Полезно ли дышать кислородом из баллона: для чего нужен кислородный баллончик для дыхания, польза, особенности применения

Полезно ли дышать кислородом из баллона: для чего нужен кислородный баллончик для дыхания, польза, особенности применения Кислород

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Газообразный
технический и медицинский кислород должен быть изготовлен в соответствии с
требованиями настоящего стандарта по технологическим регламентам, утвержденным
в установленном порядке.

1.2. Запрещается применять
для дыхания и лечебных целей кислород, получаемый электролизом воды, а также
кислород, получаемый способом низкотемпературной ректификации с последующим
сжатием в компрессорах с поршневым уплотнением, изготовленным из фторопласта
или других материалов, не проверенных медицинским надзором.

https://www.youtube.com/watch?v=hw723ksEqls

1.3. По физико-химическим
показателям газообразный технический и медицинский кислород должен
соответствовать нормам, указанным в табл. 1.

Таблица 1

Наименование
показателя

Норма для марок

Технический кислород

Медицинский кислород

Первый сорт

Второй сорт

1. Объемная доля кислорода, %, не менее

99,7

99,5

99,5

2. Объемная доля водяных паров, %, не более

0,007

0,009

0,009

3. Объемная доля водорода, %, не более

0,3

0,5

4. Объемная доля двуокиси углерода, %, не более

Не
нормируется

0,01

5. Содержание окиси углерода

То же

Должен выдерживать испытание по п. 3.6

6. Содержание газообразных кислот и
оснований

»

Должен выдерживать испытание по п. 3.7

7. Содержание озона и других
газов-окислителей

»

Должен выдерживать испытание по п. 3.8

8. Содержание щелочи

Должен
выдерживать испытание по п. 3.9

9. Запах

Не
нормируется

Отсутствие

Примечания:

1. По
согласованию с потребителем допускается в медицинском кислороде объемная доля
кислорода не менее 99,2 %.

2. Медицинский кислород, предназначенный для авиации, должен
выпускаться с объемной долей водяных паров не более 0,0007 %.

3.
Показатели, указанные в подпунктах 3 и 8,
нормируются только для кислорода, получаемого электролизом воды.

4. В техническом кислороде 2-го сорта, вырабатываемом на установках
высокого, среднего и двух давлений, оснащенных щелочными декарбонизаторами для
очистки воздуха от двуокиси углерода, а также на установках типа СКДС-70М
допускается объемная доля кислорода не менее 99,2 %.

(Измененная редакция, Изм. №
1, 3, 4).

1.4. Коды ОКП газообразного
технического и медицинского кислорода приведены в табл. 1а.

Таблица 1а*

Наименование
продукта

Код ОКП

Кислород газообразный технический компримированный

21 1411
0100

первый сорт

21 1411
0130

второй сорт

21 1411
0140

Кислород газообразный технический
компримированный с объемной долей кислорода не менее 99,2 %

21 1411
0150

Кислород газообразный технический несжатый

21 1411
2100

первый сорт

21 1411
2130

второй сорт

21 1411
2140

Кислород газообразный технический,
получаемый из привозного жидкого кислорода

21 1411
1600

первый сорт

21 1411
1630

второй сорт

21 1411
1640

Кислород газообразный медицинский

с объемной долей кислорода не менее 99,5 %

21 1411
0200

с объемной долей кислорода не менее 99,2 %

21 1411
1700

Кислород газообразный медицинский,
предназначенный для авиации

21 1411
2300

* Табл. 2, 3.
(Исключены, Изм, № 4).

(Измененная редакция, Изм. №
3, 4).

МЕТОДЫ АНАЛИЗА

3.1. Отбор проб

3.1.1. Пробу кислорода из
баллона или автореципиента отбирают при давлении (14,7 ± 0,5) или (19,6 ± 1,0)
МПа [(150 ± 5) или (200 ± 10) кгс/см2] в прибор для анализа с
помощью редуктора или вентиля тонкой регулировки и соединительной трубки от
точки отбора пробы до прибора. Соединительную трубку продувают не менее чем
десятикратным объемом анализируемого газа.

(Измененная редакция, Изм. №
3).

3.1.2.
Пробу кислорода из трубопровода отбирают с помощью газоотборной трубки из
коррозионно-стойкой стали в аппаратуру для анализа или в прибор для отбора и
хранения проб газа по ГОСТ 18954, либо в стеклянные пипетки. При определении
примесей щелочи и водяных паров пробы отбирают только в аппаратуру для анализа.

3.1.3. При определении концентрации
водяных паров должна использоваться соединительная трубка из
коррозионно-стойкой стали внутренним диаметром не более 4 мм, предварительно
высушенная или отожженная.

3.2. Определение объемной доли кислорода

3.2.1. Аппаратура,
реактивы и материалы

Измерительный аппарат для
анализа кислорода АК-М1 ( черт. 1) или газоанализатор типов ПАК и А.

