Классификация органических соединений | CHEMEGE.RU

Классификация органических соединений | CHEMEGE.RU Кислород
Содержание
  1. Основные положения теории строения органических соединений
  2. Электронное строение щелочных металлов и основные свойства
  3. Геометрическая изомерия (или цис-транс-изомерия)
  4. Оптическая изомерия
  5. Sp2-гибридизация
  6. Sp3-гибридизация
  7. Sp-гибридизация
  8. Виды изомерии
  9. Гибридизация атомных орбиталей углерода
  10. Гомологи. гомологический ряд
  11. Изомерия
  12. Качественные реакции
  13. Кислородсодержащие органические вещества
  14. Классификация органических соединений
  15. Нахождение в природе
  16. Нитраты и нитриты щелочных металлов
  17. Оксид серы (vi)
  18. Оксиды серы
  19. Положение в периодической системе химических элементов
  20. Получение кислорода
  21. Пространственная изомерия
  22. Сернистая кислота
  23. Соединения серы
  24. Соли серной кислоты – сульфаты
  25. Способы получения
  26. Способы получения сероводорода
  27. Способы получения серы
  28. Способы получения сульфидов
  29. Строение молекулы и физические свойства
  30. Структурная изомерия
  31. Сульфиды
  32. Типы связей в молекулах органических веществ
  33. Типы углеродных атомов в составе органических молекул
  34. Углеводороды
  35. Физические свойства
  36. Физические свойства и нахождение в природе
  37. Физические свойства кислорода
  38. Формулы строения органических веществ
  39. Химические свойства
  40. Химические свойства кислорода
  41. Химические свойства сульфидов

Основные положения теории строения органических соединений

Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям.  Последовательность межатомных связей в молекуле называется ее химическим строением и отражается структурной формулой (формулой строения).

  • Свойства веществ зависят не только от вида и числа атомов в молекуле, но и от их взаимного расположения – т.е. от строения молекулы.

Это приводит к тому, что вещества одного и того же состава могут иметь разное строение, т. е. к появлению изомерии.

Изомеры – это вещества, имеющие одинаковый состав (число атомов каждого типа), но разное взаимное расположение атомов – разное строение.
Например, формуле C4H10 соответствуют два изомерных соединения н-бутан с линейным углеродным скелетом и изобутан (2-метилбутан) с разветвленным скелетом

н-Бутан

CH3-CH2-CH2-CH3

Изобутан

CH3-CH(CH3)-CH3

При этом температура кипения н-бутана -0,5оС, а изобутана -11,4оС.

  • По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы – определить свойства.
  • Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга. Это отражается на химических и физических свойствах вещества.

Электронное строение щелочных металлов и основные свойства

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns1, на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях 1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус, усиливаются металлические свойства, ослабевают неметаллические свойства, уменьшается электроотрица-тельность.

Геометрическая изомерия (или цис-транс-изомерия)

Геометрическая изомерия характерна для соединений, в которых различается положение заместителей относительно плоскости двойной связи или цикла.

Например, для алкенов и циклоалканов.

Двойная связь не имеет свободного вращения вокруг своей оси.

Поэтому заместители у атомов углерода при двойной связи могут быть расположены либо по одну сторону от плоскости двойной связи (цис-изомер), либо по разные стороны от плоскости двойной связи (транс-изомер). При этом никаким вращением нельзя получить из цис-изомера транс-изомер, и наоборот.

Например, бутен-2 существует в виде цис— и транс-изомеров

1,2-Диметилпропан также образует цис-транс-изомеры:

Геометрические изомеры различаются по физическим свойствам (температура кипения и плавления, растворимость, дипольный момент и др.). Например, температура кипения цис-бутена-2 составляет 3,73 оС, а транс-бутена-2 0,88оС.

При этом цистранс-изомерия характерна для соединений, в которых каждый атом углерода при двойной связи С=С (или в цикле) имеет два различных заместителя.

Например, в молекуле бутена-1 CH2=CH-CH2-CH3 заместители у первого атома углерода при двойной связи (два атома водорода) одинаковые, и цис—транс-изомеры бутен-1 не образует.

А вот в молекуле бутена-2 CH3—CH=CH-CH3 заместители у каждого атома углерода при двойной связи разные (атом водорода и метильная группа CH3), поэтому бутен-2 образуетцис— и транс-изомеры.

