- Получение
- Большая советская энциклопедия (фт) | страница 4 | онлайн-библиотека
- Василиса явикс — интеллектуальная поисковая система. завтра уже здесь!
- Взаимодействие с металлами
- Из воды фтор вытесняет кислород, образуя фтористый водород, причем кислород отчасти выделяется в форме озона.получают of2 взаимодействием фтора с холодным разбавленным раствором щелочи, иногда реакцией na2o с фтором или воды с фтором в присутствии фторидов щелочных металлов. образуется of2 также при электролизе kh2f3, содержащих воду.
- Литература
- Открытие
- Получение
- Получение дифтордиоксида производится пропусканием электрических искр через эквимолярную смесь фтора и кислорода при низкой температуре (температура жидкого воздуха)
- Применение
- Систематическое название
- См. также
- Токсичность
- Упоминания в литературе
- Физические свойства
- Фторид кислорода(ii)
- Фторид кислорода, химические свойства, получение
- Фториды азота
- Фториды галогенов
- Фториды природные
- Фтористоводородная кислота
- Фтористый водород
- Химические свойства
- Взаимодействие с металлами
Получение
- Получение фторида кислорода(II) до сих пор проводят по так называемому «щелочному» способу пропусканием газообразного фтора в 2 % (0,5 нормальный) водный раствор гидроксида натрия (NaOH). Помимо фторида кислорода(II) в реакции происходит образование перекиси водорода и озона:
2F2 2NaOH = OF2 2NaF H2O
- Возможно также получение фторида кислорода(II) электролизом водного раствора HF.
- При горении воды в атмосфере фтора также частично образуется дифторид кислорода и пероксид водорода. Это происходит за счёт протекания радикальных реакций:
F2 H2O → 2HF O· — инициация свободных радикалов2O· → O2 — доминирующий процессO· H2O → H2O2O· F2 → OF2
Большая советская энциклопедия (фт) | страница 4 | онлайн-библиотека
Получить Ф. можно взаимодействием фтора с элементами, действием фтористого водорода на металлы и другими способами.
Широкое применение находят фтористый водород, фториды кислорода, фториды азота. Ф.
хлора ClF3 и ClF5 — окислители ракетных топлив; кроме того, ClF3 служит фторирующим агентом для получения гексафторида урана UF6, применяемого в атомной промышленности для изотопов разделения урана; летучие Ф.
металлов используются для нанесения металлических покрытий. Ф. лития, магния, кальция, стронция, бария и др. металллов применяют в качестве сырья для производства оптических стёкол. См. также Криолит.
Лит. см. при ст. Фтор.
А. В. Пакратов.
Василиса явикс — интеллектуальная поисковая система. завтра уже здесь!
Фторид кислорода(II), дифторид кислорода, OF2. При нормальных условиях представляет собой бесцветный ядовитый газ, конденсирующийся при охлаждении в светло-жёлтую (в толстых слоях золотисто-жёлтую) жидкость. Фторид кислорода(II) имеет раздражающий запах, несколько отличающийся от запаха фтора (смесь запаха хлорной извести и озона).
Взаимодействие с металлами
На меди, платине, золоте, серебре фторид кислорода(II) образует лишь тончайшие защитные плёнки фторидов, что позволяет использовать эти металлы в контакте с фторидом кислорода(II) при комнатной температуре.
При повышении температур до 250°C происходит дальнейшее окисление металлов. Наиболее подходящими металлами для работы с дифторидом кислорода являются алюминий и магний. Нержавеющие стали, никель, монель-металл, магниевомедный сплав (92/8), латунь и медь также мало изменяются в весе при воздействии фторида кислорода(II) в течение 1-1,5 недели при 100 °C.
Из воды фтор вытесняет кислород, образуя фтористый водород, причем кислород отчасти выделяется в форме озона.получают of2 взаимодействием фтора с холодным разбавленным раствором щелочи, иногда реакцией na2o с фтором или воды с фтором в присутствии фторидов щелочных металлов. образуется of2 также при электролизе kh2f3, содержащих воду.
O2F2
Диоксидифторид O2F2 – оранжевый ядовитый газ, т. пл. -1540С, т. кип. –570С (с разложением), ∆Нобр0 = 19,2 кДж/моль.
O2F2 сильный окислитель и фторирующий реагент.
Литература
- С.Сарнер. Химия ракетных топлив. изд «Мир», Москва, 1969.г.
- Schmidt E. W.,Harper J. T., Handling and Use of Fluoride and Fluorine-Oxygen Mixtures in Rocket Systems, Lewis Research Center, NASA SP-3037, Cleveland, Ohio, 1967.