Весы лабораторные общего
назначения 4-го класса точности с наибольшим пределом взвешивания 2 кг.

Секундомер механический.

Аммоний хлористый по ГОСТ
3773.

Аммиак водный по ГОСТ 3760,
раствор с массовой долей 18 %.

Аммиачный раствор хлористого
аммония; готовят следующим образом: 750 г хлористого аммония растворяют в 1 дм3
воды и добавляют 1 дм3 раствора аммиака.

Вода дистиллированная по
ГОСТ 6709.

Проволока медная круглая
электротехническая диаметром 0,8-1,0 мм в виде спиралей длиной около 10 мм,
диаметром витка около 5мм.

Смазка для кранов.

(Измененная редакция, Изм. №
1, 3).

3.2.2. Подготовка к
анализу

Для подготовки прибора (см. черт. 1) к
проведению анализа необходимо цилиндрическую часть пипетки заполнить медными
спиралями и закрыть пробкой. После этого заливают в пипетку и уравнительную
склянку аммиачный раствор хлористого аммония.

Кран бюретки смазывают и
соединяют отдельные части прибора резиновыми трубками. Затем проверяют прибор
на герметичность по постоянству уровня жидкости в бюретке при закрытом кране и
нижнем положении уравнительной склянки.

Перед проведением анализа
заполняют аммиачным раствором цилиндрическую часть пипетки с капиллярной
трубкой, капиллярную трубку 5, бюретку, проходы и капиллярные отростки
крана.

Жидкость в пипетке и бюретке
прибора перемещается подъемом или опусканием уравнительной склянки с аммиачным
раствором. При этом поворотом крана соединяют внутренний объем бюретки с
поглотительной пипеткой или атмосферой.

(Измененная редакция, Изм. №
1).

3.2.3. Проведение
анализа

Отбирают в бюретку прибора
через отросток 3 крана пробу кислорода, несколько превышающую 100 см3.

Для приведения объема газа в
бюретке к атмосферному давлению устанавливают уровень аммиачного раствора
хлористого аммония в уравнительной склянке против нулевого деления бюретки.
Пережимают резиновую трубку 10 и быстрым поворотом крана выпускают из
бюретки избыток газа в атмосферу.

Для лучшего поглощения
кислорода прибор осторожно встряхивают. Через 2-3 мин поглощение кислорода
обычно заканчивается. Поворотом крана соединяют бюретку с пипеткой и, медленно
опуская уравнительную склянку, переводят в бюретку непоглощенный остаток пробы.

Как только аммиачный раствор начинает поступать в бюретку, кран закрывают. Газ
в бюретке приводят к атмосферному давлению, устанавливая на одной высоте уровни
жидкости в бюретке и уравнительной склянке. Объем остаточных газов в бюретке измеряют
через 1-2 мин, выжидая, пока жидкость стечет со стенок бюретки.

Деление, соответствующее
уровню жидкости в бюретке, показывает объемную долю кислорода (X) в
процентах в анализируемом кислороде.

Поглощение кислорода
повторяют. Анализ заканчивают, если после повторного поглощения измерение
объема остаточных газов не превышает 0,05 см3.

Аммиачный раствор в пипетке
прибора заменяют после проведения 20-30 анализов.

За результат анализа
принимают среднее арифметическое результатов двух параллельных определений,
абсолютное расхождение между которыми не превышает допускаемое расхождение,
равное 0,05 %.

Измерительный аппарат для
анализа кислорода АК-М1

1 — бюретка; 2 — двухходовой кран; 3,4 — отростки крана; 5,6
— капиллярные стеклянные трубки; 7 — поглотительная пипетка с
капиллярной трубкой; 8 — штатив; 9 — уравнительная склянка; 10,
11 — резиновые трубки

Черт. 1

Допускаемая абсолютная
суммарная погрешность результата анализа ± 0,05 % при доверительной вероятности
Р = 0,95.

При наполнении баллонов или
автореципиентов, а также при поставке кислорода по трубопроводу объемную долю
кислорода допускается определять промышленными автоматическими
газоанализаторами непрерывного действия по ГОСТ 13320 с погрешностью не более
0,1 %, например типа МН 5130М со шкалой 98-100 %, установленными на
трубопроводе подачи кислорода к наполнительному коллектору.

При разногласиях в оценке
объемной доли кислорода анализ проводят измерительным аппаратом типа АК-М1.

(Измененная редакция, Изм. №
1, 3, 4).

3.3. Определение объемной доли водяных паров

3.3.1 Аппаратура

Влагомеры газов
кулонометрические, рассчитанные на измерение микроконцентраций водяных паров, с
относительной погрешностью измерения не выше 10 % в области измерений от 0 до
20 млн-1 (ррт) и не выше 5 % при более высоких концентрациях.