Таким образом, для соединений вида СH2=СHR и СR2=СHR’ цис—транс-изомерия не характерна.

Оптическая изомерия

Оптические изомеры – это пространственные изомеры, молекулы которых соотносятся между собой как предмет и несовместимое с ним зеркальное изображение.

Оптическая изомерия свойственна молекулам веществ, имеющих асимметрический атом углерода.

Асимметрический атом углерода — это атом углерода, связанный с четырьмя различными заместителями.

Такие молекулы обладают оптической активностью — способностью к вращению плоскости поляризации света при прохождении поляризованного луча через раствор вещества.

Например, оптические изомеры образует 3-метилгексан:

Sp2-гибридизация

В sp2-гибридизацию вступают одна s-орбиталь и две p-орбитали. Одна p-орбиталь не гибридизуется:

Три sp2-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому три sp2-гибридные орбитали атома углерода направлены в пространстве под углом 120одруг к другу, что соответствует плоскому строению (треугольник).

При этом негибридная р-орбиталь располагается перпендикулярно плоскости, в которой расположены три гибридные sp2— орбитали.

Например, молекула этилена C2H4 имеет плоское строение. Сигма-связь между атомами углерода образуется за счет перекрывания sp2-гибридных орбиталей. Пи-связь между атомами углерода образуется за счет перекрывания негибридных р-орбиталей.

Модель молекулы этилена:

Sp3-гибридизация

В sp3-гибридизацию вступают одна s-орбиталь и три p-орбитали. При этом образуются четыре sp3-гибридные орбитали:

Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в состоянии sp3-гибридизации направлены в пространстве под углом 109о 28’  друг к другу, что соответствует тетраэдрическому строению.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода. Валентный угол Н–С–Н в метане равен 109о 28’

Молекулам линейных алканов с большим числом атомов углерода соответствует зигзагообразное расположение атомов углерода.

Например, пространственное строение н-бутана

Sp-гибридизация

В sp-гибридизацию вступают одна s-орбиталь и одна p-орбиталь. Две p-орбитали не  вступают в гибридизацию:

Две sp-гибридные орбитали атома углерода направлены в пространстве под углом 180одруг к другу, что соответствует линейному строению.

Виды изомерии

Различают два основных вида изомерии: структурную и пространственную (стереоизомерию).

   Структурные изомеры отличаются друг от друга взаимным расположением атомов в молекуле;  стереоизомеры — расположением атомов в пространстве.

Гибридизация атомных орбиталей углерода

Электронная формула атома углерода в основном состоянии: 

6С 1s22s22p2

6С  1s Классификация органических соединений | CHEMEGE.RU  2s Классификация органических соединений | CHEMEGE.RU  2s Классификация органических соединений | CHEMEGE.RU  2p  Классификация органических соединений | CHEMEGE.RU

В возбужденном состоянии: один электрон переходит с 2s-подуровня на 2р-подуровень.

6С* 1s22s12p3

* 1s2 Классификация органических соединений | CHEMEGE.RU   2s1Классификация органических соединений | CHEMEGE.RU   2s1Классификация органических соединений | CHEMEGE.RU  2p3  Классификация органических соединений | CHEMEGE.RU

Таким образом, в возбужденном состоянии углерод содержит четыре неспаренных электрона, может образовать четыре химические связи и проявляет валентность IV в соединениях.

При образовании четырех химических связей атомом углерода происходит гибридизация атомных орбиталей.

Гибридизация атомных орбиталей — это выравнивание электронной плотности атомных орбиталей разного типа с образованием новых, молекулярных орбиталей, форма и энергия которых одинаковы.

В гибридизацию вступают атомные орбитали с небольшой разницей в энергии (как правило, орбитали одного энергетического уровня). В зависимости от числа и типа орбиталей, участвующих в гибридизации, для атома углерода возможны sp3, sp2 и sp-гибридизация.

Гомологи. гомологический ряд

Органические вещества разных классов тесно взаимосвязаны.

Соединения, содержащие одинаковые функциональные свойства, проявляют схожие химические и физические свойства.

Вещества, которые содержат одинаковые функциональные группы, имеют сходное строение, но отличаются друг от друга на одну или несколько групп –СH2–, образуют гомологический ряд.
Гомологи – это вещества, которые входят в один и тот же гомологический ряд.

Группу  –СH2– называют гомологической разностью.

