Азот [1970 Кирюшкин Д.М., Полосин В.С. — Методика обучения химии]

Азот [1970 Кирюшкин Д.М., Полосин В.С. - Методика обучения химии] Кислород

Аммиак, его состав и свойства

При изучении этой темы необходимо: 1) рассказать о свойствах аммиака на базе ионной теории и дать сравнительную характеристику азота, кислорода, фтора; 2) сформировать понятие о радикале аммония.

Аммиак можно рассматривать в таком порядке: физические свойства, растворимость в воде, химические свойства, характер водного раствора, окисление аммиака, нахождение в природе, применение, получение. Для ознакомления учащихся, с физическими свойствами аммиака учитель может показать сосуд, наполненный газом, и дать его важнейшие физические константы.

Что аммиак тяжелее водорода и легче воздуха, учащиеся узнают на основе закона Авогадро, сопоставляя молекулярную массу аммиака с водородом и средней молекулярной массой воздуха. Можно выставить на столы учащихся пробирки, наполненные аммиаком и закрытые каучуковыми пробками, и предложить учащимся осторожно понюхать этот газ.

Учитель при этом проверит, умеют ли учащиеся нюхать неизвестный им газ. Следует также сообщить о легкой сжижаемости аммиака, хорошую растворимость аммиака в воде можно показать в том же приборе, каким пользовались при демонстрации растворимости хлористого водорода.

Важно отметить, что растворение аммиака является химическим взаимодействием аммиака с водой. Для этого демонстрируют опыт, из которого видно, что при растворении аммиака в воде образуется щелочь и этот процесс сопровождается выделением теплоты (рис. 77).

Большем цилиндром с аммиаком накрывают пробирку, обернутую фильтровальной бумагой, смоченной раствором фенолфталеина. Пробирку соединяют с узкой стеклянной трубкой, заполненной подкрашенным раствором. При соприкосновении с аммиаком фильтровальная бумага приобретает малиновую окраску, а подкрашенная вода вследствие выделения теплоты под действием расширяющегося воздуха поднимается вверх, что хорошо видно по сравнению с первоначальным ее уровнем, отмеченным резиновым колечком.

NH3 H2O=NH4 OH-

Присутствие гидроксильных ионов обнаруживают при помощи индикатора. Взаимодействие аммиака с водой следует рассматривать как обратимый процесс, направление которого зависит от температуры и концентрации раствора. Чтобы показать выделение аммиака при нагревании его раствора, можно проделать следующий опыт: в маленькой колбочке или в пробирке, закрытой пробкой с газоотводной трубкой, нагревают концентрированный раствор аммиака, собирают выделяющийся газ в пробирке и обнаруживают его по запаху или при помощи лакмусовой бумажки.

Для дальнейшего изучения свойств аммиака и иона аммония следует ознакомить учащихся с действием аммиака на кислоты. Можно получить хлористый аммоний соединением газообразного аммиака и хлористого водорода. Для этого рекомендуется набрать аммиак в сухой большой цилиндр, а хлористый водород — в другой такой же цилиндр.

Затем цилиндр с аммиаком, перевернутый вверх дном, поставить на цилиндр с хлористым водородом и убрать стекла, закрывавшие их. Оба цилиндра наполняются белыми клубами хлористого аммония. Когда «дым» осядет на стенки и дно сосуда, этот осадок надо снять и сравнить с образцом хлористого аммония. Уравнение этой реакции следует записать так:

NH3 HCl=NH4Cl

Сульфат и нитрат аммония получают, пропуская аммиак через кислоты, находящиеся в U-образных трубках, охлаждаемых водой. Уравнения этих реакций надо записать так, чтобы видно было образование иона аммония NH4 путем присоединения к молекуле аммиака иона водорода:

NH3 H NО3-= NH4 NО3-

Следует показать, что с кислотами взаимодействует не только свободный аммиак, но и его водные растворы. В три большие колбы наливают по 20 мл водного раствора аммиака. В каждую из них вставляют воронки для предосторожности, так как при взаимодействии аммиака с кислотами выделяется много теплоты.

Затем во все колбы наливают по одной пробирке концентрированных кислот (соляную, серную, азотную). Там, где оказалась соляная кислота, слышится легкое шипение — выделяется хлористый аммоний; с азотной кислотой реакция идет более бурно: жидкость разбрызгивается, стенки колбы покрываются белым налетом нитрата аммония; в колбе с серной кислотой слышится треск, колба покрывается белыми кристаллами сульфата аммония.

