— Кислород — Большая Советская Энциклопедия

- Кислород - Большая Советская Энциклопедия Кислород

— кислород — большая советская энциклопедия

Кислород (латинское Oxygenium), О, химический элемент VI группы периодической системы Менделеева; атомный номер 8, атомная масса 15,9994. При нормальных условиях кислородгаз без цвета, запаха и вкуса. Трудно назвать другой элемент, который играл бы на нашей планете такую важную роль, как кислород.

  Историческая справка. Процессы горения и дыхания издавна привлекали внимание учёных. Первые указания на то, что не весь воздух, а лишь «активная» его часть поддерживает горение, обнаружены в китайских рукописях 8 в. Много позже Леонардо да Винчи (1452—1519) рассматривал воздух как смесь двух газов, лишь один из которых расходуется при горении и дыхании. Окончательное открытие двух главных составных частей воздухаазота и кислорода, сделавшее эпоху в науке, произошло только в конце 18 в. (см. Химия, Исторический очерк). Кислород получили почти одновременно К. Шееле (1769—70) путём прокаливания селитр (KNO3, NaNO3), двуокиси марганца MnO2 и других веществ и Дж. Пристли (1774) при нагревании сурика Pb3O4 и окиси ртути HgO. В 1772 Д. Резерфорд открыл азот. В 1775 А. Лавуазье, произведя количественный анализвоздуха, нашёл, что он «состоит из двух (газов) различного и, так сказать, противоположного характера», т. е. из кислорода и азота. На основе широких экспериментальных исследований Лавуазье правильно объяснил горение и дыхание как процессы взаимодействия веществ с кислородом. Поскольку кислород входит в состав кислот, Лавуазье назвал его oxygene, т. е. «образующий кислоты» (от греческого oxýs — кислый и gennáo — рождаю; отсюда и русское название «кислород»).

  Распространение в природе. Кислород — самый распространённый химический элемент на Земле. Связанный кислород составляет около 6/7 массы водной оболочки Земли — гидросферы (85,82% по массе), почти половину литосферы (47% по массе), и только в атмосфере, где кислород находится в свободном состоянии, он занимает второе место (23,15% по массе) после азота.

  Кислород стоит на первом месте и по числу образуемых им минералов (1364); среди минералов, содержащих кислород, преобладают силикаты (полевые шпаты, слюды и др.), кварц, окислы железа, карбонаты и сульфаты. В живых организмах в среднем около 70% кислорода; он входит в состав большинства важнейших органических соединений (белков, жиров, углеводов и т.д.) и в состав неорганических соединений скелета. Исключительно велика роль свободного кислорода в биохимических и физиологических процессах, особенно в дыхании. За исключением некоторых микроорганизмов-анаэробов, все животные и растения получают необходимую для жизнедеятельности энергию за счёт окисления биологического различных веществ с помощью кислорода.

  Вся масса свободного кислорода. Земли возникла и сохраняется благодаря жизнедеятельности зелёных растений суши и Мирового океана, выделяющих кислород в процессе фотосинтеза. На земной поверхности, где протекает фотосинтез и господствует свободный кислород, формируются резко окислительные условия. Напротив, в магме, а также глубоких горизонтах подземных вод, в илах морей и озер, в болотах, где свободный кислород отсутствует, формируется восстановительная среда. Окислительно-восстановительные процессы с участием кислорода определяют концентрацию многих элементов и образование месторождений полезных ископаемыхугля, нефти, серы, руджелеза, меди и т.д. (см. Круговорот веществ). Изменения в круговорот кислорода вносит и хозяйственная деятельность человека. В некоторых промышленных странах при сгорании топлива расходуется кислорода больше, чем его выделяют растения при фотосинтезе. Всего же на сжигание топлива в мире ежегодно потребляется около 9·109 т кислорода.

  Изотопы, атом, молекула. Кислород имеет три устойчивых изотопа: 16О, 17O и 18O, среднее содержание которых составляет соответственно 99,759%, 0,037% и 0,204% от общего числа атомовкислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16O связано с тем, что ядро атома16O состоит из 8 протонов и 8 нейтронов. А такие ядра, как следует из теории атомного ядра, обладают особой устойчивостью.

