- Что такое углекислый газ
- Влияние углекислого газа на организм человека
- Лабораторные способы получения
- Металлургия
- Получение газообразной двуокиси углерода
- Получение жидкой углекислоты
- Получение твердого диоксида углерода
- Получение углекислого газа
- Применение углекислого газа
- Производство бумаги
- Промышленные способы получения
- Свойства углекислого газа
- Синдром больного здания
- Углекислый газ в атмосфере
- Углекислый газ в помещении
- Углекислый газ, химические свойства, получение
- Углекислый газ: получение в промышленности
- Углекислый газ: хранение и транспортировка
- Физические свойства
- Химическая промышленность
- Химические свойства
Что такое углекислый газ
Оксид углерода (IV) представляет собой тяжёлый газ. Плотность углекислоты примерно в полтора раза больше чем у атмосферного воздуха. Несмотря на то, что этот газ уже при температуре минус 78,3 градуса Цельсия превращается в снегообразную массу, получить жидкую углекислоту при нормальном давлении не представляется возможным.
Так называемый сухой лёд при малейшем повышении температуры сразу переходит из твёрдой, в газообразную форму. Получить жидкую углекислоту можно только при давлении более 60 атмосфер. В таких условиях газ конденсируется даже при комнатной температуре с образованием бесцветной жидкости.
Углекислый газ не окисляется, но может поддерживать горение некоторых металлов. В среде углекислоты, при определённых условиях, могут возгораться такие активные элементы как магний, кальций и барий. Этот газ хорошо растворим в воде, а в воздухе его содержится большое количество благодаря дыханию живых организмов и растений, наличию вулканической активности на земле, а также в результате сгорания органических веществ.
В результате растворения СО2 в воде в большой концентрации образуется угольная кислота. Это вещество может вступать в реакцию с фенолом и магнийорганическими соединениями. Углекислый газ также реагирует с щелочами. В результате такой реакции образуются соли и эфиры угольной кислоты.
Влияние углекислого газа на организм человека
Углекислый газ наравне с кислородом обеспечивает жизнь организма. Суть его работы сводится к высвобождению связанного гемоглобином кислорода – для питания тканей и отдельных органов. Для углекислоты важен в первую очередь баланс – количественное соотношение молекул СО2 и О2.
Он является для организма вазодилататором – веществом, которое влияет на состояния кровеносных сосудов, расширяя и расслабляя их. Это напрямую связано со снабжением кислородом при физической активности:
- в спокойном состоянии номинальное поперечное сечение артерии или капилляра находится в оптимальном размере;
- при необходимости приложения физической силы (спасение жизни, полезная работа) содержание углекислоты в крови несколько повышается – это регулируется вне зависимости от желания человека;
- стенки сосудов расслабляются и смягчаются из-за специфичного действия газа;
- происходит увеличение поперечного сечения сосуда, из-за чего мощность кровотока возрастает;
- как следствие повышается количество доставляемого к тканям ценного кислорода, питающего мускулатуру, что приводит к повышению физического ресурса.
Наблюдается также явление нецелевого повышения содержания углекислоты – при воспалительных процессов, при повреждении организма, проблемах с кровеносной системой вплоть до ишемии. Это чревато атипичным составом газового обмена и нуждается в регуляции силами медицины.
Несмотря на это газ всё же является компонентом «нормального» дыхания. Он переносится кровеносной системой и присутствует в плазме крови, гемоглобине и тканях. Интересно, что находится в организме он при парциальном давлении – во всём доступном пространстве, без скопления в отдельных областях.
Лабораторные способы получения
Наиболее устойчивый и эффективный (по сочетанию трудозатрат и количества продукта на выходе) способ искусственного получения – работа с аппаратом Киппа.
Устройство рассчитано на создание контролируемого воздействия жидкой среды на твёрдое. В данном случае – обработка концентрированной соляной кислотой дроблёных кусков и мелкой фракции мрамора. Также будут полезны сода и обычный мел.
Для исследовательских целей быстрее всего взять готовый газ в баллонах – он чище и будет подаваться под необходимым давлением.