Изомерия

Изомеры– это вещества, имеющие одинаковый состав (число атомов каждого типа), но разное взаимное расположение атомов – разное строение.

Изомерия– это явление существования веществ с одинаковым составом, но различным строением.

Например, формуле C4H10 соответствуют два изомерных соединения н-бутан с линейным углеродным скелетом и изобутан (2-метилбутан) с разветвленным скелетом:

При этом температура кипения н-бутана –0,5оС, а изобутана –11,4оС.

Качественные реакции

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов.

Цвет пламени:Li — карминно-красныйNa — жѐлтыйK — фиолетовыйRb — буро-красныйCs — фиолетово-красный

Кислородсодержащие органические вещества

Так как кислород имеет валентность II, он может образовать либо 2 одинарные связи, либо одну двойную. Соответственно, в органической молекуле он соединяется с водородом и углеродом.

Основные функциональные группы, содержащие кислород:
  • группа –О-Н (гидроксильная)
  • группа >С=О (карбонильная)
  • группа –СОО- (карбоксильная)

Еще один класс кислородсодержащих органических веществом — это простые эфиры. В простых эфирах углеводородные радикалы соединены с атомов кислорода.

Например, диметиловый эфир:

CH3-O-CH3

Классификация органических соединений

Классификацию органических веществ определяют строение углеродной цепи (углеродного скелета) и наличие и особенности строения функциональных групп.

Углеродный скелетэто последовательность соединенных между собой атомов углерода в органической молекуле.
Про кислород:  6 основных парниковых газов (и их химические характеристики) - Медицинский - 2022
Функциональная группа – это атом или группа атомов, которая определяет принадлежность молекулы к определенному классу органических веществ и химические свойства, соответствующие данному классу веществ.

Классификация органических веществ по составу

УглеводородыКислородсодержащие веществаАзотсодержащие вещества
Состоят из атомов углерода и водородаСодержат также атомы кислородаСодержат также атомы азота

Нахождение в природе

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочные металлы:

Поваренная соль, каменная соль, галит — NaCl — хлорид натрия

Сильвин KCl — хлорид калия

СильвинитNaCl · KCl

Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия

Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:

Нитраты и нитриты щелочных металлов

Нитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV)  и кислород.

Например, нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:

2NaNO3  → 2NaNO2    O2 

Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.

Нитриты щелочных металлов могут быть окислителями или восстановителями.

В щелочной среде нитраты и нитриты — очень мощные окислители.

Например, нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:

NaNO3    4Zn    7NaOH    6H2O  =  4Na2[Zn(OH)4]    NH3↑

Сильные окислители окисляют нитриты до нитратов.

Например, перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:

5NaNO2    2KMnO4    3H2SO4  =  5NaNO3    2MnSO4    K2SO4    3H2O 

Оксид серы (vi)

Оксид серы (VI) –  это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.

Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.

2SO2       O2    ↔   2SO3

Сернистый газ окисляют и другие окислители, например, озон или оксид азота (IV):

SO2       O3  →   SO3       O2

SO2       NO2  →   SO3      NO

Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):

Fe2(SO4)3    →   Fe2O3      3SO3

Химические свойства оксида серы (VI)

1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:

SO3     H2O  →  H2SO4 

2. Серный ангидрид является типичным кислотным оксидом, взаимодействует с щелочами и основными оксидами.

Например, оксид серы (VI) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

SO3    2NaOH(избыток)  →   Na2SO4      H2O

SO3(избыток)      NaOH → NaHSO4

Еще пример: оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):

SO3    MgO   →  MgSO4 

3. Серный ангидрид – очень сильный окислитель, так как сера в нем имеет максимальную степень окисления ( 6). Он энергично взаимодействует с такими восстановителями, как иодид калия, сероводород или фосфор:

SO3       2KI   →   I2       K2SO3

3SO3       H2S   →   4SO2         H2O

5SO3         2P   →    P2O5         5SO2

4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.

Оксиды серы

Оксиды серыЦвет ФазаХарактер оксида
SO2 Оксид сера (IV), сернистый газбесцветныйгазкислотный
SOОксид серы (VI), серный ангидридбесцветныйжидкостькислотный

Положение в периодической системе химических элементов

Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Получение кислорода

Различают промышленные и лабораторные способы получения кислорода. Так, в промышленности кислород получают перегонкой жидкого воздуха, а к основным лабораторным способам получения кислорода относят реакции термического разложения сложных веществ:

2KMnO4 = K2MnO4 MnO2 O2↑

4K2Cr2O7 = 4K2CrO4 2Cr2O3 3 O2↑

2KNO3 = 2KNO2 O2↑

2KClO3 = 2KCl 3 O2↑

Пространственная изомерия

Пространственные изомеры – это вещества с одинаковым составом и химическим строением, но с разным пространственным расположением атомов в молекуле. Виды пространственной изомерии – геометрическая (цис—транс) и оптическая изомерия.