  В соответствии с положением кислорода в периодической системе элементов Менделеева электроныатомакислорода располагаются на двух оболочках: 2 — на внутренней и 6 — на внешней (конфигурация 1s22s22p4 см. Атом). Поскольку внешняя оболочка атомакислорода не заполнена, а потенциал ионизации и сродство к электрону составляют соответственно 13,61 и 1,46 эв, атомкислорода в химических соединениях обычно приобретает электроны и имеет отрицательный эффективный заряд. Напротив, крайне редки соединения, в которых электроны отрываются (точнее оттягиваются) от атомакислорода (таковы, например, F2O, F2O2). Раньше, исходя единственно из положения кислорода в периодической системе, атомукислорода в окислах и в большинстве других соединений приписывали отрицательный заряд (—2). Однако, как показывают экспериментальные данные, ион O2- не существует ни в свободном состоянии, ни в соединениях, и отрицательный эффективный заряд атомакислорода практически никогда существенно не превышает единицы.

  В обычных условиях молекулакислорода двухатомна (O2); в тихом электрическом разряде образуется также трёхатомная молекула O3озон; при высоких давлениях обнаружены в небольших количествах молекулы O4 Электронное строение O2 представляет большой теоретический интерес. В основном состоянии молекула O2 имеет два неспаренных электрона; для неё неприменима «обычная» классическая структурная формула О=О с двумя двухэлектронными связями (см. Валентность). Исчерпывающее объяснение этого факта дано в рамках теории молекулярных орбиталей. Энергия ионизации молекулыкислорода (O2 — е®О2 ) составляет 12,2 эв, а сродство к электрону (O2 е ® O2) — 0,94 эв. Диссоциация молекулярного кислорода на атомы при обычной температуре ничтожно мала, она становится заметной лишь при 1500 °С; при 5000 °С молекулыкислорода почти полностью диссоциированы на атомы.

  Физические свойства. Кислород — бесцветный газ, сгущающийся при —182,9 °С и нормальном давлении в бледно-синюю жидкость, которая при —218,7 °С затвердевает, образуя синие кристаллы. Плотность газообразного кислорода (при 0°С и нормальном давлении) 1,42897 г/л. Критическая температуракислорода довольно низка tkpит = —118,84 °С), т. е. ниже, чем у Cl2, CO2, SO2 и некоторых других газов; Ркрит = 4,97 Мн/м2 (49,71 am). Теплопроводность (при 0 °С) 23,86Ч10-3 вт/(м·К), т. е. 57Ч10-6 кал/сек·см·°С). Молярная теплоёмкость (при 0 °С) в дж/(моль·К) Ср = 28,9, Cv = 20,5; в кал/(моль· oC) Ср = 6,99, Cv = 4,98; Cp/Cv = 1,403. Диэлектрическая проницаемость газообразного кислорода 1,000547 (0 °С), жидкого 1,491. Вязкость 189 мпуаз (0 °С). Кислород мало растворим в воде: при 20 °С и 1 am в 1 м3воды растворяется 0,031 м3, а при 0 °С — 0,049 м3кислорода. Хорошими твёрдыми поглотителями кислорода являются платиновая чернь и активный древесный уголь.

  Химические свойства. Кислород образует химические соединения со всеми элементами, кроме лёгких инертных газов. Будучи наиболее активным (после фтора) неметаллом, кислород взаимодействует с большинством элементов непосредственно;  исключение составляют тяжелые инертные газы, галогены, золото и платина; их соединения с кислородом получают косвенным путем. Почти все реакциикислорода с другими веществамиреакцииокисления экзотермичны, т. е. сопровождаются выделением энергии. С водородом при обычных температурахкислород реагирует крайне медленно, выше 550 °С эта реакция идёт со взрывом: 2Н2 O2 = 2H2O. С серой, углеродом, азотом, фосфоромкислород взаимодействует при обычных условиях очень медленно. При повышении температурыскорость реакции возрастает и при некоторой, характерной для каждого элемента температуревоспламенения начинается горение. Реакцияазота с кислородом благодаря особой прочностимолекулы N2 эндотермична и становится заметной лишь выше 1200 °С или в электрическом разряде: N2 O2 = 2NO. Кислород активно окисляет почти все металлы, особенно легко — щелочные и щёлочноземельные. Активность взаимодействия металла с кислородом зависит от многих факторов — состояния поверхности металла, степени измельчения, присутствия примесей (см. Алюминий, Железо, Хром и т.д.).

  В процессе взаимодействия вещества с кислородом исключительно важна роль воды. Например, даже такой активный металл, как калий, с совершенно лишённым влаги кислородом не реагирует, но воспламеняется в кислороде при обычной температуре в присутствии даже ничтожных количеств паровводы. Подсчитано, что в результате коррозии ежегодно теряется до 10% всего производимого металла.

