Химические свойства металлов IIA группы (Be, Mg, Ca, Sr, Ba, Ra).

Химические свойства металлов IIA группы (Be, Mg, Ca, Sr, Ba, Ra). Кислород

Качественные реакции

Качественная реакция на ионы цинка — взаимодействие избытка солей цинка с щелочами. При этом образуется белый осадокгидроксида цинка.

Например, хлорид цинка взаимодействует с гидроксидом натрия:

ZnCl2 2NaOH → Zn(OH)2 2NaCl

При дальнейшем добавлении щелочи амфотерный гидроксид цинка растворяется с образованием комплексной соли тетрагидроксоцинката:

Zn(OH)2 2NaOH = Na2[Zn(OH)4]

Обратите внимание,  если мы поместим соль цинка в избыток раствора щелочи, то белый осадок гидроксида цинка не образуется, т.к. в избытке щелочи соединения цинка сразу переходят в комплекс:

ZnCl2 4NaOH = Na2[Zn(OH)4] 2NaCl

Комплексные соли цинка

Для описания свойств комплексных солей цинка — гидроксоцинкатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоцинкат на две отдельные частицы — гидроксид цинка и гидроксид щелочного металла.

Например, тетрагидроксоцинкат натрия  разбиваем на гидроксид цинка и гидроксид натрия:

Na2[Zn(OH)4] разбиваем на NaOH и Zn(OH)2

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы цинка реагируют скислотными оксидами.

Например, гидроксокомплекс разрушается под действием избытка  углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид цинка не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Na2[Zn(OH)4]        2CO2    =   Zn(OH)2       2NaHCO3

Аналогично тетрагидроксоцинкат калия реагирует с углекислым газом:

K2[Zn(OH)4]        2CO2    =   Zn(OH)2       2KHCO3

А вот под действиемизбытка сильной кислотыосадок не выпадает, т.к. амфотерный гидроксид цинка реагирует с сильными кислотами.

Например, с соляной кислотой:

  Na2[Zn(OH)4]      4HCl(избыток)  → 2NaCl    ZnCl2    4H2O

Правда, под действием небольшого количества (недостатка) сильной кислотыосадок все-таки выпадет, для растворения гидроксида цинка кислоты не будет хватать:

Na2[Zn(OH)4]     2НCl(недостаток)   → Zn(OH)2↓    2NaCl    2H2O

Аналогично с недостатком азотной кислоты выпадает гидроксид цинка:

Na2[Zn(OH)4]   2HNO3(недостаток)  → Zn(OH)2↓    2NaNO3    2H2O

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-цинкат:

Na2[Zn(OH)4]  →  Na2ZnO2      2H2O↑

K2[Zn(OH)4]  →  K2ZnO2      2H2O↑

Оксид серы (vi)

Оксид серы (VI) –  это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.

Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.

2SO2       O2    ↔   2SO3

Сернистый газ окисляют и другие окислители, например, озон или оксид азота (IV):

SO2       O3  →   SO3       O2

SO2       NO2  →   SO3      NO

Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):

Fe2(SO4)3    →   Fe2O3      3SO3

Химические свойства оксида серы (VI)

1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:

SO3     H2O  →  H2SO4 

2. Серный ангидрид является типичным кислотным оксидом, взаимодействует с щелочами и основными оксидами.

Например, оксид серы (VI) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

SO3    2NaOH(избыток)  →   Na2SO4      H2O

SO3(избыток)      NaOH → NaHSO4

Еще пример: оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):

SO3    MgO   →  MgSO4 

3. Серный ангидрид – очень сильный окислитель, так как сера в нем имеет максимальную степень окисления ( 6). Он энергично взаимодействует с такими восстановителями, как иодид калия, сероводород или фосфор:

SO3       2KI   →   I2       K2SO3

3SO3       H2S   →   4SO2         H2O

5SO3         2P   →    P2O5         5SO2

4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.

Реакции, взаимодействие серы с водородсодержащими соединениями. уравнения реакции:

1. Реакция взаимодействия серы и гидрида рубидия:

2RbH S → Rb2S H2S (t = 300-350 °C).