Сернистая кислота

Сернистая кислота H2SO3 – это двухосновная кислородсодержащая кислота. При нормальных условиях — неустойчивое вещество, которое распадается на диоксид серы и воду.

Валентность серы в сернистой кислоте равна IV, а степень окисления 4.

Соединения серы

Типичные соединения серы:

Степень окисленияТипичные соединения
6Оксид серы(VI) SO3

Серная кислота H2SO4

Сульфаты MeSO4

Галогенангидриды: SО2Cl2

4Оксид серы (IV) SO2

Сернистая кислота H2SO3

Сульфиты MeSO3

Гидросульфиты MeHSO3

Галогенангидриды: SOCl2

–2Сероводород H2S

Сульфиды металлов MeS

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 Na2SO4  →   BaSO4↓  2NaCl

Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe  подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

2CuSO4  →   2CuO      SO2      O2     (SO3)

2Al2(SO4)3    →  2Al2O3      6SO2      3O2

2ZnSO4  →   2ZnO      SO2      O2

2Cr2(SO4)3   →    2Cr2O3      6SO2      3O2

При разложении сульфата железа (II) в FeSO4 Fe (II)  окисляется до Fe (III)

4FeSO4    →  2Fe2O3      4SO2      O2  

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления 6 сульфаты проявляют окислительныесвойстваи могут взаимодействовать с восстановителями.

Например, сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:

CaSO4   4C   →   CaS     4CO

4.Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова соль

CaSO4 ∙ 2H2O − гипс

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Способы получения

1. Серную кислоту в промышленностипроизводят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

АппаратНазначение и уравненяи реакций
Печь для обжига4FeS2 11O2 → 2Fe2O3 8SO2 Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС

Циклон Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат 2SO2 O2 ↔ 2SO3 Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  •  температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500оС. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  •  давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

nSO3 H2SO4  →  H2SO4·nSO3

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Про кислород:  Запись к врачу в клинику в Кислород

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Способы получения сероводорода

В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например, при действии соляной кислоты на сульфид железа (II):

FeS     2HCl   →   FeCl2     H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

S    H2  →  H2S

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопытполучения и обнаружения сероводорода можно посмотреть здесь.

Способы получения серы

1. В промышленных масштабах серу получают открытым способом на месторождениях самородной серы, либо из вулканов. Из серной руды серу получают также пароводяными, фильтрационными, термическими, центрифугальными и экстракционными методами. Пароводяной метод —  это выплавление из руды с помощью водяного пара.

2. Способ получения серы в лаборатории – неполное окисление сероводорода.

2H2S      O2    →   2S        2H2O

3. Еще один способ получения серы – взаимодействие сероводорода с оксидом серы (IV):

2H2S    SO2   →   3S     2H2O

Способы получения сульфидов

1.Сульфиды получают при взаимодействии серы с металлами. При этом сера проявляет свойства окислителя.

Например, сера взаимодействует с магнием и кальцием:

S      Mg   →   MgS

S       Ca   →   CaS

Сера взаимодействует с натрием:

S      2Na   →  Na2S

2. Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей.

Например, гидроксида калия с сероводородом:

H2S    2KOH  →   K2S    2H2O

3. Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями (любые сульфиды) или взаимодействием сероводорода с солями (только черные сульфиды).

Например, при взаимодействии нитрата меди и сероводорода:

Pb(NO3)2     Н2S    →   2НNO3      PbS

Еще пример: взаимодействие сульфата цинка с сульфидом натрия:

ZnSO4     Na2S    →   Na2SO4      ZnS

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в водунебольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Структурная изомерия

Структурные изомеры – соединения с одинаковым составом, но различным порядком связывания атомов, т.е. с различным химическим строением. Молекулярная формула у структурных изомеров одинаковая, а структурная различается.

1. Изомерия углеродного скелета: вещества различаются строением углеродной цепи, которая может быть линейная или разветвленная.