3.3.2 Проведение анализа

Кулонометрический метод
основан на непрерывном количественном извлечении водяных паров из испытуемого
газа гигроскопичным веществом и одновременном электростатическом разложении
извлекаемой воды на водород и кислород, при этом ток электролиза является мерой
концентрации водяных паров.

Прибор соединяют с местом
отбора пробы трубкой из нержавеющей стали. Расход газа устанавливают (50 ± 1)
см3/мин. Переключатель диапазонов измерения устанавливают так, чтобы
показания прибора были в пределах второй трети измерительной шкалы,
градуированной в миллионных долях (ррт). Ток электролиза измеряют
микроамперметром.

Температура баллона с
анализируемым газом должна быть не ниже 15 °С. Анализ проводят по инструкции,
прилагаемой к прибору.

3.3.3. Обработка результатов

Объемную долю водяных паров (Х1) в млн-1
определяют в соответствии с установившимися показаниями прибора.

Допускается определять
объемную долю водяных паров конденсационным методом, приведенным в приложении 3.

При разногласиях в оценке
объемной доли водяных паров анализ проводят кулонометрическим методом.

(Измененная редакция, Изм. №
4).

3.4. Определение объемной доли водорода в
кислороде, получаемом электролизом воды

3.4.1. Аппаратура,
реактивы и материалы

Газоанализатор лабораторный
со сжигательной пипеткой ( черт. 2).

Лабораторный газоанализатор
со сжигательной пипеткойдля определения объемной доли водорода

1 — уравнительная склянка; 2 — трансформатор на 60 Вт (первичная
обмотка на 220 В, вторичная на 2-3 В); 3 — реостат на 3-5 Ом, 5-6 А; 4,
7 — резиновые трубки; 5 — спираль из платиновой проволоки диаметром
0,3 мм, длиной 60 мм;

6 — сжигательная пипетка с водяным охлаждением; 8,
9,10 — краны распределительной гребенки; 11 — водяная
рубашка; 12 — поглотительный сосуд; 13 — измерительная бюретка; 14
— переходник

Черт. 2

Весы лабораторные общего
назначения 4-го класса точности с наибольшим пределом взвешивания 2 кг.

Аммоний хлористый по ГОСТ
3773.

Аммиак водный по ГОСТ 3760,
раствор с массовой долей 18 %.

Вода дистиллированная по
ГОСТ 6709.

Метиловый оранжевый
(пара-диметиламиноазобензолсульфокислый натрий), индикатор, раствор с массовой
долей 0,1 %.

Кислота соляная по ГОСТ
3118, раствор с массовой долей 10 %.

Аммиачный раствор хлористого
аммония; готовят следующим образом: 750 г хлористого аммония растворяют в 1 дм3
воды и добавляют 1 дм3 раствора аммиака.

Проволока медная круглая
электротехническая диаметром 0,8-1,0мм в виде спиралей длиной около 10мм, диаметром витка около 5мм.

Смазка для кранов.

(Измененная редакция, Изм. №
1, 3, 4).

3.4.2. Подготовка к
анализу

Для подготовки прибора
заполняют спиралями из медной проволоки верхнюю часть поглотительного сосуда и
вставляют ее через пробку в нижнюю склянку сосуда, заполненную аммиачным
раствором хлористого аммония. В уравнительную склянку и в нижний сосуд
сжигательной пипетки заливают раствор соляной кислоты, подкрашенный несколькими
каплями раствора метилового оранжевого.

Перед проведением анализа
необходимо с помощью уравнительной склянки поднять уровни растворов в
измерительной бюретке, поглотительном сосуде и сжигательной пипетке до кранов.
После этого краны устанавливают так, чтобы образовался сквозной проход для
газа.

Затем присоединяют трубку 7 к точке отбора пробы и продуваютим
распределительную гребенку и краны. Закончив продувку, поворачивают кран 10
в такое положение, чтобы гребенка прибора не была соединена с атмосферой.

3.4.3. Проведение анализа

Отбирают в бюретку прибора
через кран 8 пробу, несколько превышающую 100 см3. Приводят
давление газа в бюретке к атмосферному, удаляя избыток кислорода через кран 10
и резиновую трубку 4, погруженную в сосуд с водой на глубину 15-20мм.

Поглощают около половины
объема кислорода; остаток газа возвращают в бюретку и измеряют его объем.
Затем, повернув краны 8 и 9, вводят газ из бюретки в сжигательную
пипетку так, чтобы уровень запорной жидкости опустился на 10-12мм ниже
платиновой спирали.

Включают трансформатор и регулируют реостатом ток накала
платиновой спирали, доводя накал нити до слабого красного каления. По мере
сжигания водорода анализируемый кислород по частям переводят из бюретки в
сжигательную пипетку. По окончании сжигания водорода весь оставшийся кислород
возвращают из пипетки в бюретку и измеряют его объем. Повторяют сжигание до
постоянного остаточного объема.