Реакция взаимодействия гидрида рубидия и серы происходит с образованием сульфида рубидия и сероводорода.

2. Реакция взаимодействия серы и йодоводорода:

2HI S → I2  H2S (t ≈ 500 °C).

Реакция взаимодействия йодоводорода и серы происходит с образованием йода и сероводорода.

3. Реакция взаимодействия серы и селеноводорода:

H2Se S → Se H2S.

Реакция взаимодействия селеноводорода и серы происходит с образованием селена и сероводорода. В ходе реакции используется насыщенный раствор селеноводорода. Реакция медленно протекает при комнатной температуре.

4. Реакция взаимодействия серы и гидрида натрия:

2NaH 2S → Na2S H2S (t = 350-400 °C).

Реакция взаимодействия гидрида натрия и серы происходит с образованием сульфида натрия и сероводорода.

5. Реакция взаимодействия серы и гидрида лития:

2LiH 2S → Li2S H2S (t = 300-350 °C).

Реакция взаимодействия гидрида лития и серы происходит с образованием сульфида лития и сероводорода.

6. Реакция взаимодействия серы и гидрида калия:

2KH 2S → K2S H2S (t = 350 °C).

Реакция взаимодействия гидрида калия и серы происходит с образованием сульфида калия и сероводорода.

Реакции, взаимодействие серы с металлами и полуметаллами. уравнения реакции:

1. Реакция взаимодействия серы и кальция:

Ca S → CaS (t = 150 °C).

Реакция взаимодействия кальция и серы происходит с образованием сульфида кальция.

2. Реакция взаимодействия серы и кобальта:

Co S → CoS (t ≈ 650 °C).

Реакция взаимодействия кобальта и серы происходит с образованием сульфида кобальта. В результате реакции также образуются CoS2, Co3S4, Co9S8.

3. Реакция взаимодействия серы и калия:

2K S → K2S (t = 100-200 °C).

Реакция взаимодействия калия и серы происходит с образованием сульфида калия.

4. Реакция взаимодействия серы и лития:

2Li S → Li2S (t > 130 °C).

Реакция взаимодействия лития и серы происходит с образованием сульфида лития.

5. Реакция взаимодействия серы и натрия:

2Na S → Na2S (t > 130 °C).

Реакция взаимодействия натрия и серы происходит с образованием сульфида натрия.

6. Реакция взаимодействия серы и рубидия:

2Rb S → Rb2S (t = 100-130 °C).

Реакция взаимодействия рубидия и серы происходит с образованием сульфида рубидия.

7. Реакция взаимодействия серы и серебра:

2Ag S → Ag2S (t > 200°C).

Реакция взаимодействия серебра и серы происходит с образованием сульфида серебра.

8. Реакция взаимодействия серы и меди:

2Cu S → Cu2S (t = 300-400 °C).

Реакция взаимодействия меди и серы происходит с образованием сульфида меди.

9. Реакция взаимодействия серы и железа:

Fe S → FeS (t = 600-950°C).

Реакция взаимодействия железа и серы происходит с образованием сульфида железа.

10. Реакция взаимодействия серы и цинка:

Zn S → ZnS (t = 130 °C).

Реакция взаимодействия цинка и серы происходит с образованием сульфида цинка.

11. Реакция взаимодействия серы и таллия:

2Tl S → Tl2S (t = 320 °C).

Реакция взаимодействия таллия и серы происходит с образованием сульфида таллия. Реакция протекает в атмосфере водорода.

Про кислород:  10 класс. Химия. Химические свойства спиртов. - Химические свойства спиртов - 3. Окисление спиртов | Курсотека

Реакции, взаимодействие серы с солями. уравнения реакции:

1. Реакция взаимодействия серы и сульфита натрия:

Na2SO3  S → Na2S2O3 (t°)

или

8Na2SO3  S8 → 8Na2S2O3 (t°).

Реакция взаимодействия сульфита натрия и серы происходит с образованием тиосульфата натрия. Реакция происходит в кипящем водном растворе.