Большое теоретическое и практическое значение имеют реакции окисления аммиака в чистом кислороде и в воздухе в присутствии катализатора при различных условиях. На рисунке 78 изображен прибор, которым можно воспользоваться для демонстрации горения аммиака в кислороде.

Соли аммония. Когда рассмотрены состав и свойства аммиака, появляется возможность разобрать состав и свойства солей аммония, научиться распознавать их, а также ознакомить учащихся с применением важнейших из них.

Для закрепления этих знаний следует сравнить несколько солей аммония с солями одновалентных металлов тех же кислот, обратить внимание на то, что в солях аммония в роли металла выступает группа атомов, имеющая один положительный заряд. При рассмотрении общих химических свойств солей аммония необходимо изучить характерные для них реакции обмена.

С этой целью можно предложить учащимся проделать следующие опыты. В три пробирки, содержащие растворы хлорида аммония, сульфида аммония и нитрата аммония, приливают небольшие количества концентрированного раствора едкого натра, нагревают осторожно пробирки и по запаху обнаруживают выделение аммиака.

1. Подействовать раствором нитрата серебра на растворы хлорида натрия и хлорида аммония (реакция на хлор-ион).

2. Подействовать раствором хлорида бария на растворы сульфата натрия и сульфата аммония (реакция на сульфат-ион).

Выполнение описанных выше опытов и разбор уравнений реакций являются хорошими упражнениями в применении ионной теории при изучении реакций обмена. На этих примерах учащиеся вновь убеждаются в том, что обменные реакции, происходящие между солями в растворах, обусловлены взаимодействием ионов.

Для закрепления приобретенных знаний и умений полезно предложить учащимся две-три экспериментальные задачи такого содержания:

1. Доказать, что данная соль есть соль аммония.

2. Найти среди других солей хлорид аммония.

3. Доказать, что данная соль есть сульфат аммония.

4. Доказать, что данная соль есть хлорид аммония.


При решении этих задач учащиеся одновременно упражняются и в составлении уравнений ионных реакций. Изучая с учащимися соли аммония, можно также ознакомить их с термической диссоциацией хлорида и карбоната аммония.

Опыт разложения хлорида аммония при нагревании можно продемонстрировать (рис. 79). В середине стеклянной трубки длиной 10-15 см делают пробку из асбестовой ваты (толщиной около 1,5 см). Для этого с одного конца трубки до ее середины вставляют деревянную палку, насыпают на нее асбестовую вату, а с другого конца утрамбовывают другой палочкой.

Затем с одной стороны от полученной асбестовой пробки насыпают около 2 г нашатыря и трубку плотно закрывают резиновой пробкой. С другой стороны кладут влажную красную лакмусовую бумажку или фенолфталеиновую. Сначала нагревают часть трубки ближе к резиновой пробке (чтобы на ней не оседал нашатырь), а затем сильно нагревают нашатырь.

При этом создается избыточное давление, и через пористую асбестовую пробку с различной скоростью пойдут аммиак и хлористый водород. Так как через эту перегородку быстрее диффундирует аммиак, то довольно быстро лакмусовая бумажка синеет (а фенолфталеиновая розовеет).

После остывания трубки вынимают резиновую пробку и помещают синюю лакмусовую бумажку в ту часть трубки, где находился хлорид аммония (до соприкосновениях асбестом). Бумажка краснеет, так как хлористый водород задерживается со стороны асбестовой пробки.

Производство аммиака. Для понимания сущности химического производства, как известно, нужно рассмотреть и усвоить химические процессы, лежащие в его основе. Поэтому ознакомление с производством аммиака нужно начинать не с подготовительных процессов получения азотноводородной смеси, а с основного процесса — синтеза аммиака.

При этом обращается особое внимание на смещение химического равновесия так, чтобы учащиеся сознательно могли ориентироваться в условиях прохождения реакций. Возникает вопрос: могут ли учащиеся средней школы без знания принципа Ле-Шателье осознать все эти сложные процессы?

О влиянии температуры на окисление сернистого газа учащиеся уже знают из темы «Сера». Поэтому учитель отмечает, что при синтезе аммиака наблюдается такая же закономерность > (более низкие температуры благоприятствуют выходу продукта). В случае равновесных систем, когда при химической реакции выделяется теплота, для большего выхода продукта необходимы невысокие температуры, так как при сильном нагревании происходит разложение продукта реакции и равновесие смещается в сторону получения исходных продуктов.