Открытие
Дифторид кислорода был открыт впервые в 1929 годуПолем Лебо и Августином Дамьеном, а спустя некоторое время подробно изучен Руффом и Менцелем.
Получение
- 2F2 2NaOH→OF2↑ 2NaF H2O{displaystyle {mathsf {2F_{2} 2NaOHrightarrow OF_{2}uparrow 2NaF H_{2}O}}}
- 24F2 18NaOH→9OF2↑ 12HF 18NaF 3H2O2 O3↑{displaystyle {mathsf {24F_{2} 18NaOHrightarrow 9OF_{2}uparrow 12HF 18NaF 3H_{2}O_{2} O_{3}uparrow }}}
- F2 H2O→2HF↑ O:{displaystyle {mathsf {F_{2} H_{2}Orightarrow 2HFuparrow O:}}} — инициация свободных радикалов с образованием бирадикала O:
- 2O:→O2{displaystyle {mathsf {2O:rightarrow O_{2}}}} — доминирующий процесс
- O: H2O→H2O2{displaystyle {mathsf {O: H_{2}Orightarrow H_{2}O_{2}}}}
- O: F2→OF2↑{displaystyle {mathsf {O: F_{2}rightarrow OF_{2}uparrow }}}
Получение дифтордиоксида производится пропусканием электрических искр через эквимолярную смесь фтора и кислорода при низкой температуре (температура жидкого воздуха)
Тетраоксидифторид — O4F2, димер диоксигенилфторида O2F. Красно-коричневое твёрдое вещество, диссоциирующее при нагревании выше −191 °C.
Химические свойства
Тетраоксидифторид представляет собой димер радикала диоксигенилфторида FO2·, в температурном диапазоне от −175 до −185 °C радикал и его димер сосуществуют в виде равновесной смеси:
2FO2· ↔ F2O4
Диоксигенилфторид изостеричен озонид-аниону, однако геометрия молекулы ближе к диоксидифториду: связи F-O-O образуют тупой угол, связь O=O диоксигенилфторида (и тетраоксидифторида) значительно короче и прочнее (энергия диссоциации — 463 КДж/моль, длина — 1.217 Å)
И тетраоксидифторид, и диоксигенилфторид реагируют с кислотами Льюиса — акцепторами фторид-аниона, образуя соли диоксигенил-аниона:
O2F BF3 O2 BF4−
Тетраоксидифторид является более сильным окислителем и фторирующим агентом, чем диоксидифторид F2O2[1].
Применение
Благодаря высокой энергии активации разложения фторида кислорода(II), это соединение можно сравнительно безопасно смешивать с многими углеводородами, водородом, моноокисью углерода и прочими веществами, что чрезвычайно важно в практическом плане использования фторида кислорода(II) в качестве высокоэффективного окислителя ракетного топлива. Так как фторид кислорода(II) не взрывается при смешивании с горючими материалами и при нагревании (сам по себе) то его применение вполне безопасно.
Имели значительный успех опыты применения фторида кислорода(II) в газодинамических химических лазерах. Имея лучшие показатели, нежели фтор, фторид кислорода(II) способен занять достойное место в качестве компонента для боевого лазерного оружия высокой мощности[источник не указан 2685 дней].
Систематическое название
В литературе иногда это соединение называют оксидом фтора (F2O). Однако это неверно, так как атом фтора более электроотрицателен, чем кислород, и по правилам IUPAC это соединение должно называться именно фторидом кислорода (OF2). Хотя общая электронная пара практически не смещается от атома кислорода в сторону атома фтора.
См. также
- Дифторид дикислорода
- Соединения фтора в ракетной технике
Токсичность
Фторид кислорода(II) OF2 (дифторид кислорода) чрезвычайно токсичен (степень токсичности сопоставима с таковой фосгена COCl2), гораздо более ядовит, чем элементарный фтор, так как вызывает сильнейшее раздражение тканей организма, очень глубоко проникает и растворяется в них (глубже чем фтор), затрудняет дыхание. По токсикологии NFPA 704 ему присвоена высшаятоксичность.
Смертельная доза (LC50) — 1-2 мг/м3*1 час (даже меньше, чем у синильной кислоты).
Дифторид кислорода опасен для окружающей среды.
Упоминания в литературе
В фантастической новелле Роберта Л. Форварда «Камелот 30К», дифторид кислорода был использован как биохимический растворитель для живых форм, живущих в поясе Койпера Солнечной системы. Хотя при 30 К фторид кислорода будет твердым, вымышленные инопланетные организмы являются эндотермическими и благодаря радиотермическому нагреву могут использовать жидкий фторид кислорода в качестве крови.