3.4.4. Обработка
результатов

Объемную долю водорода (Х2)
в процентах вычисляют по формуле

где V1 — объем пробы, оставшийся
после поглощения кислорода, см3;

V 2 — объем пробы, оставшийся после сжигания водорода, см3;

V 3 — объем пробы кислорода, взятый для анализа, см3;

2/3 — доля водорода в объеме
сгоревшей смеси.

За результат анализа
принимают среднее арифметическое результатов двух параллельных определений,
относительное расхождение между которыми не превышает допускаемое расхождение,
равное 10 %.

Допускаемая относительная
суммарная погрешность результата анализа ± 25 % при доверительной вероятности Р
= 0,95.

Объемную долю водорода
допускается определять газоадсорбционным хроматографическим методом,
приведенным в приложении 1, а также при наполнении баллонов
или автореципиентов и при поставке по трубопроводу автоматическими
газоанализаторами непрерывного действия по ГОСТ 13320 с погрешностью измерения
не более 0,1 %.

При разногласиях в оценке
объемной доли водорода анализ проводят лабораторным газоанализатором со
сжигательной пипеткой.

(Измененная редакция, Изм. №
1, 3, 4).

3.5. Определение объемной доли двуокиси углерода

3.5.1. Аппаратура
и реактивы

Бюретка 1-2-25-01 по ГОСТ
29251, других типов вместимостью 25 см3.

Пипетка 4-1(2)-1 или
5-1(2)-1 по ГОСТ 29227.

Склянка для промывания газов
СН-1 — 100 или СН-2 — 100 по ГОСТ 25336.

Прибор для отбора и хранения
проб газа по ГОСТ 18954 вместимостью 3,0 дм3 или склянка с тубусом
4-10 по ГОСТ 25336.

Цилиндр 1-100 по ГОСТ 1770.

Весы лабораторные общего
назначения 2-го класса точности с наибольшим пределом взвешивания 200 г.

Секундомер механический.

Бария гидрат окиси по ГОСТ
4107, раствор с массовой долей 5 % (поглотительный); готовят растворением 5 г
гидрата окиси бария в 100 см3 воды. Раствор быстро фильтруют через
плотный бумажный фильтр и хранят в колбе, закрытой пробкой. В пробку вставлена
стеклянная трубка, соединенная с промывной склянкой с раствором гидроокиси
натрия или гидроокиси калия.

Вода дистиллированная по
ГОСТ 6709, дополнительно очищенная от углекислоты по ГОСТ 4517 следующим
образом: воду нагревают и кипятят в течение 30 мин до выделения крупных
пузырей. При охлаждении и хранении воду предохраняют от двуокиси углерода,
присутствующей в атмосферном воздухе.

Натрия гидроокись по ГОСТ
4328 или калия гидроокись, раствор с массовой долей 20 %.

Натрий двууглекислый по ГОСТ
4201, раствор с массовой долей 0,04 %; готовят растворением 0,04 г
двууглекислого натрия в 100 см3 воды.

(Измененная редакция, Изм. №
1, 3, 4).

3.5.2. Подготовка
к анализу

Анализ проводят в склянке
для промывания газов. В склянку вливают поглотительный раствор. Объем
кислорода, пропущенный через поглотительный раствор, измеряют с помощью склянки
с тубусом или прибора для отбора проб газа, присоединенного к короткой трубке
склянки на выходе газа.

3.5.3. Проведение анализа

В склянку для промывания
газов вливают 100 см3 прозрачного раствора гидрата окиси бария.
Через раствор пропускают 1000 см3 кислорода в течение 15-20 мин.

Сравнивают в проходящем
свете испытуемый и контрольный раствор, приготовленный в отдельной склянке
одновременно с проведением анализа и содержащий в 100 см3 раствора
гидрата окиси бария 1 см3 раствора двууглекислого натрия, что
соответствует объемной доле двуокиси углерода 0,01 %.

Кислород считают
соответствующим требованиям настоящего стандарта, если опалесценция
поглотительного раствора, образующаяся при пропускании кислорода, не будет
интенсивнее опаленсценции контрольного раствора.

3.5.2; 3.5.3. (Измененная
редакция, Изм. № 3).

3.6. Определение содержания
окиси углерода

3.6.1. Аппаратура
и реактивы

Аппаратура — по п. 3.5.1.

Аммиак водный по ГОСТ 3760,
раствор с массовой долей 10 %.

Вода дистиллированная по
ГОСТ 6709.

Серебро азотнокислое по ГОСТ
1277, аммиачный раствор с массовой долей 5 %; готовят следующим образом: 5 г
азотнокислого серебра растворяют в 100 см3 воды. К раствору
добавляют по каплям при постоянном помешивании раствор аммиака, пока осадок не
будет почти (но не полностью) растворен. Раствор фильтруют и хранят в плотно
закрытой склянке из темного стекла в защищенном от света месте.