  Окиси некоторых металлов, присоединяя кислород, образуют перекисные соединения, содержащие 2 или более связанных между собой атомовкислорода. Так, перекиси Na2O2 и ВаО2 включают перекисный ион O22-, надперекиси NaO2 и KO2ион O2, а озониды NaO3, KO3, RbO3 и CsO3ион O3. Кислород экзотермически взаимодействует со многими сложными веществами. Так, аммиак горит в кислороде в отсутствии катализаторов, реакция идёт по уравнению: 4NH3 3O2 = 2N22О. Окислениеаммиакакислородом в присутствии катализатора даёт NO (этот процесс используют при получении азотной кислоты). Особое значение имеет горениеуглеводородов (природного газа, бензина, керосина) — важнейший источник тепла в быту и промышленности, например СН42 = СО22О. Взаимодействие углеводородов с кислородом лежит в основе многих важнейших производственных процессов — такова, например, так называемая конверсия метана, проводимая для получения водорода: 2СН4 О22О=2СО22 (см. Конверсия газов). Многие органические соединения (углеводороды с двойной или тройной связью, альдегиды, фенолы, а также скипидар, высыхающие масла и др.) энергично присоединяют кислород. Окислениекислородом питательных веществ в клетках служит источником энергии живых организмов.

  Получение. Существует 3 основных способа получения кислорода: химический, электролизный (электролизводы) и физический (разделение воздуха).

  Химический способ изобретён ранее других. Кислород можно получать, например, из бертолетовой соли KClO3, которая при нагревании разлагается, выделяя O2 в количестве 0,27 м3 на 1 кг соли. Окись бария BaO при нагревании до 540 °С сначала поглощает кислород из воздуха, образуя перекись BaO2, а при последующем нагревании до 870 °С BaO2 разлагается, выделяя чистый кислород. Его можно получать также из KMnO4, Ca2PbO4, K2Cr2O7 и других веществ при нагревании и добавлении катализаторов. Химический способ получения кислорода малопроизводителен и дорог, промышленного значения не имеет и используется лишь в лабораторной практике.

  Электролизный способ состоит в пропускании постоянного электрического тока через воду, в которую для повышения её электропроводности добавлен растворедкого натра NaOH. При этом вода разлагается на кислород и водород. Кислород собирается около положительного электрода электролизёра, а водород — около отрицательного. Этим способом кислород добывают как побочный продукт при производстве водорода. Для получения 2 м3водорода и 1 м3кислорода затрачивается 12—15 квт·ч электроэнергии.

  Разделение воздуха является основным методом получения кислорода в современной технике. Осуществить разделение воздуха в нормальном газообразном состоянии очень трудно, поэтому воздух прежде сжижают, а затем уже разделяют на составные части. Такой способ получения кислорода называют разделением воздуха методом глубокого охлаждения. Сначала воздух сжимается компрессором, затем, после прохождения теплообменников, расширяется в машине-детандере или дроссельном вентиле, в результате чего охлаждается до температуры 93 К (—180 °С) и превращается в жидкий воздух. Дальнейшее разделение жидкого воздуха, состоящего в основном из жидкого азота и жидкого кислорода, основано на различии температурыкипения его компонентов [tkип O2 90,18 К (—182,9 °С), tkип N2 77,36 К (—195,8 °С)]. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость всё более обогащается кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн (см. Ректификация), получают жидкий кислород нужной чистоты (концентрации). В СССР выпускают мелкие (на несколько л) и самые крупные в мире кислородные воздухоразделительные установки (на 35000 м3кислорода). Эти установки производят технологический кислород с концентрацией 95—98,5%, технический — с концентрацией 99,2—99,9% и более чистый, медицинский кислород, выдавая продукцию в жидком и газообразном виде. Расход электрической энергии составляет от 0,41 до 1,6 квт·ч/м3.

  Кислород можно получать также при разделении воздуха по методу избирательного проницания (диффузии) через перегородки-мембраны. Воздух под повышенным давлением пропускается через фторопластовые, стеклянные или пластиковые перегородки, структурная решётка которых способна пропускать молекулы одних компонентов и задерживать другие. Этот способ получения кислорода пока (1973) используется лишь в лабораториях.

  Газообразный кислород хранят и транспортируют в стальных баллонах и ресиверах при давлении 15 и 42 Мн/м2 (соответственно 150 и 420 бар, или 150 и 420 am), жидкий кислород — в металлических сосудах Дьюара или в специальных цистернах-танках. Для транспортировки жидкого и газообразного кислорода используют также специальные трубопроводы. Кислородные баллоны окрашены в голубой цвет и имеют чёрную надпись «кислород».