Металлургия
Применение углекислоты в производстве металлоизделий актуально, когда сваривают металлы. Газовое облако защищает расплавленную область от поступления активного кислорода. Оно обеспечивает ровность сварного шва, защиту от окисления. В металлургии CO2 используют также для:
Получение газообразной двуокиси углерода
CO2 в виде газа — продукт адсорбции моноэтаноламина при работе с промышленным дымом. Из него выделяют углекислоту и очищают ее от примесей, поддерживая необходимые температуру и давление.
Получение жидкой углекислоты
Надежный способ получить вещество в жидком виде из твердой формы извлечения — повысить атмосферное давление — установить его на 60 и более атмосфер. При высоком давлении газ СО2 становится жидкостью без цвета.
Получение твердого диоксида углерода
Твёрдый углекислый газ — продукт переработки пивоваренных и ликероводочных изделий. Его получают на производстве так:
- Под действием брожения выделяется и направляется на промывку углекислый газ.
- Под влиянием повышенного давления вещество промывается.
- В охлаждающих установках углекислота охлаждается.
- Полученная жидкость проходит фильтрацию углем.
- В холодильнике СО2 охлаждается и затем подвергается прессованию.
Готовый «сухой лёд» применяют в пищевой промышленности, используют для выращивания растений, в бытовых целях.
Получение углекислого газа
Одной из основных проблем современной экологии является повсеместное образование углекислого газа в техногенной сфере: дымовые и топочные газы, продукты разнообразных химических реакций, функционирование транспорта и промышленности, строительная (производство цемента) и пищевая (брожение алкоголя) отрасли отличаются больше других.
Мировая общественность регулярно пишет о снижении выбросов carbon dioxide, но для науки и техники газ имеет значительное практичное значение.
Это может быть полезно — Poxipol — инструкция по применению
Применение углекислого газа
Что такое углекислота с практической точки зрения? Это – газовая защита от окружающего воздуха и вызываемых им процессов:
- перевозка и хранение различных пищевых продуктов (полуфабрикаты, мясо, рыба), при этом наблюдается отсутствие появления плесени и гнили органики;
- внесение в напитки для придания им полезных свойств – отмечается благоприятное действие на организм газированной минеральной или сладкой воды;
- создание пищевых добавок для повышения сроков и условий хранения пищевых продуктов (к примеру, разрыхлитель Е290);
- изготовление кофе без кофеина (участвует в технологическом процессе удаления растворенного вещества);
- организация целебных ванн с углекислотой для поддержания и восстановления здоровья сердечно-сосудистой системы;
- целый спектр специализированных задач в медицине – к примеру, работа с образованиями в тканях, стимуляция дыхания;
- проверка морозоустойчивости резинотехнических изделий (в частности – автомобильные покрышки, которые испытываются с сухим льдом);
- испытания различного оборудования, механизмов и инструментов на предмет пониженных температур;
- изготовление и перезаправка углекислотных огнетушителей (наиболее эффективное средство тушения огня на электрооборудовании и горючих жидкостях);
- рабочая среда в пневматическом оружии;
- применение в качестве реагента для химических реакций с целью синтеза и производства солей, полимеров и различных волокон;
- очистка сточных вод от загрязнений;
- защита расплавленного металла сварочной ванны.
Также интересно использование для авиационного и судостроительного моделирования как вид источника энергии для двигателей с различным объёмом (до десятков см3).
Полезная статья — Как варить нержавейку электродом
Производство бумаги
Бумажная промышленность тоже нуждается в СО2. Как используют углекислый газ для производства бумаги? Им регулируют водородный показатель сырья, повышают мощность промышленного оборудования.
Промышленные способы получения
«Сырьё» для генерирования и сбора углекислого газа дают промышленные процессы и различные химические реакции при обработке ископаемых. Углекислоту возможно получать целым спектром способов:
- термическая обработка известняка: при обжиге сырьё распадается на углекислый газ и оксид кальция;
- физическое воздействие на дымовые газы: улавливаемые смеси пропускают через карбонатный раствор калия или моноэтаноламина, в результате чего образуется гидрокарбонат – при его нагреве или понижении давления воздуха вокруг него высвобождается СО2;
- пиролиз атмосферного воздуха: разделение с помощью нагрева и электрического тока на углекислоту, чистые кислород, азот, аргон и другие компоненты;
- пиролиз газовых продуктов брожения спиртов;
Об этих и некоторых других процессах снято множество видео.