(Измененная редакция, Изм. №
3).

3.6.2. Подготовка к анализу
— по п.
3.5.2.

3.6.3. Проведение анализа

2000 см3
кислорода пропускают в течение 30-35 мин через склянку со 100 см3 слабо
нагретого аммиачного раствора азотнокислого серебра.

Кислород считают
соответствующим требованиям настоящего стандарта, если раствор остается
бесцветным и прозрачным, что свидетельствует об отсутствии окиси углерода в
анализируемой пробе.

(Измененная редакция, Изм. №
3).

3.6.4. Содержание окиси
углерода допускается определять линейно-колористическим методом.

Анализ проводят с помощью
химического газоопределителя типа ГХ-4 (ГХ-4АМ-3) или универсального
переносного газоанализатора типа УГ-2 и индикаторной трубки на окись углерода.

Просасывают через
индикаторную трубку с помощью газоанализатора ГХ-4 1000 см3
кислорода, с помощью газоанализатора УГ-2-220 см3 кислорода.

Кислород считают
соответствующим требованиям настоящего стандарта, если индикаторный порошок не
окрашивается. Пороговая чувствительность метода 0,0005 %.

При разногласиях в оценке
содержания окиси углерода анализ проводят с применением аммиачного раствора
азотнокислого серебра.

(Измененная редакция, Изм. №
1, 3).

3.7. Определение содержания
газообразных кислот и оснований

3.7.1. Аппаратура
и реактивы

Аппаратура — по п. 3.5.1.

Вода дистиллированная,
дополнительно очищенная от углекислоты по п. 3.5.1.

Кислота соляная по ГОСТ
3118, раствор концентрации с (НС l ) = 0,01 моль/дм3
(0,01 н.).

Метиловый красный
(индикатор), спиртовой раствор с массовой долей 0,2 %; готовят растворением 0,2
г метилового красного в 100 см3 раствора этилового спирта с массовой
долей 60 %.

Натрий хлористый по ГОСТ
4233, насыщенный раствор.

Спирт этиловый
ректификованный технический по ГОСТ 18300, раствор с массовой долей 60 %.

(Измененная редакция, Изм.№ 3).

3.7.2. Подготовка к
анализу — по п. 3.5.2.

3.7.3. Проведение анализа

В три пронумерованные
склянки для промывания газов наливают по 100 см3 воды и добавляют в каждую
из них по 3-4 капли раствора метилового красного. Затем в склянку № 2 с помощью
пипетки вводят 0,2 см3, в склянку № 3-0,4 см3 раствора
соляной кислоты.

Через раствор в склянке № 2
пропускают 2000 см3 кислорода в течение 30-35 мин. Сравнивают
окраску раствора в склянке № 2 с окраской растворов в склянках № 1 и 3.

Кислород считают
соответствующим требованиям настоящего стандарта по содержанию газообразных
оснований, если окраска раствора в склянке № 2 сохраняет розовый цвет в отличие
от раствора в склянке № 1, окрашенного в желтый цвет; и соответствующим по
содержанию газообразных кислот, если розовая окраска раствора в склянке № 2
будет слабее, чем в склянке № 3.

Пороговая чувствительность
метода 0,001 г/моль газообразных кислоты или основания в 1 м3 кислорода.

(Измененная редакция, Изм. №
1, 3).

3.8. Определение содержания
озона и других газов-окислителей

3.8.1. Аппаратура
и реактивы

Аппаратура — по п. 3.5.1.

Вода дистиллированная по
ГОСТ 6709.

Калий йодистый по ГОСТ 4232.

Крахмал растворимый по ГОСТ
10163.

Смешанный раствор крахмала и
йодистого калия; готовят следующим образом: 0,5 г йодистого калия растворяют
при нагревании в 95 см3 воды; 0,5 г крахмала размешивают в 5 см3
холодной воды. Смесь медленно вливают при помешивании в кипящий раствор
йодистого калия и кипятят 2-3 мин.

Кислота уксусная по ГОСТ 61.

3.8.2. Подготовка к
анализу — по п. 3.5.2.

3.8.3. Проведение анализа

2000 см3
кислорода пропускают в течение 30-35 мин через склянку для промывания газов, в
которую налито 100 см3 свежеприготовленного смешанного раствора
крахмала и йодистого калия и прибавлена одна капля уксусной кислоты.

Кислород считают
соответствующим требованиям настоящего стандарта, если раствор остается
бесцветным, что свидетельствует об отсутствии озона и других газов-окислителей
в анализируемой пробе.

3.9. Определение содержания
щелочи в кислороде, получаемом электролизом воды

3.9.1. Аппаратура
и реактивы

Бумага фильтровальная лабораторная
по ГОСТ 12026.