  Применение. Технический кислород используют в процессах газопламенной обработки металлов, в сварке, кислородной резке, поверхностной закалке, металлизации и др., а также в авиации, на подводных судах и пр. Технологический кислород применяют в химической промышленности при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, перекисейметаллов и др. химических продуктов. Жидкий кислород применяют при взрывных работах (см. Оксиликвиты), в реактивных двигателях и в лабораторной практике в качестве хладагента.

  Заключенный в баллоны чистый кислород используют для дыхания на больших высотах, при комических полетах, при подводном плавании и др. В медицине кислород дают для вдыхания тяжелобольным, применяют для приготовления кислородных, водяных и воздушных (в кислородных палатках) ванн, для внутримышечного введения и т.п. (см. Кислородная терапия).

  В. Л. Василевский, И. П. Вишнев, А. И. Перельман.

  Кислород в металлургии широко применяется для интенсификации ряда пирометаллургических процессов. Полная или частичная замена поступающего в металлургические агрегаты воздухакислородом изменила химизм процессов, их теплотехнические параметры и технико-экономические показатели. Кислородное дутьё позволило сократить потери тепла с уходящими газами, значительную часть которых при воздушном дутье составлял азот. Не принимая существенного участия в химических процессах, азот замедлял течение реакций, уменьшая концентрацию активных реагентов окислительно-восстановительной среды. При продувке кислородом снижается расход топлива, улучшается качество металла, в металлургических агрегатах возможно получение новых видов продукции (например, шлаков и газов необычного для данного процесса состава, находящих специальное техническое применение) и др.

  Первые опыты по применению дутья, обогащенного кислородом, в доменном производстве для выплавки передельного чугуна и ферромарганца были проведены одновременно в СССР и Германии в 1932—33. Повышенное содержание кислорода в доменном дутье сопровождается большим сокращением расхода последнего, при этом увеличивается содержание в доменном газеокиси углерода и повышается его теплота сгорания. Обогащение дутья кислородом позволяет повысить производительность доменной печи, а в сочетании с газообразным и жидким топливом, подаваемым в горн, приводит к снижению расхода кокса. В этом случае на каждый дополнительный процент кислорода в дутье производительность увеличивается примерно на 2,5%, а расход кокса снижается на 1%.

  Кислород в мартеновском производстве в СССР сначала использовали для интенсификации сжигания топлива (в промышленном масштабе кислород для этой цели впервые применили на заводах «Серп и молот» и «Красное Сормово» в 1932—33). В 1933 начали вдувать кислород непосредственно в жидкую ванну с целью окисления примесей в период доводки. С повышением интенсивности продувки расплава на 1 м3/т за 1 ч производительность печи возрастает на 5—10%, расход топлива сокращается на 4—5%. Однако при продувке увеличиваются потери металла. При расходе кислорода до 10 м3/т за 1 ч выход стали снижается незначительно (до 1%). В мартеновском производстве кислород находит всё большее распространение. Так, если в 1965 с применением кислорода в мартеновских печах было выплавлено 52,1% стали, то в 1970 уже 71%.

  Опыты по применению кислорода в электросталеплавильных печах в СССР были начаты в 1946 на заводе «Электросталь». Внедрение кислородного дутья позволило увеличить производительность печей на 25—30%, снизить удельный расход электроэнергии на 20—30%, повысить качество стали, сократить расход электродов и некоторых дефицитных легирующих добавок. Особенно эффективной оказалась подача кислорода в электропечи при производстве нержавеющих сталей с низким содержанием углерода, выплавка которых сильно затрудняется вследствие науглероживающего действия электродов. Доля электростали, получаемой в СССР с использованием кислорода, непрерывно растет и в 1970 составила 74,6% от общего производства стали.

  В ваграночной плавке обогащенное кислородом дутьё применяется главным образом для высокого перегрева чугуна, что необходимо при производстве высококачественного, в частности высоколегированного, литья (кремнистого, хромистого и т.д.). В зависимости от степени обогащения кислорода ваграночного дутья на 30—50% снижается расход топлива, на 30—40% уменьшается содержание серы в металле, на 80—100% увеличивается производительность вагранки и существенно (до 1500 °С) повышается температура выпускаемого из неё чугуна.

  О значении кислорода в конвертерном производстве см. в ст. Кислородно-конвертерный процесс.