Свойства углекислого газа
При большой концентрации углекислоты во вдыхаемом воздухе может наступить отравление. Признаками негативного воздействия СО2 на организм человека являются:
- Шум и гул в ушах.
- Обильный холодный пот.
- Потеря сознания.
Учитывая тот факт, что углекислый газ тяжелее воздуха, его концентрация в нижней части помещения будет более значительной. По этой причине, первую очередь симптомы отравления могут наблюдаться у животных и детей, а также у взрослых очень маленького роста.
Синдром больного здания
Этот феномен касается тех, кто продолжительное время находится в помещении. Проявляется он в неприятном самочувствии, вялости, тяжести в голове и даже заложенности носа. Интересно, что всё это очень быстро пропадает после выхода на улицу.
Суть проблемы – в повышенном содержании углекислого газа. Незаметная сложность любого здания в отношении здоровья – концентрация СО2, резко отличающаяся от нормы. Допустимые 600-800 ppm превращаются здесь в 1000-2000 ppm – это оказывает негативное и тормозящее воздействие на человека.
Решение – в вентиляции. При низком поступлении свежего воздуха содержание углекислого газа постоянно повышается – его необходимо «вымывать» проветриванием.
Углекислый газ в атмосфере
Углекислый газ в атмосфере находится в количестве до 0,045% — или порядка 800 миллиардов тонн только в виде газа. В воде и почве его ещё больше.
Сегодня это составляет порядка 400 ppm (400 миллионных частей). Для сравнения: 300-350 лет назад, до начала Великой индустриальной революции, когда в 17 веке был начато кардинальное преобразование мировой экономики в сторону индустриализации, этот параметр составлял около 250 ppm.
Интересно, что в черте города показатель доходит до 450-470 ppm, а в публичных заведениях по типу школы – 1000-1200 и более. Это говорит о негативном влиянии транспорта и скопления людей.
Несмотря на своё крошечное количество СО2 играет значительную роль для биосферы и экологии. Основная форма влияния – воздействие в качестве парникового газа:
- газ препятствует выходу инфракрасного излучения с планеты в окружающее пространство;
- температура атмосферы год за годом увеличивается;
- происходят изменения природных явлений и климата;
- текущий формат этих преобразований – ускоренное таяние ледниковых «шапок», повышение уровня Мирового океана и изменения в составе биосферы.
Учёные рассчитали, что без присутствия этого эффекта среднегодовая температура на поверхности планеты находилась бы ниже на 25-30°С.
Углекислый газ в помещении
В помещении основным источником образования СО2 являются люди. Ежечасно взрослый человек выдыхает до 20 литров (0,5 кубометров) газа в спокойном состоянии и до 35-40 литров при значительной физической активности.
В зависимости от характера комнаты диоксид углерода может дополнительно образовываться от действия газового котла и плиты.
Средняя допустимая плотность углекислого газа для помещения – от 600 ppm, в связи с чем необходимо регулярно проветривать все жилые и технические помещения, включать соответствующие системы вентиляции или просто ненадолго открывать окна.
Углекислый газ тяжелее чистого воздуха примерно в полтора раза, поэтому он скапливается в помещениях подвального и цокольного расположения.