Фенолфталеин (индикатор),
спиртовой раствор с массовой долей 1 %.

Вода дистиллированная по
ГОСТ 6709.

Секундомер механический.

(Измененная редакция, Изм. №
3).

3.9.2. Проведение анализа

Кислород пропускают со
скоростью 100-200 см3/мин в течение 8-10 мин через стеклянную трубку
длиной 10-11 см, диаметром 1,6 см. Узкий конец трубки длиной 2-3 см, диаметром
0,5-0,6 см соединяют с реометром резиновой трубкой. Другой конец трубки
закрывают резиновой пробкой, в которую вставлена стеклянная трубочка (вход
газа).

Кислород считают
соответствующим требованиям настоящего стандарта, если не произойдет
окрашивания фильтровальной бумаги в розовый или красный цвет.

3.10. Определение запаха

3.10.1. Запах определяют
органолептически. Продукт считают соответствующим требованиям настоящего стандарта,
если выпускаемый через слегка открытый вентиль кислород не обладает запахом.

Выбираем между кислородным концентратором и баллоном

Из всех существующих вариантов обеспечения человека концентрированным кислородом выбирают чаще всего между кислородным концентратором и кислородным баллоном, поскольку только они позволяют получить качественную и обогащенную дыхательную смесь. Разберем преимущества и недостатки обоих способов.

Преимущества кислородного концентратора перед баллончиком следующие:

  • при длительной и постоянной эксплуатации позволяет получить самую низкую себестоимость медицинского кислорода;
  • есть модели, которые не только генерируют кислород, но и увлажняют смесь;
  • интенсивность подачи можно регулировать;
  • кислород не хранится, а генерируется по мере необходимости, что улучшает пожаробезопасность.

Выбирая между кислородными концентраторами и кислородными баллонами, необходимо помнить и о недостатках приборов, а именно:

  • большой размер и масса (она может составлять до 20 кг);
  • шум при работе;
  • необходимость обеспечить непрерывную подачу электричества (т.е. дополнительно надо будет покупать генератор или АКБ);
  • необходимость менять фильтры и чистить прибор;
  • высокая стоимость устройства.


Последний фактор особенно важный, и даже в случае аренды кислородного концентратора кислородный баллон может оказаться более выгодным решением, особенно если речь не идет о тяжелобольных людях.

К преимуществам баллончика перед кислородным концентратором стоит отнести:

  • компактные размеры (баллоны выпускаются в разных объемах);
  • оптимальный состав дыхательной смеси (он подбирается таким образом, чтобы обеспечить максимальную концентрацию кислорода и при этом не сушить дыхательные пути);
  • баллоны легкие, их можно брать с собой и носить даже в обычной сумке;
  • можно положить баллончики в машину, офисный стол и т.д., чтобы они всегда были под рукой;
  • простота использования — достаточно нажать на клапан и вдохнуть смесь;
  • возможность пользоваться вместе с маской для максимальной эффективности кислородного дыхания.

Если говорить о недостатках кислородных баллончиков, то к ним можно отнести невозможность определить остаток смеси. Поэтому приходится покупать их с запасом, чтобы в случае необходимости не остаться без обогащенной дыхательной смеси. Также не во всех аптеках, сетях медицинского оборудования и медцентрах кислородные баллончики имеются в наличии, что иногда осложняет поиск продукции.

Таким образом, универсального ответа на вопрос, что лучше, нет. При выборе способа получения медицинского кислорода нужно исходить из моделей использования. Особенности кислородных баллончиков и концентраторов мы собрали в таблице.

Концентратор

Кислородный баллон

Мобильность

Мобильные модели концентраторов можно перемещать в пределах дома или квартиры

Можно носить в сумке, хранить в рабочем столе или в автомобиле, брать с собой в тренажерный зал, в поход

Раздражающее действие

Чтобы не сушить дыхательные пути, нужен концентратор с дополнительным увлажнителем

Можно подобрать баллончик с оптимальным составом смеси, не раздражающей дыхательные пути

Обслуживание

Необходима чистка, замена фильтров и заливка воды

Не требуется

Непрерывность работы

Может подавать кислород непрерывно

Подает смесь при нажатии на клапан

Выбирать кислородный концентратор или кислородный баллон для домашнего использования нужно исходя из конкретной задачи. Если требуется непрерывная подача дыхательной смеси тяжелобольному человеку, то стоит остановиться на концентраторе. В остальных случаях более удобно и выгодно использовать кислородный баллончик — он дешевле, легче, компактнее.

Также при выборе баллонов необходимо обращать внимание на состав дыхательной смеси. В ней не должно содержаться никаких примесей и добавок, в том числе ароматизирующих. Кроме того, нужно, чтобы медицинский кислород не сушил дыхательные пути — в противном случае пользоваться им будет дискомфортно.