  Кислород в цветной металлургии получил распространение несколько позже, чем в чёрной. Обогащенное кислородом дутьё используется при конвертировании штейнов, в процессах шлаковозгонки, вельцевания, агломерации и при отражательной плавке медных концентратов. В свинцовом, медном и никелевом производстве кислородное дутьё интенсифицировало процессы шахтной плавки, позволило снизить расход кокса на 10—20%, увеличить проплав на 15—20% и сократить кол-во флюсов в отдельных случаях в 2—3 раза. Обогащение кислородом воздушного дутья до 30% при обжиге цинковых сульфидных концентратов увеличило производительность процесса на 70% и уменьшило объём отходящих газов на 30%. Разрабатываются новые высокоэффективные процессы плавки сульфидных материалов с применением чистого кислорода: плавка в кислородном факеле, конвертирование штейнов в вертикальных конвертерах, плавка в жидкой ванне и др.

  С. Г. Афанасьев.

  Лит.: Чугаев Л. А., Открытие кислорода и теория горения в связи с философскими учениями древнего мира, Избр. труды, т. 3, М., 1962, с. 350; Коттон Ф., Уилкинсон Дж., Современная неорганическая химия, пер. с англ., т. 1—3, М., 1969; Некрасов Б. В., Основы общей химии, т. 1, М., 1965; Кислород. Справочник, под ред. Д. Л. Глизманенко, ч. 1—2, М., 1967; Разделение воздуха методом глубокого охлаждения, под ред. В. И. Епифановой, Л. С. Аксельрода, т. 1—2, М., 1964; Справочник по физико-техническим основам глубокого охлаждения, М. — Л., 1963.

Минеральные удобрения

Вещества, главным образом соли, которые содержат необходимые для растений элементы питания, называются минеральными удобрениями. Их вносят в почву для повышения ее плодородия с целью получения высоких и устойчивых урожаев.

Макро- и микроудобрения. Основными химическими элементами, необходимыми для жизнедеятельности растений, являются следующие (их десять): С, О, Н, N, Р, К, Са, Mg, Fe, S. Такие элементы минерального питания растений, как N, Р, К и некоторые другие, необходимы растениям в больших дозах.

Однако помимо перечисленных 10 элементов живым организмам необходимы в очень небольших количествах (микроколичествах) такие химические элементы, как В, Сu, Со, Мn, Zn, Mo, I. Они называются микроэлементами, а удобрения, их содержащие, — микроудобрениями.

Классификация удобрений. Минеральные удобрения подразделяют на простые (односторонние) и комплексные (сложные и смешанные).

Простые удобрения содержат один питательный элемент. Например, натриевая селитра содержит азот, а хлорид калия — калий и т. д.

Сложные удобрения в однородных частицах содержат два и более питательных элемента. Например, калийная селитра содержит калий и азот, нитрофоска — азот, фосфор и калий и т. д.

Смешанные удобрения представляют собой механические смеси разных видов удобрений — простых, сложных или тех и других. Они часто называются тукосмесями.

Минеральные удобрения часто называют туками, а промышленность, производящую их, туковой. В Советском Союзе создана мощная туковая промышленность. В настоящее время она выпускает более 40 видов минеральных удобрений.

Азотные, фосфорные и калийные удобрения. Наибольшее значение имеют азотные, фосфорные и калийные удобрения.

Азотные удобрения, как уже отмечалось, содержат связанный азот. Это селитры (нитраты натрия, калия, аммония и кальция), соли аммония, жидкий аммиак, аммиачная вода, мочевина СО(МН2)2 (употребляется и как кормовое средство для скота, содержит больше всего азота — 47%) и др.

Фосфорные удобрения — это кальциевые и аммонийные соли фосфорной кислоты. Они составляют половину всех производимых минеральных удобрений. Наиболее распространенными фосфорными удобрениями являются следующие.

Фосфоритная мука, получаемая при тонком размоле фосфоритов. Так как она содержит малорастворимую соль Са3(РO4)2, то усваиваться растениями может только на кислых почвах — подзолистых и торфяных. Усвоению благоприятствует тонкость помола, а также внесение ее в почву совместно с кислыми удобрениями, например с (NH4)2SO4 или навозом.

Простой суперфосфат, получаемый обработкой апатитов и фосфоритов серной кислотой. Цель обработки — получить растворимую соль, хорошо усвояемую растениями в любой почве:

Смесь полученных солей Са(Н2РO4)2 и CaSO4 обычно и называется простым суперфосфатом. Его производят в очень больших количествах как в гранулированном виде, так и в виде порошка.

Гранулированное удобрение имеет ряд преимуществ по сравнению с порошковым: его легче хранить (не слеживается), удобнее вносить в почву с помощью туковых сеялок, но главное — на большинстве почв оно дает более высокий прирост урожая.

Двойной суперфосфат — концентрированное фосфорное удобрение состава Са(Н2РO4)2. По сравнению с простым суперфосфатом не содержит балласта — CaSO4. Получение двойного суперфосфата состоит из двух стадий.

