оксидатом), а остается на стенках реакторов окисления и трубопроводов. Образование смол происходит за счет обрыва цепи при гибели радикалов на стенках оборудования и вследствие каталитического действия металлов, входящих в состав сплава, из которого изготовлено оборудование. Смола представляет собой вещество красно-коричневого цвета, рыхлое, состоящее из продуктов конденсации органических веществ; зольный остаток состоит, в основном, из окислов кобальта и железа.
В процессе окисления катализатор (нафтенат кобальта) выполняет три функции:
1. инициирование;
2. ингибирование ;
3. регулирование состава продуктов.
Инициирование реакционных цепей в каталитическом процессе связано со способностью кобальта изменять свою валентность. Ион кобальта Со2 окисляется гидроперекисью до Сo3 , а Сo3 восстанавливается альдегидом, спиртом или кетоном до Сo2 . В результате этих двух реакций образуются новые свободные радикалы. С увеличением глубины окисления возрастает количество продуктов, обладающих восстановительной способностью (альдегидов, спиртов и др.), а концентрация трехвалентного кобальта быстро уменьшается. Металл, который находится в двухвалентном состоянии, может реагировать не только с молекулярными продуктами окисления, но и со свободными радикалами, приводя их к гибели.
Способность катализатора ингибировать процесс менее ярко выражена, чем способность к инициированию, и проявляется лишь при относительно высоких концентрациях катализатора.
В связи с этим существует оптимальная концентрация катализатора. При меньшей концентрации катализатор с недостаточной скоростью инициирует процесс, а при большей проявляются его ингибирующие свойства. Величина оптимальной концентрации зависит от условий процесса.
Процесс окисления осуществляется в двух реакторах. Каждый реактор имеет две секции. Все четыре секции реакционного объема работают последовательно по жидкой фазе и параллельно по газовой фазе – воздуху. Отличительной особенностью процесса является секционирование реактора окисления, что приближает процесс окисления к режиму идеального вытеснения.
Проведение процесса окисления в режиме, близком к идеальному вытеснению, позволяет увеличить выход промежуточных продуктов – циклогексанона, циклогексанола, которые в данном процессе являются целевыми.
Помимо этого, секционирование дает возможность регулировать конверсию процесса подачей определенного количества воздуха в каждую секцию.
Недостатком процесса является то, что в оборотном (циркуляционном) циклогексане находится большое количество циклогексанола, циклогексанона и воды. Наличие этих примесей приводит к образованию смол, накоплению их в аппаратурном узле окисления, что приводит к снижению выхода полезных продуктов.
Для уменьшения количества воды в циклогексане, поступающем в реактор, предусмотрен вывод водного слоя из сборника флегмы после колонны отгонки циклогексана, а также отделение воды от циклогексана перед подачей в реактор.
Реакционная смесь после реакторов окисления подвергается обработке водным раствором едкого натра. При этом одновременно происходят процессы нейтрализации кислот, разложения гидроперекисей и частичного омыления эфиров.
Эти процессы более интенсивно проходят при высокой температуре.
Оптимальной является температура 143-160 оС, поэтому необходимо повысить давление в системе нейтрализации до 16-17 кгс/см2.
Повышение давления необходимо для предотвращения вскипания азеотропной смеси циклогексан-вода, то есть для обеспечения протекания указанных процессов в жидкой фазе.
Для сокращения расхода щелочи на нейтрализацию кислот, образующихся в процессе окисления циклогексана, предусмотрена возможность предварительного извлечения кислот промывкой реакционной жидкости технологическим конденсатом.
Непрореагировавший циклогексан от продуктов окисления отгоняется на ректификационной колонне и возвращается в процесс окисления.
Получение циклоалканов
Низшие циклоалканы получают путем их синтеза из дигалогенпроизводных алканов:
Средние циклоалканы получают следующим способом:
Br-(CH2)4-Br 2LiHg = C4H8 2LiBr Hg;
Br-(CH2)5-Br 2LiHg = C5H10 2LiBr Hg;
Реакции замещения (обычные циклы (n=5-7)) – сходство с алканами
1. Галогенирование
Хлорирование циклогексана.
2. Нитрование
Нитрование циклогексана.
Реакции отщепления (обычные циклы (n=5-7)) – сходство с алканами
1. Дегидрирование
Эти соединения, подобно алканам, вступают в реакции дегидрирования.
Дегидрирования циклогексана (реакция Зелинского-Казанского) и его алкильных производных.
Реакции окисления
1. Реакциягорения
2. Окисление в присутствии катализатора.
При действии сильных окислителей (например, 50%-ной азотной кислоты) на циклогексан в присутствии катализатора образуется адипиновая (гександиовая) кислота.
Сравнение свойств
Столь резкое отличие в свойствах циклоалканов в зависимости от размеров цикла приводит к необходимости рассматривать не общий гомологический ряд циклоалканов, а отдельные их ряды по размерам цикла.
Например, в гомологический ряд циклопропана входят: циклопропан С3Н6, метилциклопропан С4Н8, этилциклопропан С5Н10 и т.д.
Циклоалканы
Физические свойства циклоалканов
Низшие циклоалканы (С3-С4) – газообразные вещества, средние (С5-С11) – жидкости, а высшие (> C12)
– твердые вещества. Циклоалканы практически нерастворимы в воде. С ростом молекулярной массы, температура плавления циклоалканов увеличивается.
Химические свойства циклоалканов
Для малых циклоалканов (С3-С4) характерны реакции присоединения, протекающие по радикальному механизму, в результате чего может происходить даже разрыв цикла. К таким реакциям относят галогенирование, которое проводят под действием УФ-излучения и при нагревании.
C3H6 Cl2 → C2H5-Cl HCl (t < 1003H6 Cl2 → Cl-CH2-CH2-CH2-Cl H2↑ (t > 1003H6 Cl2 → Cl-CH2-CH2-CH2-Cl H2↑ (t > 100
Для малых циклов характерны реакции гидрирования, в результате которых образуются алканы. Условием протекания реакции служит нагрев и присутствие катализатора – никеля или платины:
C4H8 H2 → CH3-(CH2)2-CH3.
Для циклоалканов среднего размера (С5-С6) характерны реакции замещения, протекающие по радикальному механизму, например, галогенирование. В этом случае получают моногалогенпроизводные циклоалканов. Однако, можно получить и полигалогенпроизводные циклоалканов:
C5H10 Br2 → C5H9-Br HBr;
C6H12 Br2 → C6H11-Br HBr;
C6H12 6Cl2 → C6H6Cl6 6HCl.
Окисление циклоалканов приводит к образованию двухосновных карбоновых кислот, циклических спиртов или циклических кетонов:
Для циклоалканов характерны реакции изомеризации:
С3Н5-СН3 ↔ С4Н8;
С3Н5-СН2 – OH ↔ C4H6 H2O (kat = H2SO4).
Реакция дегидрирования циклогексана и его производных – один из способов получения бензола и его гомологов (реакция протекает при нагревании и в присутствии катализатора – платины):
Циклогексен, структурная формула, химические свойства
1
H
1,008
1s1
2,2
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
4,0
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,93
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.