2. Реакция взаимодействия серы и сульфида калия:

K2S S → K2S2 (t°).

Реакция взаимодействия сульфида калия и серы происходит с образованием дисульфида калия.

3. Реакция взаимодействия серы и трисульфида гадолиния:

Gd2S3  S → 2GdS2.

Реакция взаимодействия трисульфида гадолиния с серой происходит с образованием сульфида гадолиния.

4. Реакция взаимодействия серы и сульфида таллия (I):

Tl2S 2S → Tl2S3.

Реакция взаимодействия сульфида таллия (I) и серы происходит с образованием трисульфида таллия (I).

5. Реакция взаимодействия серы и сульфида бора (III):

B2S3  2S → B2S5.

Реакция взаимодействия сульфида бора (III) с серой происходит c образованием сульфида бора (V).

6. Реакция взаимодействия серы и трисульфида диванадия:

V2S3  2S → V2S5.

Реакция взаимодействия трисульфида диванадия с парами серы происходит с образованием сульфида ванадия.

Реакции, взаимодействие серы. уравнения реакции серы с веществами.

Сера реагирует, взаимодействует с неметаллами, металлами, полуметаллами, оксидами, кислотами, солями и пр. веществами.

Реакции, взаимодействие серы с неметаллами

Реакции, взаимодействие серы с металлами и полуметаллами

Реакции, взаимодействие серы с оксидами

Реакции, взаимодействие серы с солями

Реакции, взаимодействие серы с кислотами

Реакции, взаимодействие серы с водородсодержащими соединениями

Реакции, связанные с изменением молекулярного состава серы

Реакции, взаимодействие цинка с кислотами. уравнения реакции:

1. Реакция взаимодействия цинка и азотной кислоты:

Zn 4HNO3 → Zn(NO3)2  2NO2  2H2O (to).

Реакция взаимодействия цинка и азотной кислоты происходит с образованием нитрата цинка, оксида азота (IV) и воды. В ходе реакции  используется горячий концентрированный раствор азотной кислоты.

2. Реакция взаимодействия цинка и ортофосфорной кислоты:

Zn H3PO4 → ZnHPO4  H2 (to).

Реакция взаимодействия цинка и ортофосфорной кислоты происходит с образованием гидроортофосфата цинка и водорода. В ходе первой реакции  используется горячий концентрированный раствор ортофосфорной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления 3, образуя галогениды железа (lll):

2Fe 3F2 =to=> 2FeF3 – фторид железа (lll)

2Fe 3Cl2 =to=> 2FeCl3 – хлорид железа (lll)

2Fe 3Br2 =to=> 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления 2:

Fe I2 =to=> FeI2 – йодид железа (ll)

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления 2. Примеры, подобных реакций из банка ФИПИ:

2FeCl3 2KI = 2FeCl2 I2 2KCl

2Fe(OH)3 6HI = 2FeI2 I2 6H2O

Fe2O3 6HI = 2FeI2 I2 3H2O

С неметаллами iv–vi групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно большая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан.

Также существует другой тип карбидов – ацетилениды, которые содержат ион C22-, фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции.

То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me2Si, с азотом – нитриды (Me3N2), фосфором – фосфиды (Me3P2):

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 Na2SO4  →   BaSO4↓  2NaCl

Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe  подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

2CuSO4  →   2CuO      SO2      O2     (SO3)

2Al2(SO4)3    →  2Al2O3      6SO2      3O2

2ZnSO4  →   2ZnO      SO2      O2

2Cr2(SO4)3   →    2Cr2O3      6SO2      3O2

При разложении сульфата железа (II) в FeSO4 Fe (II)  окисляется до Fe (III)

4FeSO4    →  2Fe2O3      4SO2      O2  

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления 6 сульфаты проявляют окислительныесвойстваи могут взаимодействовать с восстановителями.