О влиянии давления на смещение химического равновесия можно судить по уравнению реакции:

Известно, что при повышении давления или уменьшении объема увеличивается концентрация газов (возрастает число молекул в единице объема), поэтому при увеличении давления столкновения между молекулами будут более частыми. Очевидно, что частота этих столкновений между азотом и водородом начнет особенно усиливаться при увеличении давления (при одинаковом давлении в единице объема находятся 3 моля водорода и 1 моль азота, а аммиака только 2 моля).

Увеличение давления положительно сказывается на смещении равновесия в сторону образования аммиака. Итак, в случае, если равновесные системы сопровождаются уменьшением объемов газов, то увеличение давления благоприятствует смещению химического равновесия в сторону образования газов с меньшим объемом.

Разбирая эти уравнения реакций, учащиеся отмечают, что есть равновесные системы, где нет изменения объемов. Поэтому увеличение давления в одинаковой степени влияет как на скорость прямой, так и на скорость обратной реакции, т. е. давление не оказывает положительного влияния на выход продукта.

Про кислород:  Тренажер задания 31 по химии азота | CHEMEGE.RU


Отмечается, что катализаторы одинаково влияют на скорость прямой и обратной реакции (они не влияют на смещение химического равновесия), но с применением катализатора быстрее наступит момент химического равновесия.

При изучении самого производства аммиака нужно вначале рассмотреть весь процесс по стадиям: а) подогрев сжатой азотноводородной смеси; б) прохождение ее над катализатором; в) охлаждение газовой смеси после синтеза аммиака; г) схема теплообмена и охлаждение колонны.

После этого можно рассмотреть схему устройства и действия колонны синтеза, используя таблицу с изображением этого аппарата.

При ознакомлении с условиями превращения азотноводородной смеси в аммиак нужно обратить особое внимание на огромные трудности, возникающие перед технологами. Ведь синтез аммиака выгоднее вести при высокой температуре, близкой к температуре размягчения стали, и при большом давлении.

Прежде чем перейти к рассмотрению подготовки азотноводородной смеси для синтеза аммиака, необходимо сообщить учащимся, что катализатор, как и в сернокислотном производстве, действует лишь при условии, что в азотноводородной смеси нет таких примесей, как сероводород и сернистые соединения. Снижает действие катализатора и наличие в этой смеси кислорода, окиси углерода, водяных паров.

Из способов получения водорода можно остановиться на электролизе воды, отметив при этом, что проблема получения кислорода становится весьма актуальной, а при электролитическом способе получения водорода кислород является побочным продуктом. Так как учащиеся к этому времени ознакомились с теорией электролитической диссоциации, то представляется возможным рассмотреть схему электролитического разложения воды с использованием в качестве электролита едкого кали.

Следует рассмотреть получение водорода из водяного газа и отметить следующее:

1. При сжигании угля в смеси воздуха с водяным паром в газогенераторах может быть получена смесь газов, содержащая водород, азот, окись углерода и др.

2. Применяя различные способы очистки, можно получить для синтеза аммиака смесь только двух газов — азота и водорода.

3. Процесс получения этой смеси ведут так, что между количествами водорода и азота устанавливают отношение 3 моля водорода на 1 моль азота.


В порядке внеклассной работы можно предложить отдельным учащимся более подробно ознакомиться со способами получения азотноводородной смеси и составить соответствующие производственные схемы.