Например, молекулярной формуле С5Н12 соответствуют три изомера:

2. Изомерия положения обусловлена различным положением кратной связи, функциональной группы или заместителя при одинаковом углеродном скелете молекул.

2.1. Изомерия положения функциональной группы. Например, существует два изомерных предельных спирта с общей формулой С3Н8О: пропанол-1 (н-пропиловый спирт) пропанол-2 (изопропиловый спирт):

2.2. Изомерия положения кратной связи может быть вызвана различным положением кратной (двойной или тройной)  связи в непредельных соединениях. Например, в бутене-1 и бутене-2:

2.3. Межклассовая изомерия – ещё один вид структурной изомерии, когда вещества из разных классов веществ имеют одинаковую общую формулу.

Например, формуле С2Н6О соответствуют: спирт (этанол) и простой эфир (диметиловый эфир):

Сульфиды

Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Растворимые в водеНерастворимые в воде, но растворимые в минеральных кислотахНерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.)Разлагаемые водой, в растворе не существуют
Сульфиды щелочных металлов и аммонияСульфиды прочих металлов, расположенных  до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS)Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)Сульфиды трехвалентных металлов (алюминия и хрома (III))
Реагируют с минеральными кислотами с образованием сероводородаНе реагируют с минеральными кислотами, сероводород получить напрямую нельзя

Разлагаются водой

ZnS     2HCl   →   ZnCl2     H2S

Al2S 6H2O → 2Al(OH) 3H2S

Типы связей в молекулах органических веществ

Одна из характеристик химических связей — тип перекрывания орбиталей атомов в молекуле.По характеру перекрывания различают σ-(сигма) и π‑(пи) связи.

σ-Связь — это связь, в которой перекрывание орбиталей происходит вдоль оси, соединяющей ядра атомов.

σ-Связь может быть образована любыми типами орбиталей (s, p, d, гибридизованными).

σ-Связь — это основная связь в молекуле, которая преимущественно образуется между атомами.

Между двумя атомами возможна только одна σ-связь.

Виды σ-связей

π-Связь — это связь, в которой перекрывание орбиталей происходит в плоскости, перпендикулярной оси, соединяющей ядра атомов, сверху и снизу от оси связи.

π-Связь образуется при перекрывании только р- (или d) орбиталей, перпендикулярных линии связи и параллельных друг другу.

π-Связь является дополнительной к σ-связи, она менее прочная и легче разрывается при химических реакциях.

Одинарная связь

С–С, С–Н, С–О

Двойная связь

С=С, С=О

Тройная связь

С≡С, С≡N

σ-связьσ-связь π-связьσ-связь две π-связи

Типы углеродных атомов в составе органических молекул

Типы углеродных атомов в составе органических молекул

Атомы углерода

ПервичныеВторичныеТретичныеЧетвертичные
Атомы углерода, которые в углеродной цепи соединены с одним атомом углеродаАтомы углерода, которые в углеродной цепи соединены с двумя атомами углеродаАтомы углерода, которые в углеродной цепи соединены с тремя атомами углеродаАтомы углерода, которые в углеродной цепи соединены с четырьмя атомами углерода

Углеводороды

Углеводороды– это вещества, состав которых отражается формулой СхНу, то есть в их составе только атомы углерода и водорода.

В зависимости от типа связей между атомами С, они делятся на предельные или насыщенные (все связи одинарные) и непредельные (ненасыщенные)  — в молекуле присутствуют двойные и тройные связи.

Кроме того, углеводороды делятся на циклические (углеродная цепь образует кольцо) и ациклические или алифатические (углеродная цепь не замкнута в кольцо).

Физические свойства

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.

Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.

Физические свойства и нахождение в природе

Сера образует различные простые вещества (аллотропные модификации).

Наиболее устойчивая модификация серы – ромбическая сера S8. Это хрупкое вещество желтого цвета. 

Моноклинная сера – это аллотропная модификация серы, в которой атомы соединены в циклы в виде «короны». Это твердое вещество, состоящее из темно-желтых игл, устойчивое при температуре более 96оС, а при обычной температуре превращающееся в ромбическую серу. 

Пластическая сера – это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.