Полезная статья — Как варить вертикальный шов электросваркой
Углекислый газ, химические свойства, получение
1
H
1,008
1s1
2,2
Бесцветный газ
t°пл=-259°C
t°кип=-253°C
2
He
4,0026
1s2
Бесцветный газ
t°кип=-269°C
3
Li
6,941
2s1
0,99
Мягкий серебристо-белый металл
t°пл=180°C
t°кип=1317°C
4
Be
9,0122
2s2
1,57
Светло-серый металл
t°пл=1278°C
t°кип=2970°C
5
B
10,811
2s2 2p1
2,04
Темно-коричневое аморфное вещество
t°пл=2300°C
t°кип=2550°C
6
C
12,011
2s2 2p2
2,55
Прозрачный (алмаз) / черный (графит) минерал
t°пл=3550°C
t°кип=4830°C
7
N
14,007
2s2 2p3
3,04
Бесцветный газ
t°пл=-210°C
t°кип=-196°C
8
O
15,999
2s2 2p4
3,44
Бесцветный газ
t°пл=-218°C
t°кип=-183°C
9
F
18,998
2s2 2p5
4,0
Бледно-желтый газ
t°пл=-220°C
t°кип=-188°C
10
Ne
20,180
2s2 2p6
Бесцветный газ
t°пл=-249°C
t°кип=-246°C
11
Na
22,990
3s1
0,93
Мягкий серебристо-белый металл
t°пл=98°C
t°кип=892°C
12
Mg
24,305
3s2
1,31
Серебристо-белый металл
t°пл=649°C
t°кип=1107°C
13
Al
26,982
3s2 3p1
1,61
Серебристо-белый металл
t°пл=660°C
t°кип=2467°C
14
Si
28,086
3s2 3p2
1,9
Коричневый порошок / минерал
t°пл=1410°C
t°кип=2355°C
15
P
30,974
3s2 3p3
2,2
Белый минерал / красный порошок
t°пл=44°C
t°кип=280°C
16
S
32,065
3s2 3p4
2,58
Светло-желтый порошок
t°пл=113°C
t°кип=445°C
17
Cl
35,453
3s2 3p5
3,16
Желтовато-зеленый газ
t°пл=-101°C
t°кип=-35°C
18
Ar
39,948
3s2 3p6
Бесцветный газ
t°пл=-189°C
t°кип=-186°C
19
K
39,098
4s1
0,82
Мягкий серебристо-белый металл
t°пл=64°C
t°кип=774°C
20
Ca
40,078
4s2
1,0
Серебристо-белый металл
t°пл=839°C
t°кип=1487°C
21
Sc
44,956
3d1 4s2
1,36
Серебристый металл с желтым отливом
t°пл=1539°C
t°кип=2832°C
22
Ti
47,867
3d2 4s2
1,54
Серебристо-белый металл
t°пл=1660°C
t°кип=3260°C
23
V
50,942
3d3 4s2
1,63
Серебристо-белый металл
t°пл=1890°C
t°кип=3380°C
24
Cr
51,996
3d5 4s1
1,66
Голубовато-белый металл
t°пл=1857°C
t°кип=2482°C
25
Mn
54,938
3d5 4s2
1,55
Хрупкий серебристо-белый металл
t°пл=1244°C
t°кип=2097°C
26
Fe
55,845
3d6 4s2
1,83
Серебристо-белый металл
t°пл=1535°C
t°кип=2750°C
27
Co
58,933
3d7 4s2
1,88
Серебристо-белый металл
t°пл=1495°C
t°кип=2870°C
28
Ni
58,693
3d8 4s2
1,91
Серебристо-белый металл
t°пл=1453°C
t°кип=2732°C
29
Cu
63,546
3d10 4s1
1,9
Золотисто-розовый металл
t°пл=1084°C
t°кип=2595°C
30
Zn
65,409
3d10 4s2
1,65
Голубовато-белый металл
t°пл=420°C
t°кип=907°C
31
Ga
69,723
4s2 4p1
1,81
Белый металл с голубоватым оттенком
t°пл=30°C
t°кип=2403°C
32
Ge
72,64
4s2 4p2
2,0
Светло-серый полуметалл
t°пл=937°C
t°кип=2830°C
33
As
74,922
4s2 4p3
2,18
Зеленоватый полуметалл
t°субл=613°C
(сублимация)
34
Se
78,96
4s2 4p4
2,55
Хрупкий черный минерал
t°пл=217°C
t°кип=685°C
35
Br
79,904
4s2 4p5
2,96
Красно-бурая едкая жидкость
t°пл=-7°C
t°кип=59°C
36
Kr
83,798
4s2 4p6
3,0
Бесцветный газ
t°пл=-157°C
t°кип=-152°C
37
Rb
85,468
5s1
0,82
Серебристо-белый металл
t°пл=39°C
t°кип=688°C
38
Sr
87,62
5s2
0,95
Серебристо-белый металл