Например, сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:

CaSO4   4C   →   CaS     4CO

4.Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова соль

CaSO4 ∙ 2H2O − гипс

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Способы получения

1. Серную кислоту в промышленностипроизводят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

АппаратНазначение и уравненяи реакций
Печь для обжига4FeS2 11O2 → 2Fe2O3 8SO2 Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС

Циклон Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат 2SO2 O2 ↔ 2SO3 Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  •  температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500оС. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  •  давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

nSO3 H2SO4  →  H2SO4·nSO3

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Про кислород:  Применение и значение водорода в применении. Происхождение, свойства воды

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Сульфиды

Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Растворимые в водеНерастворимые в воде, но растворимые в минеральных кислотахНерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.)Разлагаемые водой, в растворе не существуют
Сульфиды щелочных металлов и аммонияСульфиды прочих металлов, расположенных  до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS)Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)Сульфиды трехвалентных металлов (алюминия и хрома (III))
Реагируют с минеральными кислотами с образованием сероводородаНе реагируют с минеральными кислотами, сероводород получить напрямую нельзя

Разлагаются водой

ZnS     2HCl   →   ZnCl2     H2S

Al2S 6H2O → 2Al(OH) 3H2S

Упражнения типа «мысленный эксперимент» по химии цинка (тренажер задания 32 егэ по химии)

  1. Оксид цинка растворили в растворе хлороводородной кислоты и раствор нейтрализовали, добавляя едкий натр. Выделившееся студенистое вещество белого цвета отделили и обработали избытком раствора щелочи, при этом осадок полностью растворился. нейтрализация полученного раствора кислотой, например, азотной, приводит к повторному образованию студенистого осадка. Напишите уравнения описанных реакций.
  1. Цинк растворили в очень разбавленной азотной кислоте и в полученный раствор добавили избыток щелочи, получив прозрачный раствор. Напишите уравнения описанных реакций.
  1. Соль, полученную при взаимодействии оксида цинка с серной кислотой, прокалили при температуре 800°С.  Твердый  продукт реакции обработали концентрированным раствором щелочи, и через полученный раствор пропустили углекислый газ. Напишите уравнения описанных реакций.
  1. Нитрат цинка прокалили, продукт реакции при нагревании обработали раствором едкого натра. Через образовавшийся раствор пропустили углекислый газ до прекращения выделения осадка, после чего обработали избытком концентрированного нашатырного спирта, при этом осадок растворился. Напишите уравнения описанных реакций.
  1. Цинк растворили в очень разбавленной азотной кислоте, полученный раствор осторожно выпарили и остаток прокалили. Продукты реакции смешали с коксом и нагрели. Напишите уравнения описанных реакций.
  1. Несколько гранул цинка растворили при нагревании в растворе едкого натра. В полученный раствор небольшими порциями добавляли азотную кислоту до образования осадка. Осадок отделили, растворили в разбавленной азотной кислоте, раствор осторожно выпарили и остаток прокалили. Напишите уравнения описанных реакций.
  1. В концентрированную серную кислоту добавили металлический цинк. образовавшуюся соль выделили, растворили в воде и в раствор добавили нитрат бария. После отделения осадка в раствор внесли магниевую стружку, раствор профильтровали, фильтрат выпарили и прокалили. Напишите уравнения описанных реакций.
  1. Сульфид цинка подвергли обжигу. Полученное твердое вещество полностью прореагировало с раствором гидроксида калия. Через полученный раствор пропустили углекислый газ до выпадения осадка. Осадок растворили в соляной кислоте. Напишите уравнения описанных реакций.
  1. Некоторое количество сульфида цинка разделили на две части. Одну из них обработали соляной кислотой, а другую подвергли обжигу на воздухе. При взаимодействии выделившихся газов образовалось простое вещество. Это вещество нагрели с концентрированной азотной кислотой, причем выделился бурый газ. Напишите уравнения описанных реакций.
  1. Цинк растворили в растворе гидроксида калия. Выделившийся газ прореагировал с литием, а к полученному раствору по каплям добавили соляную кислоту до прекращения выпадения осадка. Его отфильтровали и прокалили. Напишите уравнения описанных реакций.