Аммиак, химические свойства, получение

1

H

ВодородВодород

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

ГелийГелий

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

ЛитийЛитий

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

БериллийБериллий

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

БорБор

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

УглеродУглерод

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

АзотАзот

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

КислородКислород

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

ФторФтор

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

НеонНеон

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

НатрийНатрий

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

МагнийМагний

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

АлюминийАлюминий

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

КремнийКремний

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

ФосфорФосфор

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

СераСера

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

ХлорХлор

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

АргонАргон

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

КалийКалий

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

КальцийКальций

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

СкандийСкандий

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

ТитанТитан

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

ВанадийВанадий

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

ХромХром

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

МарганецМарганец

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

ЖелезоЖелезо

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

КобальтКобальт

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

НикельНикель

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

МедьМедь

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

ЦинкЦинк

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

ГаллийГаллий

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

ГерманийГерманий

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

МышьякМышьяк

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

СеленСелен

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

БромБром

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

КриптонКриптон

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

РубидийРубидий

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

СтронцийСтронций

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

ИттрийИттрий

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

ЦирконийЦирконий

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

НиобийНиобий

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

МолибденМолибден

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

ТехнецийТехнеций

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

РутенийРутений

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

РодийРодий

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

ПалладийПалладий

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

СереброСеребро

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

КадмийКадмий

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

ИндийИндий

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

ОловоОлово

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

СурьмаСурьма

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

ТеллурТеллур

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

ИодИод

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

КсенонКсенон

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

ЦезийЦезий

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

БарийБарий

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

ЛантанЛантан

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

59

Pr

ПразеодимПразеодим

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

НеодимНеодим

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

ПрометийПрометий

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

СамарийСамарий

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

ЕвропийЕвропий

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

ГадолинийГадолиний

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

ТербийТербий

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

ДиспрозийДиспрозий

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

ХольмийХольмий

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

ЭрбийЭрбий

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

ТулийТулий

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

ИттербийИттербий

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

ЛютецийЛютеций

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

ГафнийГафний

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

ТанталТантал

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

ВольфрамВольфрам

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

РенийРений

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

ОсмийОсмий

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

ИрридийИрридий

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

ПлатинаПлатина

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

ЗолотоЗолото

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

РтутьРтуть

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

ТаллийТаллий

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

СвинецСвинец

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

ВисмутВисмут

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

ПолонийПолоний

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

АстатАстат

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

РадонРадон

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

ФранцийФранций

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

РадийРадий

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

АктинийАктиний

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

ТорийТорий

232,04

f-элемент

Серый мягкий металл

91

Pa

ПротактинийПротактиний

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

УранУран

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

НептунийНептуний

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

ПлутонийПлутоний

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

АмерицийАмериций

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

КюрийКюрий

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

БерклийБерклий

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

КалифорнийКалифорний

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

ЭйнштейнийЭйнштейний

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

ФермийФермий

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

МенделевийМенделевий

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

НобелийНобелий

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

ЛоуренсийЛоуренсий

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

РезерфордийРезерфордий

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

ДубнийДубний

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

СиборгийСиборгий

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

БорийБорий

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

ХассийХассий

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

МейтнерийМейтнерий

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

ДармштадтийДармштадтий

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Химические свойства

Азотная кислота – это сильная кислота. За счет азота со степенью окисления 5 азотная кислота проявляет сильные окислительные свойства.

1. Азотная кислота практически полностью диссоциируетв водном растворе.

 HNO3 → H NO3–

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами. 

Например, азотная кислота взаимодействует с оксидом меди (II):

CuO     2HNO3   →   Cu(NO3)2     H2O

Еще пример: азотная кислота реагирует с гидроксидом натрия:

HNO3      NaOH   →   NaNO3     H2O

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов). 

Например, азотная кислота взаимодействует с карбонатом натрия:

2HNO3     Na2CO3   →  2NaNO3     H2O     CO2

4. Азотная кислота частично разлагается при кипении или под действием света:

4HNO3  →   4NO2      O2      2H2O

5.Азотная кислота активно взаимодействует с металлами. При этом  никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот 5.

металл HNO3 → нитрат металла вода газ (или соль аммония)

С алюминием, хромом и железомна холодуконцентрированная HNO3  не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления 4:

Fe       6HNO3(конц.)  →   Fe(NO3)3      3NO2     3H2O

 Al      6HNO3(конц.)   →  Al(NO3)3      3NO2     3H2O

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 :  3 (по объему):

HNO3         3HCl      Au   →   AuCl3      NO      2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

4HNO3(конц.)        Cu   →    Cu(NO3)2        2NO2      2H2O

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

10HNO3          4Ca   →    4Ca(NO3)2        2N2O      5H2O

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

8HNO3 (разб.)          3Cu   →    3Cu(NO3)2        2NO      4H2O

С активными металлами (щелочными и щелочноземельными), а также оловоми железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

12HNO3(разб)        10Na   →    10NaNO3       N2       6H2O

При взаимодействии кальцияи магнияс азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

10HNO3          4Ca    →   4Ca(NO3)2        2N2O      5H2O

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

10HNO3            4Zn   →    4Zn(NO3)2        NH4NO3      3H2O

Таблица. Взаимодействие азотной кислоты с металлами.

Азотная кислота
КонцентрированнаяРазбавленная
с Fe, Al, Crс неактивными металлами и металлами средней активности (после Al)с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al)с металлами до Al в ряду активности, Sn, Fe 
пассивация при низкой Тобразуется NO2образуется N2O образуется NO образуется N2
Про кислород:  Тепловой эффект химической реакции — что это?

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3  обычно восстанавливается до NO  или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например, азотная кислота окисляет серу, фосфор, углерод, йод:

6HNO3           S     →   H2SO4      6NO2        2H2O

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

5HNO3          P   →    H3PO4        5NO2        H2O

5HNO3          3P         2H2O   →    3H3PO4        5NO

Видеоопытвзаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

4HNO3         C   →   CO2        4NO2        2H2O

Видеоопытвзаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

10HNO3      I2  →   2HIO3      10NO2       4H2O

7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др.