Физические свойства
Жидкий фторид кислорода неограниченно смешивается с жидкими озоном, фтором, кислородом. Плохо растворяется в холодной воде (примерно 7:100 по объёму). При этом достаточно хорошо растворяет воздух.
Молекула обладает слабым дипольным моментом, равным 0,3 Д.
Фторид кислорода(ii)
- Введение
- 1 Открытие
- 2 Систематическое название
- 3 Физические свойства
- 4 Получение
- 5 Химические свойства
- 5.1 Взаимодействие с металлами
- 6 Применение
- 7 Токсичность
- 8 Упоминания в литературе
Литература
Фторид кислорода(II), дифторид кислорода, OF2.
Часто используется название оксид фтора и формула F2O, что не совсем верно, так как фтор является окислителем кислорода, а не наоборот. Представляет собой бесцветный газ, конденсирующийся при охлаждении в светло-жёлтую (в толстых слоях золотисто-жёлтую) жидкость.
Фторид кислорода(II) имеет раздражающий запах, несколько отличающийся от запаха фтора (смесь запаха хлорной извести и озона).
Фторид кислорода, химические свойства, получение
1
H
1,008
1s1
2,2
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
4,0
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,93
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
Фториды азота
Фтори’ды азо’та, неорганические соединения, содержащие связь N—F, например трифторид азота NF3, тетрафторгидразин N2F4, дифторамин NF2H, фтористый нитрозил FNO и др. Ф. а. — бесцветные газы со специфическим запахом.
При нагревании разлагаются на элементы или трифторид азота и азот (за исключением NF3 и FNO). Проявляют свойства сильных окислителей. С органическими соединениями некоторые Ф. а. образуют многочисленные органические вещества, содержащие группы —NF2 и —NONF. Особенность Ф. а.
состоит в том, что при взаимодействии с сильными льюисовскими кислотами (см. Кислоты и основания) они образуют соли с фторазотными катионами , , , F2NO .
Трифторид азота, NF3 — газ; tпл — 208,5°С, tkип — 129,1°С. Окислительная способность проявляется при высоких температурах. Превращается в тетрафторгидразин при повышенных температурах и в присутствии меди, железа, ртути или угля. Получается электролизом расплава дифторида аммония или фторированием азотсодержащих веществ. Применяется в производстве тетрафторгидразина.
Тетрафторгидразин, N2F4 — газ; tпл — 161,5°С, tkип — 74,2°С. Способен к диссоциации: N2F4 Û 2NF2. При 150°С и давлении 0,1 Мн/м2 (1 кгс/см2) степень диссоциации 0,2. Диссоциация N2F4 обусловливает его дифтораминирующее действие, которое проявляется, например, в присоединении к олефинам:
. Тетрафторгидразин получается конверсией трифторида азота над углём (промышленный метод), разложением NF2H или окислением его растворов. Применяется для синтеза органических дифтораминосоединений.
Дифторамин, NF2H — газ; tпл — 116°С, tkип — 23°С. Взрывается при ударе (особенно в жидком и твёрдом состояниях). Проявляет амфотерные свойства. В реакциях действует как дифтораминирующий агент.
Получается действием серной кислоты на дифтораминомочевину (продукт фторирования мочевины) или на трифенилметил дифторамин, синтезируемый из N2F4 и трифенилметилхлорида в присутствии ртути.
Применяется для синтеза органических дифтораминосоединений.
Лит.: Панкратов А. В., Химия фторидов азота, М., 1973.
А. В. Панкратов.
Фториды галогенов
Фтори’ды галоге’нов, соединения фтора с др. галогенами. Известны следующие Ф. г.: CIF, CIF3, CIF5, BrF, BrF3, BrF5, IF, IF5 и IF7. Подробно см. в ст. Межгалогенные соединения.
Фториды природные
Фтори’ды приро’дные, класс минералов, природные соединения элементов Na, К, Ca, Mg, Al, редкоземельных элементов (TR), реже Cs, Sr, Pb, Bi, В с фтором. Известно около 35 Ф. п. Различают простые Ф. п.
: группа виллиомита — NaF, флюорита — CaF2, селлаита — MgF2, флюоцерита — (Ce, La) F3, и комплексные, в которых комплексообразователями являются В, Al, Mg, TR, Si, а роль адденда выполняет фтор: группа авогадрита — (К, CS)[BF4], криолита — Na3[AlF6], гагаринита — NaCa [TRF6], нейборита — Na [MgF6], веберита — Na2[MgAlF7], томсенолита — NaCa [AlF6]·H2O, малладрита — Na2SiF6] и др. Наиболее распространён в природе флюорит.