В природе сера встречается:

  • в самородном виде;
  • в составе сульфидов (сульфид цинка ZnS, пирит FeS2, сульфид ртути HgS — киноварь и др.)
  • в составе сульфатов (CaSO4·2H2O гипс, Na2SO4·10H2O — глауберова соль)

Физические свойства кислорода

Кислород – самый распространенный элемент на земле (47% по массе). В воздухе содержание кислорода составляет 21% по объему. Кислород – составная часть воды, минералов, органических веществ. В растительных и животных тканях содержится 50 -85 % кислорода в виде различных соединений.

В свободном состоянии кислород представляет собой газ без цвета, вкуса и запаха, плохо растворимый в воде (в 100 л воды при 20^{circ}

Формулы строения органических веществ

Состав органического вещества можно описать химическими формулами.

Химические формулы органических веществ бывают следующих типов:

Простейшая формула – может быть получена опытным путем через определение соотношения количества атомов химических элементов в веществе.

Про кислород:  Есть Ответ: 1)Формула простого вещества: Литий, Берилий, Бор, Углерод, Азот, Кислород, Фтор, Неон
Например, простейшая формула метана CH4, а вот бензола – СН.

Истинная формула (брутто-формула) – показывает истинный состав молекулы, но не показывает ее структуру. Истинная формула показывает точное количество атомов каждого элемента в одной молекуле.

Например, истинная формула бензола C6H6.

Полная (развернутая) структурная формула однозначно описывает порядок соединения атомов в молекуле. 

Например, полная структурная формула бутана:

Сокращенная структурная формула – это структурная формула, в которой не указываются связи между углеродом и водородом.

Например, сокращенная структурная формула бутана:

CH3-CH2-CH2-CH3

Химические свойства

1. Щелочные металлы — сильные восстановители. Поэтому они реагируют почти со всеми неметаллами.

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K    I2  =  2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na    S  =  Na2S

1.3.Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:

3K        P    =   K3P

2Na    H2  =  2NaH

1.4.С азотомлитий реагирует при комнатной температуре с образованием нитрида:

6Li     N2  =  2Li3N

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

2Na      2C    =    Na2C2

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.

4Li      O2   =   2Li2O

2Na    O2  =  Na2O2

K       O2   =   KO2

Цезийсамовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопытсамовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой. Взаимодействие щелочных металлов с водойприводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

Например, калий реагирует с водойочень бурно:

2K0 H2 O = 2K OH H20

Видеоопыт:взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2.Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например, натрий бурно реагирует с соляной кислотой:

2Na    2HCl  =  2NaCl    H2↑

2.3.При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например, при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

8Na    5H2SO4(конц.)  → 4Na2SO4    H2S    4H2O

2.4.Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):

8Na 10HNO3 (конц) → N2O 8NaNO3 5H2O

С разбавленной азотной кислотой образуется молекулярный азот:

10Na 12HNO3 (разб)→ N2 10NaNO3 6H2O

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

8Na    10HNO3  =  8NaNO3    NH4NO3    3H2O

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства. Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами, феноломи органическими кислотами.

Например, при взаимодействии лития с аммиакомобразуются амиды и водород:

2Li 2NH3 = 2LiNH2 H2 ↑

 Ацетиленс натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н 2Na  →  Na ─ C≡C ─ Na H2

 Фенолс натрием реагирует с образованием фенолята натрия и водорода:

2C6H5OH    2Na  →  2C6H5ONa     H2↑

Метанолс натрием образуют метилат натрия и водород:

2СН3ОН     2Na   →   2 CH3ONa     H2↑

 Уксусная кислотас литием образует ацетат лития и водород:

2СH3COOH       2Li     →  2CH3COOLi        H2↑

Щелочные металлы реагируют с галогеналканами(реакция Вюрца).

Например, хлорметанс натрием образует этан и хлорид натрия:

2CH3Cl 2Na   →  C2H6 2NaCl

2.6.В расплавещелочные металлы могут взаимодействовать с некоторыми солями. Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например, натрий взаимодействует в расплаве с хлоридом алюминия :

3Na AlCl3 → 3NaCl Al

Химические свойства кислорода

Кислород является сильным окислителем, т.к. для завершения внешнего электронного уровня ему не хватает всего 2-х электронов, и он легко их присоединяет. По химической активности кислород уступает только фтору. Кислород образует соединения со всеми элементами кроме гелия, неона и аргона.

Непосредственно кислород нее вступает в реакции взаимодействия с галогенами, серебром, золотом и платиной (их соединения получают косвенным путем). Почти все реакции с участием кислорода – экзотермические. Характерная особенность многих реакций соединения с кислородом — выделение большого количества теплоты и света. Такие процессы называют горением.