t°пл=769°C
t°кип=1384°C
39
Y
88,906
4d1 5s2
1,22
Серебристо-белый металл
t°пл=1523°C
t°кип=3337°C
40
Zr
91,224
4d2 5s2
1,33
Серебристо-белый металл
t°пл=1852°C
t°кип=4377°C
41
Nb
92,906
4d4 5s1
1,6
Блестящий серебристый металл
t°пл=2468°C
t°кип=4927°C
42
Mo
95,94
4d5 5s1
2,16
Блестящий серебристый металл
t°пл=2617°C
t°кип=5560°C
43
Tc
98,906
4d6 5s1
1,9
Синтетический радиоактивный металл
t°пл=2172°C
t°кип=5030°C
44
Ru
101,07
4d7 5s1
2,2
Серебристо-белый металл
t°пл=2310°C
t°кип=3900°C
45
Rh
102,91
4d8 5s1
2,28
Серебристо-белый металл
t°пл=1966°C
t°кип=3727°C
46
Pd
106,42
4d10
2,2
Мягкий серебристо-белый металл
t°пл=1552°C
t°кип=3140°C
47
Ag
107,87
4d10 5s1
1,93
Серебристо-белый металл
t°пл=962°C
t°кип=2212°C
48
Cd
112,41
4d10 5s2
1,69
Серебристо-серый металл
t°пл=321°C
t°кип=765°C
49
In
114,82
5s2 5p1
1,78
Мягкий серебристо-белый металл
t°пл=156°C
t°кип=2080°C
50
Sn
118,71
5s2 5p2
1,96
Мягкий серебристо-белый металл
t°пл=232°C
t°кип=2270°C
51
Sb
121,76
5s2 5p3
2,05
Серебристо-белый полуметалл
t°пл=631°C
t°кип=1750°C
52
Te
127,60
5s2 5p4
2,1
Серебристый блестящий полуметалл
t°пл=450°C
t°кип=990°C
53
I
126,90
5s2 5p5
2,66
Черно-серые кристаллы
t°пл=114°C
t°кип=184°C
54
Xe
131,29
5s2 5p6
2,6
Бесцветный газ
t°пл=-112°C
t°кип=-107°C
55
Cs
132,91
6s1
0,79
Мягкий серебристо-желтый металл
t°пл=28°C
t°кип=690°C
56
Ba
137,33
6s2
0,89
Серебристо-белый металл
t°пл=725°C
t°кип=1640°C
57
La
138,91
5d1 6s2
1,1
Серебристый металл
t°пл=920°C
t°кип=3454°C
58
Ce
140,12
f-элемент
Серебристый металл
t°пл=798°C
t°кип=3257°C
59
Pr
140,91
f-элемент
Серебристый металл
t°пл=931°C
t°кип=3212°C
60
Nd
144,24
f-элемент
Серебристый металл
t°пл=1010°C
t°кип=3127°C
61
Pm
146,92
f-элемент
Светло-серый радиоактивный металл
t°пл=1080°C
t°кип=2730°C
62
Sm
150,36
f-элемент
Серебристый металл
t°пл=1072°C
t°кип=1778°C
63
Eu
151,96
f-элемент
Серебристый металл
t°пл=822°C
t°кип=1597°C
64
Gd
157,25
f-элемент
Серебристый металл
t°пл=1311°C
t°кип=3233°C
65
Tb
158,93
f-элемент
Серебристый металл
t°пл=1360°C
t°кип=3041°C
66
Dy
162,50
f-элемент
Серебристый металл
t°пл=1409°C
t°кип=2335°C
67
Ho
164,93
f-элемент
Серебристый металл
t°пл=1470°C
t°кип=2720°C
68
Er
167,26
f-элемент
Серебристый металл
t°пл=1522°C
t°кип=2510°C
69
Tm
168,93
f-элемент
Серебристый металл
t°пл=1545°C
t°кип=1727°C
70
Yb
173,04
f-элемент
Серебристый металл
t°пл=824°C
t°кип=1193°C
71
Lu
174,96
f-элемент
Серебристый металл
t°пл=1656°C
t°кип=3315°C
72
Hf
178,49
5d2 6s2
Серебристый металл
t°пл=2150°C
t°кип=5400°C
73
Ta
180,95
5d3 6s2
Серый металл
t°пл=2996°C
t°кип=5425°C
74
W
183,84
5d4 6s2
2,36
Серый металл
t°пл=3407°C
t°кип=5927°C
75
Re
186,21
5d5 6s2
Серебристо-белый металл
t°пл=3180°C
t°кип=5873°C
76
Os
190,23
5d6 6s2
Серебристый металл с голубоватым оттенком
t°пл=3045°C
t°кип=5027°C
77
Ir
192,22
5d7 6s2
Серебристый металл
t°пл=2410°C
t°кип=4130°C