Преципитат — концентрированное фосфорное удобрение состава Подгруппа азота

Костная мука, получаемая при переработке костей домашних животных, содержит Са3(РO4)2.

Аммофос — удобрение, содержащее фосфор и азот. Получается при нейтрализации фосфорной кислоты аммиаком. Обычно содержит соли NH4H2PO4 и (NH4)2HPO4.

Таким образом, фосфорными удобрениями являются кальциевые и аммонийные соли фосфорной кислоты.

Калийные удобрения также необходимы для питания растений. Недостаток калия в почве заметно уменьшает урожай и устойчивость растений к неблагоприятным условиям. Поэтому около 90% добываемых солей калия используют в качестве калийных удобрений.

Важнейшими калийными удобрениями являются:

1)    сырые соли, представляющие собой размолотые природные соли, преимущественно минералы сильвинит Подгруппа азотаПодгруппа азота

2)    концентрированные удобрения, получаемые в результате переработки природных калийных солей,— это КСl и K2SO4;

3)    древесная и торфяная зола, содержащие поташ К2СO3.

Большое внимание уделяется производству смешанных удобрений, содержащих микроэлементы.

Услуги по химии:

  1. Заказать химию
  2. Заказать контрольную работу по химии
  3. Помощь по химии

Лекции по химии:

  1. Основные понятия и законы химии
  2. Атомно-молекулярное учение
  3. Периодический закон Д. И. Менделеева
  4. Химическая связь
  5. Скорость химических реакций
  6. Растворы
  7. Окислительно-восстановительные реакции
  8. Дисперсные системы
  9. Атомно-молекулярная теория
  10. Строение атома в химии
  11. Простые вещества
  12. Химические соединения
  13. Электролитическая диссоциация
  14. Химия и электрический ток
  15. Чистые вещества и смеси
  16. Изменения состояния вещества
  17. Атомы. Молекулы. Вещества
  18. Воздух
  19. Химические реакции
  20. Закономерности химических реакций
  21. Периодическая таблица химических элементов
  22. Относительная атомная масса химических элементов
  23. Химические формулы
  24. Движение электронов в атомах
  25. Формулы веществ и уравнения химических реакций
  26. Химическая активность металлов 
  27. Количество вещества
  28. Стехиометрические расчёты
  29. Энергия в химических реакциях
  30. Вода 
  31. Необратимые реакции
  32. Кинетика
  33. Химическое равновесие
  34. Разработка новых веществ и материалов
  35. Зеленая химия
  36. Термохимия
  37. Правило фаз Гиббса
  38. Диаграммы растворимости
  39. Законы Рауля
  40. Растворы электролитов
  41. Гидролиз солей и нейтрализация
  42. Растворимость электролитов
  43. Электрохимические процессы
  44. Электрохимия
  45. Кинетика химических реакций
  46. Катализ
  47. Строение вещества в химии
  48. Строение твердого тела и жидкости
  49. Протекание химических реакций
  50. Комплексные соединения

Лекции по неорганической химии:

  1. Важнейшие классы неорганических соединений
  2. Водород и галогены
  3. Подгруппа кислорода
  4. Подгруппа углерода
  5. Общие свойства металлов
  6. Металлы главных подгрупп
  7. Металлы побочных подгрупп
  8. Свойства элементов первых трёх периодов периодической системы
  9. Классификация неорганических веществ
  10. Углерод
  11. Качественный анализ неорганических соединений
  12. Металлы и сплавы
  13. Металлы и неметаллы
  14. Производство металлов
  15. Переходные металлы
  16. Элементы 1 (1А), 2 IIA и 13 IIIA групп и соединения
  17. Элементы 17(VIIA), 16(VIA) 15(VA), 14(IVA) групп и их соединения
  18. Важнейшие S -элементы и их соединения
  19. Важнейшие d элементы и их соединения
  20. Важнейшие р-элементы и их соединения
  21. Производство неорганических соединений и сплавов
  22. Главная подгруппа шестой группы
  23. Главная подгруппа пятой группы
  24. Главная подгруппа четвертой группы
  25. Первая группа периодической системы
  26. Вторая группа периодической системы
  27. Третья группа периодической системы
  28. Побочные подгруппы четвертой, пятой, шестой и седьмой групп
  29. Восьмая группа периодической системы
  30. Водород
  31. Кислород
  32. Озон
  33. Водород
  34. Галогены
  35. Естественные семейства химических элементов и их свойства
  36. Химические элементы и соединения в организме человека
  37. Геологические химические соединения