ZnO    2HCl  =  ZnCl2    H2O

ZnCl2    2NaOH  =  Zn(OH)2↓   2NaCl

Zn(OH)2     2NaOH  =  Na2[Zn(OH)4]

Na2[Zn(OH)4]    2HNO3(недостаток)   =  Zn(OH)2↓   2NaNO3    2H2O

4Zn    10HNO3  =  4Zn(NO3)2    NH4NO3    3H2O

HNO3    NaOH  =  NaNO3    H2O

NH4NO3    NaOH  = NaNO3    NH3↑    H2O

Zn(NO3)2     4NaOH  = Na2[Zn(OH)4]    2NaNO3

ZnO    H2SO4  =  ZnSO4    H2O

2ZnSO4  2ZnO    2SO2    O2

ZnO     2NaOH   H2O   = Na2[Zn(OH)4]

Na2[Zn(OH)4]    2CO2  =  Zn(OH)2↓   2NaHCO3

2Zn(NO3)2    2ZnO    4NO2     O2

ZnO     2NaOH    H2O   =  Na2[Zn(OH)4]

Na2[Zn(OH)4]    2CO2  =  Zn(OH)2↓   2NaHCO3

Zn(OH)2    4(NH3 · H2O)  = [Zn(NH3)4](OH)2      4H2O

4Zn    10HNO3  =  4Zn(NO3)2    NH4NO3    3H2O

2Zn(NO3)2    2ZnO    4NO2     O2

NH4NO3  N2O     2H2O

ZnO    C    Zn    CO

Zn    2NaOH    2H2O   =  Na2[Zn(OH)4]   H2↑

Na2[Zn(OH)4]    2HNO3   =  Zn(OH)2↓   2NaNO3    2H2O

Zn(OH)2      2HNO3   =  Zn(NO3)2    2H2O

2Zn(NO3)2    2ZnO    4NO2     O2

4Zn    5H2SO4  =  4ZnSO4    H2S↑    4H2O

ZnSO4     Ba(NO3)2   =  Zn(NO3)2    BaSO4

Zn(NO3)2    Mg  =  Zn    Mg(NO3)2

2Mg(NO3)2  →  2MgO 4NO2    O2↑

2ZnS     3O2   =  2ZnO     2SO2↑

ZnO      2KOH    H2O  =   K2[Zn(OH)4]

K2[Zn(OH)4]      CO2  =  Zn(OH)2      K2CO3       H2O

(также возможная версия: K2[Zn(OH)4]      2CO2  =  Zn(OH)2      2KHCO3)

Zn(OH)2     2HCl   =   ZnCl2      2H2O

ZnS      2HCl    =    ZnCl2       H2S↑

2ZnS     3O2   =  2ZnO     2SO2↑

2H2S     SO2    =    3S       2H2O

S       6HNO3   =    H2SO4      6NO2        2H2O

10)      

Zn         2KOH       2H2O    =   K2[Zn(OH)4]      H2

H2        2Li    =    2LiH

K2[Zn(OH)4]      2HCl    =   2KCl      Zn(OH)2↓       2H2O

Zn(OH)2   = ZnO      H2O

Физические свойства и нахождение в природе

Сера образует различные простые вещества (аллотропные модификации).

Наиболее устойчивая модификация серы – ромбическая сера S8. Это хрупкое вещество желтого цвета. 

Моноклинная сера – это аллотропная модификация серы, в которой атомы соединены в циклы в виде «короны». Это твердое вещество, состоящее из темно-желтых игл, устойчивое при температуре более 96оС, а при обычной температуре превращающееся в ромбическую серу. 

Про кислород:  Под кислородом при коронавирусе

Пластическая сера – это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.

В природе сера встречается:

  • в самородном виде;
  • в составе сульфидов (сульфид цинка ZnS, пирит FeS2, сульфид ртути HgS — киноварь и др.)
  • в составе сульфатов (CaSO4·2H2O гипс, Na2SO4·10H2O — глауберова соль)

Химические свойства

1. Цинк – сильный восстановитель. Цинк – довольно активный металл, но на воздухе он устойчив, так как покрывается тонким слоем оксида, предохраняющим его от дальнейшего окисления. При нагревании цинк реагирует со многими неметаллами.