78
Pt
195,08
5d9 6s1
2,28
Мягкий серебристо-белый металл
t°пл=1772°C
t°кип=3827°C
79
Au
196,97
5d10 6s1
2,54
Мягкий блестящий желтый металл
t°пл=1064°C
t°кип=2940°C
80
Hg
200,59
5d10 6s2
2,0
Жидкий серебристо-белый металл
t°пл=-39°C
t°кип=357°C
81
Tl
204,38
6s2 6p1
Серебристый металл
t°пл=304°C
t°кип=1457°C
82
Pb
207,2
6s2 6p2
2,33
Серый металл с синеватым оттенком
t°пл=328°C
t°кип=1740°C
83
Bi
208,98
6s2 6p3
Блестящий серебристый металл
t°пл=271°C
t°кип=1560°C
84
Po
208,98
6s2 6p4
Мягкий серебристо-белый металл
t°пл=254°C
t°кип=962°C
85
At
209,98
6s2 6p5
2,2
Нестабильный элемент, отсутствует в природе
t°пл=302°C
t°кип=337°C
86
Rn
222,02
6s2 6p6
2,2
Радиоактивный газ
t°пл=-71°C
t°кип=-62°C
87
Fr
223,02
7s1
0,7
Нестабильный элемент, отсутствует в природе
t°пл=27°C
t°кип=677°C
88
Ra
226,03
7s2
0,9
Серебристо-белый радиоактивный металл
t°пл=700°C
t°кип=1140°C
89
Ac
227,03
6d1 7s2
1,1
Серебристо-белый радиоактивный металл
t°пл=1047°C
t°кип=3197°C
90
Th
232,04
f-элемент
Серый мягкий металл
91
Pa
231,04
f-элемент
Серебристо-белый радиоактивный металл
92
U
238,03
f-элемент
1,38
Серебристо-белый металл
t°пл=1132°C
t°кип=3818°C
93
Np
237,05
f-элемент
Серебристо-белый радиоактивный металл
94
Pu
244,06
f-элемент
Серебристо-белый радиоактивный металл
95
Am
243,06
f-элемент
Серебристо-белый радиоактивный металл
96
Cm
247,07
f-элемент
Серебристо-белый радиоактивный металл
97
Bk
247,07
f-элемент
Серебристо-белый радиоактивный металл
98
Cf
251,08
f-элемент
Нестабильный элемент, отсутствует в природе
99
Es
252,08
f-элемент
Нестабильный элемент, отсутствует в природе
100
Fm
257,10
f-элемент
Нестабильный элемент, отсутствует в природе
101
Md
258,10
f-элемент
Нестабильный элемент, отсутствует в природе
102
No
259,10
f-элемент
Нестабильный элемент, отсутствует в природе
103
Lr
266
f-элемент
Нестабильный элемент, отсутствует в природе
104
Rf
267
6d2 7s2
Нестабильный элемент, отсутствует в природе
105
Db
268
6d3 7s2
Нестабильный элемент, отсутствует в природе
106
Sg
269
6d4 7s2
Нестабильный элемент, отсутствует в природе
107
Bh
270
6d5 7s2
Нестабильный элемент, отсутствует в природе
108
Hs
277
6d6 7s2
Нестабильный элемент, отсутствует в природе
109
Mt
278
6d7 7s2
Нестабильный элемент, отсутствует в природе
110
Ds
281
6d9 7s1
Нестабильный элемент, отсутствует в природе
Металлы
Неметаллы
Щелочные
Щелоч-зем
Благородные
Галогены
Халькогены
Полуметаллы
s-элементы
p-элементы
d-элементы
f-элементы
Наведите курсор на ячейку элемента, чтобы получить его краткое описание.
Чтобы получить подробное описание элемента, кликните по его названию.
Углекислый газ: получение в промышленности
Существует большое количество способов промышленного получения углекислоты. Наиболее рентабельными являются варианты добычи газа, основанные на получении СО2, который образовывается на химических производствах в виде отходов.