Например, азотная кислота окисляет оксид серы (IV):

2HNO3        SO2  →   H2SO4        2NO2

Еще пример: азотная кислота окисляет йодоводород:

6HNO3      HI   →  HIO3      6NO2      3H2O

Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.

3С        4HNO3   →    3СО2       4NO       2H2O

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты. 

Например, сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

2HNO3        H2S     →  S        2NO2      2H2O

При нагревании до серной кислоты:

2HNO3        H2S     →  H2SO4         2NO2      2H2O

8HNO3         CuS   →   CuSO4       8NO2       4H2O

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

4HNO3         FeS   →   Fe(NO3)3     NO       S       2H2O

8. Азотная кислота окрашивает белкив оранжево-желтый цвет («ксантопротеиновая реакция»).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Химические свойства аммиака

1.В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:

:NH3      H2O    ⇄    NH4       OH–

Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20 градусах один объем воды поглощает до 700 объемов аммиака.

Видеоопытрастворения аммиака в воде можно посмотреть здесь.

2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.

Например, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):

NH3       H2SO4    →    NH4HSO4

2NH3      H2SO4    →   (NH4)2SO4

Еще один пример: аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:

NH3       H2O    CO2  →    NH4HCO3

2NH3      H2O    CO2    →   (NH4)2CO3

Видеоопытвзаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть  здесь.

В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония. 

NH3      HCl  →   NH4Cl

Видеоопытвзаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.

3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.

Например, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):

FeSO4   2NH3  2H2O  →  Fe(OH)2  (NH4)2SO4

4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.

Например, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):

4NH3      CuCl2  →  [Cu(NH3)4]Cl2

Гидроксид меди (II) растворяется в избытке аммиака:

4NH3       Cu(OH)2   → [Cu(NH3)4](OH)2

5.Аммиак горит на воздухе, образуя азот и воду:

4NH3        3O2    →  2N2      6H2O

Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:

4NH3        5O2    →    4NO     6H2O

6. За счет атомов водорода в степени окисления 1 аммиак может выступать в роли окислителя, например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.

Например, жидкий аммиак реагирует с натрием с образованием амида натрия:

2NH3       2Na   →   2NaNH2     H2

 Также возможно образование Na2NH,  Na3N.

При взаимодействии аммиака с алюминием образуется нитрид алюминия:

2NH3        2Al   →   2AlN      3H2

7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.

Например, аммиак окисляется хлором до молекулярного азота:

2NH3        3Cl2    →  N2      6HCl

Пероксид водорода также окисляет аммиак до азота:

2NH3        3H2O2    →  N2      6H2O

Оксиды металлов, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.

Например, оксид меди (II) окисляет аммиак:

2NH3       3CuO   →    3Cu      N2      3H2O

Химические свойства солей аммония

1. Все соли аммония – сильные электролиты, почти полностью диссоциируют на ионы в водных растворах:

NH4Cl   ⇄   NH4 Cl–

2.Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями, если в продуктах образуется газ, осадок или образуется слабый электролит.

Например, карбонат аммония  реагирует с соляной кислотой. При этом выделяется углекислый газ:

(NH4)2CO3      2НCl →   2NH4Cl Н2O CO2

Соли аммония реагируют с щелочами с образованием аммиака.

Например, хлорид аммония реагирует с гидроксидом калия:

NH4Cl        KOH   →   KCl       NH3       H2O

Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.

3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:

NH4Cl      Н2O    ↔   NH3 ∙ H2O      HCl

NH4           HOH    ↔   NH3 ∙ H2O         H

4. При нагревании соли аммония разлагаются. При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:

NH4Cl   →    NH3      HCl

NH4HCO3    →   NH3      CO2       H2O

  (NH4)2SO4    →   NH4HSO4     NH3

NH4HS  →   NH3      H2S

Если соль  содержит анион-окислитель, то разложение сопровождается  изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:

NH4NO2   →   N2        2H2O  

190 – 245° C:

NH4NO3  →   N2O      2H2O

При температуре 250 – 300°C:

 2NH4NO3  →   2NO       4H2O

При температуре выше 300°C:

2NH4NO3    →   2N2      O2       4H2O

Разложение бихромата аммония («вулканчик»).Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):

(NH4)2Cr2O7  →   Cr2O3       N2      4H2O

Окислитель –  хром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду.

Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив.

Видеоопытразложения дихромата аммония можно посмотреть здесь.

Оцените статью
Кислород