Медицинский кислород: его отличие и перевозка без свидетельства допог — жыццё палесся. мозырь

Дыхание – это синоним  жизни, а источник жизни на Земле – Кислород. На сегодняшний день в мире  увеличилось использование кислорода в медицинских целях. Хочется внести ясность в разнице кислорода, маркировке баллонов и возможностью  перевозки без свидетельства ДОПОГ.Кислород — это элемент главной подгруппы шестой группы второгопериода периодической системы химических элементов МенделееваД.И., с атомным порядковым№8. Обозначается символом O  (лат. Oxygenium). Относительная атомная масса химического элемента кислорода равна 16, т.е. Ar(O)=16.Медицинский кислород (в толстом слое голубого цвета) — прозрачный газ, без запаха и вкуса, немного тяжелее воздуха, малорастворим в воде. При нормальном атмосферном давлении и при температуре -183˚С  он начинает переходить в жидкое состояние, при -219˚С замерзает. Вес 1м.куб. газообразного кислорода при нормальном давлении и 20˚Ссоставляет 1,331 кг. Испаряясь  при -183˚С, 1 литр кислорода жидкого дает после нагрева его до 20˚С  860 литров газообразного кислорода.

Жидкий кислород в лечебные заведения поступает в специальных в сосудах Дьюара.

Полезно ли дышать кислородом из баллона: для чего нужен кислородный баллончик для дыхания, польза, особенности применения

Но нас больше всего интересует отличие технического кислорода от медицинского.        

Кислород, используемый медицинскими учреждениями, отличается от технического газа тем, что он поставляется в более концентрированном виде и в нём отсутствуют инородные примеси. Медицинский газ заправляется в аттестованные баллоны, в которых ранее не перевозились другие газы. Как правило, медицинский кислород в баллонах проходит многоуровневую процедуру проверки, которая начинается с самих ёмкостей. Это позволяет исключить попадание внутрь баллона инертных газов и инородных примесей. Используемый в медицине кислород стоит гораздо дороже, чем аналог технического назначения. Технический газ может быть первого или второго сорта. У медицинского газа нет деления на сорта. В медицинском кислороде не может содержаться водорода, а содержание двуокиси углерода не должно превышать 0,1 процента. Последняя составляющая в техническом кислороде не нормируется, а вот водорода в газе первого сорта должно быть не более 0,3 процента, в газе второго сорта — не более 0,5 процента. Медицинский кислород не должен содержать никаких запахов. Для технического газа эта характеристика не имеет значения. Отличить технический кислород от медицинского можно и по баллонам. Документами, подтверждающими качество содержимого ёмкостей, сопровождаются партии и того, и другого вида кислорода, но такой документ обязательно должен быть к каждому контейнеру либо баллону с кислородом медицинского назначения. В сопроводительных документах указывается название предприятия, сорт и наименование газа, номер баллона, если речь идёт о медицинском газе,  партии, дата производства, объём кислорода в кубометрах и его номер. Использование технического кислорода в медицинских целях несколько лет назад стала причиной  аварии, которая  произошла Луганской городской больнице № 7, где прогремел взрыв в реанимационном отделении.

Полезно ли дышать кислородом из баллона: для чего нужен кислородный баллончик для дыхания, польза, особенности применения

При этом, как пояснил начальник Луганской госинспекции промбезопасности и охраны труда в социально-культурной сфере, если бы был чистый кислород в баллоне, не было бы примесей низкоуглеродистого газа, то баллон бы не взорвался, была бы вспышка. Возможно, даже не было бы там и большой вспышки, а просто выгорела бы прокладка. Таким образом, именно наличие постороннего газа в кислородном баллоне привело к таким печальным последствиям. В принципе, те эксперты, которые сразу после взрыва заявили, что баллоны с чистым кислородом не могли стать причиной таких разрушений, были правы. Взрыв был очень мощным именно потому, что была вот эта смесь газа кислорода с низкоуглеродистым газом.           

Полезно ли дышать кислородом из баллона: для чего нужен кислородный баллончик для дыхания, польза, особенности применения                                                    

Многие медицинские учреждения используют кислород в баллонах. Вот что необходимо знать  о  баллонах и маркировке. Для изготовления баллонов для кислорода применяются цельнотянутые трубы из углеродистой или легированной стали, а среди технологических процессов обязательно присутствует обжатие горловины баллона и его днища. Состоит кислородный баллон из цилиндрического корпуса с выпуклым дном и горловиной. В процессе изготовления такого баллона на нижнюю его часть насаживается специальный башмак – эта деталь баллона требуется для того, чтобы он мог надежно стоять в вертикальном положении. Процесс насадки башмака производится при разогреве корпуса до высокой температуры – это необходимо для того, чтобы башмак прочно закрепился на корпусе и не соскакивал в процессе транспортировки и эксплуатации баллона. На горловину кислородного баллона в процессе производства надевается кольцо с резьбой, с помощью которого в дальнейшем крепится предохранительный клапан, не позволяющий газу выходить из баллона во время его транспортировки и хранения. Кроме того, внутрь горловины с помощью резьбы вкручивается вентиль с уплотнителем, открывающимся с помощью специального маховика поворотом его против часовой стрелки (для того, чтобы закрыть вентиль, маховик надо повернуть по часовой стрелке). Последним этапом производства кислородного баллона является окрашивание его в голубой цвет и нанесение на поверхность корпуса надписи «кислород», которая выполняется черной краской.