Газообразный оксид углерода (IV) получают из промышленного дыма способом адсорбции моноэтаноламина. Частицы этого вещества подаются в трубу с отходами и вбирают в себя углекислоту. После прохождение через смесь CO2 моноэтаноламины направляются на очистку в специальные резервуары, в которых, при определённых показателях температуры и давления, происходит высвобождение углекислого газа.
Углекислый газ высокого качества получается в результате брожения сырья при изготовлении спиртных напитков. На таких производствах газообразный СО2 обрабатывают водородом, перманганатом калия и углем. В результате реакции получают жидкую форму углекислоты.
Твёрдое состояние СО2 или «сухой лёд» также получают из отходов пивоваренных заводов и ликероводочных производств. Это агрегатное состояние вещества в промышленных масштабах образуется в такой последовательности:
- Из резервуара, где происходит брожение, газ подаётся в ёмкость для промывки.
- Углекислота направляется в газгольдер, в котором подвергается воздействию повышенного давления.
- В специальных холодильниках СО2 охлаждается до определённой температуры.
- Образовавшаяся жидкость фильтруется через слой угля.
- Углекислота снова направляется в холодильник, где производится дополнительное охлаждение вещества с последующим прессованием.
Таким образом получается высококачественный «сухой лёд», который может использоваться в пищевой промышленности, растениеводстве или в быту.
Углекислый газ: хранение и транспортировка
Хранение СО осуществляется в баллонах чёрного цвета, на корпусе которых обязательно должна быть надпись «Углекислота».
Кроме этого, на ёмкости наносится маркировка, по которой можно получить информацию о производителе баллона, весе пустой ёмкости, а также узнать дату последнего освидетельствования. Нельзя использовать углекислотные баллоны, у которых:
- Истёк срок освидетельствования.
- Имеются повреждения.
- Неисправны вентили.
Транспортировка наполненных газом баллонов должна осуществляться по следующим правилам:
- Транспортировать ёмкости только в горизонтальном положении. Вертикальное размещение допускается только в том случае, если имеются специальные ограждения, которые препятствуют падению баллона во время перевозки.
- Для безопасного перемещения на баллонах должны быть резиновые кольца.
- Не допускать механических воздействий, а также чрезмерного нагрева.
- Запрещается перевозка углекислотных баллонов в торговых аппаратах.
Кроме этого, техникой безопасности запрещается переносить баллоны вручную или перекатывать их по земле.
Хранение баллонов с углекислотой может осуществляться как в специально оборудованных помещениях, так и под открытым небом. В зданиях ёмкости следует размещать на расстоянии не менее 1 метра от отопительных приборов. При хранении на улице необходимо оградить ёмкости от воздействия прямых солнечных лучей и осадков, поэтому размещать резервуары таким способом рекомендуется под навесом.
Физические свойства
Основные свойства у углекислого газа следующие:
- превалирующее природное агрегатное состояние: газообразное;
- возможное изменение: переход в твёрдое кристаллообразное состояние (так называемый «сухой лёд») при охлаждении до минус 78°С или жидкое состояние при давлении около 60 атмосфер;
- особые признаки по вкусу и запаху в нормальном состоянии: отсутствуют;
- восприимчивость к электричеству: проводником не является, при образовании тлеющего разряда излучает светло-зелёное свечение;
- плотность: около 1,97 грамм на литр;
- растворимость в органических веществах: частичная;
- способность к горению: отсутствует, в его окружении горят редкоземельные и щелочные металлы.
Теплопроводностью почти не обладает.
Полезная статья — Сварка силумина
Химическая промышленность
В химической промышленности углекислота используется для:
Химические свойства
Основные химические свойства у соединения такие:
- тип вещества: оксид кислотного класса (способен образовать угольную кислоту при наличии воды);
- термическое разложение: да, на кислород (О) и угарный газ (СО);
- химическая активность: взаимодействие с основаниями и оксидами активных металлов, с простыми веществами – при наличии катализатора;
- обнаружение: при прохождении СО2 через воду с лакмусом изменяет цвет в сторону красных оттенков, а известковая вода (растворенный гидроксид кальция) помутнеет;
- отношение к горению: вытеснение кислорода и остановка тления.
Данный оксид углерода имеет валентность IV: в молекуле присутствуют 2 атома кислорода, каждый из которых «оттягивает» на себя по 2 свободных электрона, в результате чего углерод оказывается «связан» кислородом.