1.1. Цинк реагируют с галогенами с образованием галогенидов:

Zn    I2  → ZnI2

Реакция цинка с иодом при добавлении воды:

1.2. Цинк реагирует с серой с образованием сульфидов:

Zn   S  → ZnS

1.3.Цинк реагируют с фосфором. При этом образуется бинарное соединение — фосфид:

3Zn 2P → Zn3P2

1.4.С азотом цинк непосредственно не реагирует.

1.5. Цинк непосредственно не реагирует с водородом, углеродом, кремнием и бором.

1.6. Цинк взаимодействует с кислородом с образованием оксида:

2Zn O2 → 2ZnO

2. Цинк взаимодействует со сложными веществами:

2.1. Цинк реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:

Zn0 H2 O → Zn 2O H20

2.2.Цинк взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой и др.). При этом образуются соль и водород.

Например, цинк реагирует с соляной кислотой:

Zn 2HCl → ZnCl2 H2↑

Демонстрация количества выделения водорода при реакции цинка с кислотой:

Цинк реагирует с разбавленной серной кислотой:

Zn    H2SO4  →   ZnSO4    H2

2.3.Цинк  реагирует с концентрированной серной кислотой. В зависимости от условий возможно образование различных продуктов. При нагревании гранулированного цинка с концентрированной серной кислотой образуются оксид серы (IV), сульфат цинка и вода:

Zn    2H2SO4(конц.)  → ZnSO4      SO2    2H2O

Порошковый цинк реагирует с концентрированной серной кислотой с образованием сероводорода, сульфата цинка и воды:

4Zn    5H2SO4(конц.)  →  4ZnSO4       H2S     4H2O

2.4.Аналогично: при нагревании гранулированного цинка с концентрированной азотной кислотой образуются оксид азота (IV), нитрат цинка и вода:

Zn  4HNO3(конц.)→ Zn(NO3)2 2NO2 2H2O

При нагревании цинка с очень разбавленнойазотной кислотой образуются нитрат аммония, нитрат цинка и вода:

4Zn    10HNO3(оч. разб.) = 4Zn(NO3)2       NH4NO3      3H2O

2.5.Цинк – амфотерный металл, он взаимодействует с щелочами. При взаимодействии цинка с раствором щелочи образуется тетрагидроксоцинкат и водород:

Zn    2KOH    2H2O  =  K2[Zn(OH)4]    H2

Цинк реагирует с расплавом щелочи с образованием цинката и водорода:

Zn    2NаОН(крист.)     Nа2ZnО2    Н2

В отличие от алюминия, цинк растворяется и в водном растворе аммиака:

Zn 4NH3 2H2O → [Zn(NH3)4](OH)2 H2

2.6. Цинк вытесняет менее активные металлы изоксидов и солей.

Например, цинк вытесняет медь из оксида меди (II):

Zn CuO → Cu ZnO

Еще пример: цинк восстанавливает медь из раствора сульфата меди (II):

CuSO4 Zn = ZnSO4  Cu

И свинец из раствора нитрата свинца (II):

Pb(NO3)2        Zn  =   Zn(NO3)2         Pb

Восстановительные свойства цинка также проявляются при взаимодействии его с сильными окислителями: нитратами и сульфитами в щелочной среде, перманганатами, соединениями хрома (VI):

4Zn       KNO3     7KOH  =  NН3    4K2ZnO2    2H2O

4Zn       7NaOH      6H2O    NaNO3   =  4Na2[Zn(OH)4]    NH3

3Zn        Na2SO3    8HCl   =   3ZnCl2    H2S    2NaCl    3H2O

Zn        NaNO3    2HCl    =  ZnCl2    NaNO2    H2O

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s22s22p63s23p63d64s2, то есть железо относится к d-элементам,  поскольку заполняемым в его случае является d-подуровень.

Для него наиболее характерны две степени окисления 2 и 3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей,  а также реагируют с безводными щелочами при сплавлении.