Ф. п. бесцветны или окрашены в светлые тона, прозрачные или просвечивающие, со стеклянным блеском, низкой твёрдостью (2—5 по минералогической шкале), плотностью (2000—3180 кг/м3 исключение составляют фториды редких земель) и весьма низкими показателями преломления (1,30—1,50; у флюоцерита 1,61).
Ф. п. возникают в возгонах вулканов (ферручит, авогадрит, криптогалит, малладрит и др.), встречаются как акцессорные минералы гранитов, щелочных пород и их эффузивных аналогов (флюорит).
Они характерны для поздних стадий развития карбонатитов (флюорит), гранитных пегматитов, грейзенов и гидротермальных образований (флюорит), щелочных гранитов и связанных с ними метасоматитов (криолит, флюоцерит, гагаринит), а также луявритов, фойяитов и уртитов (виллиомит).
Многие алюмофториды возникают при гидротермальном изменении криолита (томсенолит, ральстонит, пахнолит, веберит, хиолит и другие). В зоне окисления по эндогенным Ф. п. часто развиваются гипергенные: геарксутит, кридит, флюеллит, для осадочных толщ характерен флюорит (ратовкит). Практическое значение имеют флюорит и криолит.
Лит.: Минералы. Справочник, т. 2, в. 1, М., 1963.
А. И. Гинзбург.
Фтористоводородная кислота
Фтористоводоро’дная кислота’, плавиковая кислота, водный раствор фтористого водорода HF; фтористый водород смешивается с водой в любых соотношениях. Азеотропная смесь содержит 38,26% HF, tkип 112°С (750 мм рт. ст.), плотность 1,138 г/см3. Ф. к.
реагирует с окислами с образованием фторидов. Растворяет фториды, образуя с ними комплексные соединения; интенсивно реагирует с силикатными материалами (в частности, со стеклом). Применяется как растворитель, служит для травления стекла, а также реагентом для получения фторидов.
Лит. см. при ст. Фтор.
Фтористый водород
Фто’ристый водоро’д, HF, соединение фтора с водородом. Плотность 0,98 г/см3 (12°С), tпл — 83,37°С, tkип 19,43°С.
Выше 19,43°С — бесцветный газ с резким запахом, раздражающим дыхательные пути, ниже этой температуры — бесцветная легкоподвижная жидкость; tkpит 230,2°С, ркрит 9,45 Мн/м2 (94,5 кгс/см2), энтальпия образования — 271 кдж/моль (—64,8 ккал/моль). Молекулы Ф. в.
https://www.youtube.com/watch?v=IIjRJ1ecyys
ассоциированы, степень ассоциации зависит от агрегатного состояния, температуры и давления. В газообразном Ф. в. ассоциаты включают три или четыре молекулы HF. ф. в. смешивается с водой в любых соотношениях. Водный раствор Ф. в. — фтористоводородная кислота.
Химические свойства
Дифторид кислорода — весьма энергичный окислитель, и в этом отношении напоминает по силе свободный фтор, а по механизму окисления — озон, но реакции с участием фторида кислорода(II) требуют более высокой энергии активации, так как на первой стадии происходит образование атомарного кислорода (как и у озона). Термическое разложение фторида кислорода(II) представляет собой мономолекулярную реакцию с энергией активации 41 ккал/моль и начинается только при температуре выше 200 °C.
При растворении в горячей воде подвергается гидролизу. При этом образуется фтороводород и обычный кислород. В щелочной среде разложение протекает достаточно быстро.
Смесь паров дифторида кислорода и воды взрывоопасна:
- OF2 H2O→2HF↑ O2↑{displaystyle {mathsf {OF_{2} H_{2}Orightarrow 2HFuparrow O_{2}uparrow }}}
Фторид кислорода(II) не действует на сухое стекло и кварц, но действует (интенсивно) на металлическую ртуть, что исключает применение ртути в приборах с фторидом кислорода(II). На смазку для газовых кранов фторид кислорода(II) действует очень медленно.
Взаимодействие с металлами
На меди, платине, золоте, серебре фторид кислорода(II) образует лишь тончайшие защитные плёнки фторидов, что позволяет использовать эти металлы в контакте с фторидом кислорода(II) при комнатной температуре. При повышении температур до 250°C происходит дальнейшее окисление металлов. Наиболее подходящими металлами для работы с дифторидом кислорода являются алюминий и магний. Нержавеющие стали, никель, монель-металл, магниевомедный сплав (92/8), латунь и медь также мало изменяются в весе при воздействии фторида кислорода(II) в течение 1-1,5 недели при 100 °C.