Взаимодействие кислорода с металлами. Со щелочными металлами (кроме лития) кислород образует пероксиды или надпероксиды, с остальными – оксиды. Например:

4Li O2 = 2Li2O;

2Na O2 = Na2O2;

K O2 = KO2;

2Ca O2 = 2CaO;

4Al 3O2 = 2Al2O3;

2Cu O2 = 2CuO;

3Fe 2O2 = Fe3O4.

Взаимодействие кислорода с неметаллами. Взаимодействие кислорода с неметаллами протекает при нагревании; все реакции экзотермичны, за исключением взаимодействия с азотом (реакция эндотермическая, происходит при 3000^{circ}

4P 5O2 = 2P2O5;

S O2 = SO2;

С O2 = СО2;

2Н2 O2 = 2Н2О;


N2 O2 ↔ 2NO – Q.

Взаимодействие со сложными неорганическими веществами. При горении сложных веществ в избытке кислорода образуются оксиды соответствующих элементов:

2H2S 3O2 = 2SO2↑ 2H2O (t^{circ}3 3O2 = 2N2↑ 6H2O (t^{circ}3 3O2 = 2N2↑ 6H2O (t^{circ}3 5O2 = 4NO↑ 6H2O (t^{circ}3 4O2 = 2H3PO4 (t^{circ}3 4O2 = 2H3PO4 (t^{circ}

SiH4 2O2 = SiO2 2H2O;

4FeS2 11O2 = 2Fe2O3 8 SO2↑ (t^{circ}

Кислород способен окислять оксиды и гидроксиды до соединений с более высокой степенью окисления:

2CO O2 = 2CO2 (t^{circ}2 O2 = 2SO3 (t^{circ}2 O2 = 2SO3 (t^{circ}2O5);

2NO O2 = 2NO2;

4FeO O2 = 2Fe2O3 (t^{circ}


Взаимодействие со сложными органическими веществами. Практически все органические вещества горят, окисляясь кислородом воздуха до углекислого газа и воды:

CH4 2O2 = CO2↑ H2O.

Кроме реакций горения (полное окисление) возможны также реакции неполного или каталитического окисления, в этом случае продуктами реакции могут быть спирты, альдегиды, кетоны, карбоновые кислоты и другие вещества:


Окисление углеводов, белков и жиров служит источником энергии в живом организме.

Химические свойства сульфидов

1. Растворимые сульфиды гидролизуютсяпо аниону, среда водных растворов сульфидов щелочная:

K2S   H2O  ⇄  KHS    KOHS2–   H2O  ⇄  HS–   OH–

2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.

Например, сульфид кальция растворяется в соляной кислоте:

CaS    2HCl →  CaCl2    H2S

А сульфид никеля, например, не растворяется:

NiS     HСl   ≠

3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.

Например, сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:

CuS      8HNO3  →   CuSO4      8NO2     4H2O

или горячей концентрированной серной кислоте:

CuS      4H2SO4(конц. гор.)  →   CuSO4      4SO2        4H2O

4.Сульфиды проявляют восстановительныесвойства и окисляются пероксидом водорода, хлором и другими окислителями.

Например, сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):

PbS 4H2O2    →   PbSO4 4H2O

Еще пример: сульфид меди (II) окисляется хлором:

СuS      Cl2  → CuCl2      S

5.Сульфиды горят(обжиг сульфидов). При этом образуются оксиды металла и серы (IV).

Например, сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):

2CuS      3O2  →   2CuO      2SO2

Аналогично сульфид хрома (III) и сульфид цинка:

2Cr2S3      9O2  →   2Cr2O3      6SO2

2ZnS       3O2  →   2SO2     ZnO

6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественныена ион S2−.

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

Na2S       Pb(NO3)2    →   PbS↓      2NaNO3

Na2S       2AgNO3    →   Ag2S↓      2NaNO3

Na2S       Cu(NO3)2    →   CuS↓      2NaNO3

7.Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).

Например, сульфид алюминия разлагается до гидроксида алюминия и сероводорода:

Al2S3  6H2O → 2Al(OH)3  3H2S

Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

Например, сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:

3Na2S 2AlCl3 6H2O → 2Al(OH)3  3H2S 6NaCl

Оцените статью
Кислород
Добавить комментарий