Следует отметить что степень окисления железа 2 весьма неустойчива, и легко переходит в степень окисления 3. Также известны соединения железа в редкой степени окисления 6 – ферраты, соли не существующей «железной кислоты» H2FeO4.

Химические свойства меди

Медь (Cu) относится к d-элементам и расположена в IB группе периодической таблицы Д.И.Менделеева. Электронная конфигурация атома меди в основном состоянии записывается виде 1s22s22p63s23p63d104s1 вместо предполагаемой формулы 1s22s22p63s23p63d94s2.

Другими словами, в случае атома меди наблюдается так называемый «проскок электрона» с 4s-подуровня на 3d-подуровень. Для меди, кроме нуля, возможны степени окисления 1 и 2. Степень окисления 1 склонна к диспропорционированию и стабильна лишь в нерастворимых соединениях типа CuI, CuCl, Cu2O и т. д., а также в комплексных соединениях, например, [Cu(NH3)

2]Cl и [Cu(NH3)2]OH. Соединения меди в степени окисления 1 не имеют конкретной окраски. Так, оксид меди (I) в зависимости от размеров кристаллов может быть темно-красный (крупные кристаллы) и желтый (мелкие кристаллы)

Медь является очень мягким, ковким и пластичным металлом с высокой электро- и теплопроводностью. Окраска металлической меди красно-розовая. Медь находится в ряду активности металлов правее водорода, т.е. относится к малоактивным металлам.

Цинкаты

Соли, в которых цинк образует кислотный остаток (цинкаты) — образуются из оксида цинка при сплавлении с щелочами и основными оксидами:

ZnO  Na2O → Na2ZnO2

Для понимания свойств цинкатов их также можно мысленно разбить на два отдельных вещества.

Например, цинкат натрия мы разделим мысленно на два вещества: оксид цинка и оксид натрия.

Na2ZnO2 разбиваем на Na2O и ZnO

Тогда нам станет очевидно, что цинкаты реагируют скислотами с образованием солей цинка:

K2ZnO2    4HCl (избыток) → 2KCl    ZnCl2    2H2O

СaZnO2      4HCl (избыток)  =   CaCl2      ZnCl2     2H2O

Na2ZnO2   4HNO3  → Zn(NO3)2    2NaNO3    2H2O

Na2ZnO2   2H2SO4  → ZnSO4     Na2SO4    2H2O

Под действием избытка воды цинкаты переходят в комплексные соли:

K2ZnO2 2H2O   =  K2[Zn(OH)4]

Na2ZnO2   2H2O  =  Na2[Zn(OH)4]

Электронное строение серы

Электронная конфигурация  серы в основном состоянии:

Атом серы содержит на внешнем энергетическом уровне 2 неспаренных электрона и две неподеленные электронные пары в основном энергетическом состоянии. Следовательно, атом серы может образовывать 2 связи по обменному механизму, как и кислород.

Электронная конфигурация  серы во втором возбужденном состоянии:

Таким образом, максимальная валентность серы в соединениях равна VI (в отличие от кислорода). Также для серы характерна валентность — IV.

Степени окисления атома серы – от -2 до 4. Характерные степени окисления -2, 0, 4, 6.

Электронное строение цинка и свойства

Электронная конфигурация  цинка в основном состоянии:

30Zn 1s22s22p63s23p63d104s2

2s  Химические свойства металлов IIA группы (Be, Mg, Ca, Sr, Ba, Ra).  2p  Химические свойства металлов IIA группы (Be, Mg, Ca, Sr, Ba, Ra).  2p  Химические свойства металлов IIA группы (Be, Mg, Ca, Sr, Ba, Ra).3s  Химические свойства металлов IIA группы (Be, Mg, Ca, Sr, Ba, Ra).   3p  Химические свойства металлов IIA группы (Be, Mg, Ca, Sr, Ba, Ra).   3p  Химические свойства металлов IIA группы (Be, Mg, Ca, Sr, Ba, Ra).  3d  Химические свойства металлов IIA группы (Be, Mg, Ca, Sr, Ba, Ra).

Характерная степень окисления цинка в соединениях 2.

Оцените статью
Кислород
Добавить комментарий