Лекции по органической химии:

  1. Органическая химия
  2. Углеводороды
  3. Кислородсодержащие органические соединения
  4. Азотсодержащие органические соединения
  5. Теория А. М. Бутлерова
  6. Соединения ароматического ряда
  7. Циклические соединения
  8. Карбонильные соединения
  9. Амины и аминокислоты
  10. Химия живого вещества
  11. Синтетические полимеры
  12. Органический синтез
  13. Элементы 14(IVA) группы
  14. Азот и сера
  15. Растворы кислот и оснований

Тренировочные задания

1. Водород при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и железом2) серой и хромом3) оксидом углерода (II) и соляной кислотой4) азотом и натрием

2. Верны ли следующие утверждения о водороде?

А. Перекись водорода можно получить сжиганием водорода в избытке кислорода.Б. Реакция между водородом и серой идёт без катализатора.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

3. Кислород при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом2) фосфором и цинком3) оксидом кремния (IV) и хлором4) хлоридом калия и серой

4. Верны ли следующие утверждения о кислороде?

А. Кислород не реагирует с хлором.Б. Реакция кислорода с серой даёт SO2.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

5. Фтор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом2) аргоном и азотной кислотой3) оксидом углерода (IV) и неоном4) водой и натрием

6. Верны ли следующие утверждения о фторе?

А. Реакция избытка фтора с фосфором приводит к PF5.Б. Фтор реагирует с водой.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

7. Хлор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и железом2) фосфором и серной кислотой3) оксидом кремния (IV) и неоном4) бромидом калия и серой

8. Верны ли следующие утверждения о хлоре?

А. Пары хлора легче воздуха.Б. В заимодействие хлора с кислородом приводит к оксиду хлора (V).

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

9. Бром при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) фосфором и железом2) фосфором и серной кислотой3) оксидом кремния (IV) и хлором4) бромидом калия и серой

10. Верны ли следующие утверждения о броме?

А. Бром не вступает в реакцию с водородом.Б. Бром вытесняет хлор из хлоридов.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

11. Йод при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом2) фосфором и кальцием3) оксидом кремния (IV) и хлором4) хлоридом калия и серой

12. Верны ли следующие утверждения о йоде?

А. Раствор йода обладает бактерицидными свойствами.Б. Йод реагирует с хлоридом кальция.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

13. Сера при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) натрием и железом2) фосфором и оксидом цинком3) оксидом кремния (IV) и хлором4) хлоридом калия и бромидом натрия

14. Верны ли следующие утверждения о сере?

А. При сплавлении серы и кальция образуется CaS.Б. При реакции серы с кислородом образуется SO2.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

15. Азот при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) литием и хлоридом кальция2) хлором и оксидом кальция3) оксидом кремния (IV) и хлором4) литием и кальцием

16. Верны ли следующие утверждения об азоте?

А. В промышленности реакцию азота и водорода осуществляют под высоким давлением в присутствии катализатора.Б. При взаимодействии азота и натрия образуется Na3N.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

17. Фосфор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) натрием и сульфидом кальция2) хлором и кислородом3) оксидом углерода (IV) и серой4) серой и оксидом цинка

18. Верны ли следующие утверждения о фосфоре?

А. Реакция фосфора с хлором идёт только в присутствии катализатора.Б. При реакции фосфора с избытком серы образуются только P2S3.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

19. Углерод при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кальцием и сульфатом бария2) хлором и неоном3) оксидом фосфора (V) и серой4) серой и гидроксидом цинка

20. Верны ли следующие утверждения об углероде?

А. При взаимодействии углерода с натрием образуется карбид состава Na2C2.Б. Углерод реагирует с оксидом кальция с образованием CaC2.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

21. Кремний при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и гидроксидом натрия2) хлором и неоном3) оксидом фосфора (V) и серой4) серой и гидроксидом цинка

22. Верны ли следующие утверждения о кремнии?

А. При взаимодействии кремния с углеродом образуется карбид состава SiC.Б. Кремний реагирует с магнием с образованием Mg2Si.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

23. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) H2 Ca →Б) H2 Na2SO4 →В) H2 CuO →

ПРОДУКТЫ РЕАКЦИИ1) Na2SO3 H2O2) Cu(OH)23) Cu H2O4) CaH25) Na2S H2O

24. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) H2 Fe3O4 →Б) H2 N2 →В) H2 Na →

ПРОДУКТЫ РЕАКЦИИ1) Fe(OH)22) NH33) N2H44) Fe H2O 5) NaH

25. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) O2 Li →Б) O2 Fe(OH)2 H2O →В) O2 (изб.) P →

ПРОДУКТЫ РЕАКЦИИ1) Li2O2) Li2O23) P2O54) Fe(OH)35) P2O3

26. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) O2 S →Б) O2 Cr(OH)2 H2O →В) O2 (изб.) C →

ПРОДУКТЫ РЕАКЦИИ1) CO2) CO23) SO34) SO25) Cr(OH)3

27. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Cl2 Fe →Б) Cl2 Cr →В) Cl2 (изб.) P →

ПРОДУКТЫ РЕАКЦИИ1) PCl32) FeCl23) FeCl34) CrCl35) PCl5

28. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Cl2 NaOH (охл.) →Б) Cl2 NaOH (нагр.) →В) Cl2 NaBr →

ПРОДУКТЫ РЕАКЦИИ1) NaClO3 NaCl H2O2) NaCl NaClO H2O3) NaClO3 NaCl4) NaCl Br25) NaClBr

29. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Br2 NaI →Б) Br2 NaOH (нагр.) →В) Br2 NaOH (охл.) →

ПРОДУКТЫ РЕАКЦИИ1) NaClI2) NaBrO NaBr3) NaBrO3 NaBr H2O4) NaBrO NaBr H2O5) NaBr I2

30. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Br2 NaOH (нагр.) →Б) Br2 I2 →В) Br2 SO2 H2O →

ПРОДУКТЫ РЕАКЦИИ1) NaBr NaBrO3 H2O2) NaBr NaBrO H2O3) I Br4) H2SO4 HBr5) HBr SO3

31. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) I2 SO2 H2O →Б) I2 H2S →В) I2 HNO3 (конц.) →

ПРОДУКТЫ РЕАКЦИИ1) HIO3 NO2 H2O2) HI S3) HIO NO H2O4) HIO NO25) HI H2SO4

32. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) I2 HNO3 (конц.) →Б) I2 NaOH (нагрев.) →В) I2 Br2 →

ПРОДУКТЫ РЕАКЦИИ1) NaI NaIO H2O2) HIO3 NO2 H2O3) IBr4) HIO NO H2O5) NaI NaIO3 H2O

33. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) S Na →Б) S HI →В) S NaOH →

ПРОДУКТЫ РЕАКЦИИ1) Na2SO3 H2O2) Na2S3) H2S I24) Na2S Na2SO3 H2O5) Na2S H2O

34. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) S Cl2 (недост.) →Б) S HNO3 (конц.) →В) S O2 →

ПРОДУКТЫ РЕАКЦИИ1) H2SO4 NO2 H2O2) SCl63) SO34) SO25) SCl2

35. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) N2 O2 →Б) N2 Na →В) N2 Ca →

ПРОДУКТЫ РЕАКЦИИ1) Ca3N22) NO23) N2O54) NO5) Na3N

36. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) N2 Li →Б) N2 Al →В) N2 H2 →

ПРОДУКТЫ РЕАКЦИИ1) NH32) Li3N3) N2H24) LiN35) AlN

37. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) P H2 →Б) P Cl2 (изб.) →В) P H2SO4 (конц.) →

ПРОДУКТЫ РЕАКЦИИ1) PCl32) H3PO4 SO2 H2O3) H2S PH3 H2O4) PH35) PCl5

38. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) P Br2 (недост.) →Б) P LiВ) P HNO3 (конц.) →

ПРОДУКТЫ РЕАКЦИИ1) H3PO4 NO2 H2O2) Li3P3) H3PO4 NH4NO34) PBr55) PBr3

39. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) C H2SO4 (конц.) →Б) C Ca →В) C Na2SO4 →

ПРОДУКТЫ РЕАКЦИИ1) CO2 SO2 H2O2) Na2SO3 CO3) CaC24) CaC5) Na2S CO2

40. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) C H2O →Б) C HNO3 →В) C S →

ПРОДУКТЫ РЕАКЦИИ1) CO2 NO2 H2O2) CO2 NH4NO33) CO H24) CO2 H25) CS2

41. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Si O2 →Б) Si S →В) S i Mg →

ПРОДУКТЫ РЕАКЦИИ1) SiS22) Mg2S3) MgS4) SiO25) SiS

42. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Si Cl2 →Б) Si C →В) Si NaOH →

ПРОДУКТЫ РЕАКЦИИ1) SiC2) SiCl23) Na2SiO3 H24) Na2SiO3 H2O5) SiCl4

43. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

44. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

45. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

46. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

47. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

48. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

49. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

50. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

51. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

52. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

53. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

54. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

Оцените статью
Кислород
Добавить комментарий