Маркировка кислородных баллонов.

Важным этапом производства кислородных баллонов является нанесение маркировки на верхнюю часть его корпуса. Маркировка на кислородных баллонах содержит сведения о том, кто изготовил кислородный баллон, каковы его технические характеристики, а  также когда точно он был изготовлен и должен пройти освидетельствование. Маркировка должна сохраняться в процессе всего срока эксплуатации кислородного баллона, поэтому она не наносится с помощью краски, а выбивается прямо на корпусе. Кроме того, маркировка кислородного баллона надежно защищается от коррозии с помощью нанесения поверх ее специального защитного прозрачного лака.

Рассмотрим подробнее, что обозначают цифры и буквы, нанесенные на верхнюю часть баллона с кислородом.

Полезно ли дышать кислородом из баллона: для чего нужен кислородный баллончик для дыхания, польза, особенности применения

Как видно на рисунке, маркировка состоит из четырех строк, каждая из которых содержит определенный набор букв и цифр:

Первая строка показывает, каким производителем был изготовлен кислородный баллон, и содержит номер баллона, не имеющий аналогов.

Во второй строке выбивается дата производства данного баллона и дата, когда он должен пройти освидетельствование.

Третья строка – это сведения о рабочем давлении кислорода внутри баллона в кгс/см2, а также сведения о пробном гидравлическом давлении в тех же единицах.

И наконец, в четвертой строке указывается объем баллона – то есть, количество кислорода, которое он может вместить в литрах, а также масса баллона в килограммах. При указании массы не учитывается масса вентиля кислородного баллона, а также масса колпака, который надевается на вентиль для его защиты. Кроме того, в последней строке ставится клеймо ОТК завода-изготовителя.

Вот  теперь нам осталось доставить наши баллоны  по назначению и при этом у водителя отсутствует свидетельство ДОПОГ, что не является причиной отказа в перевозке газовых баллонов, а простой необходимостью расчетов. Сегодня в век экономии и безопасности необходимо уметь рассчитать по всем правилам перевозимый груз.     

Максимальное количество транспортируемых баллонов зависит от их содержимого. Если речь идет о негорючих неядовитых удушающих газах (классификационный код А), то перевозить единовременно можно 1000 литров для сжатого газа или килограммов — для сжиженного. То же касается и окисляющих веществ (код О), например, кислорода. А вот для легковоспламеняющихся веществ (F) максимально допустимое количество при загрузке в автомобиль составляет 333 л (кг). Если всю эту информацию попытаться свести к общему знаменателю, то получается, максимальное количество газов, которое можно перевозить в одной транспортной единице как неопасный груз, следующее:

ГазКлассификационный кодОбъемКоличество
АзотА40-л баллондо 24 штук включительно
АргонА40-л баллондо 24 штук включительно
АцетиленF5кг/40л баллондо 18 штук включительно
ГелийА40-л баллондо 24 штук включительно
КислородO40-л баллондо 24 штук включительно
ПропанF21кг/50л баллондо 15 штук включительно
УглекислотаА24кг/40л баллондо 41 штук включительно
УглекислотаА19кг/40л баллондо 52 штук включительно

Таким образом, расчет очень прост (класс 2 группа А- допустимо 1000л. Соответственно 1000л/на 40л баллон = 25 баллонов.Однако, среднестатистическая вместимость баллона при выборке не менее 100 реальных баллонов составляет 40,7-41 литра, то 24 баллона соответственно можем перевозить  с кислородом.Зная, сколько литров в баллоне, мы рассчитаем разные баллоны по весу и смело перевозим без свидетельства ДОПОГ.Наиболее сложная ситуация с ацетиленом. По формальным признакам (газ горючий, растворенный, 5 кг на 40л баллон) следует считать Группа F-333л /5 = 66 баллонов на транспортной единице. Однако, принимая во внимание, что в баллоне одновременно находится 13,2 кг столь же горючего ацетона, в котором, собственно, и растворен ацетилен, видимо, следует принять максимальное количество равное 333/(5 13,2) = 18

Наконец, в соответствии с 1.1.3.6.4 ДОПОГ «Если в одной и той же транспортной единице перевозятся опасные грузы, относящиеся к разным транспортным категориям, сумма … количества веществ и изделий транспортной категории «2», помноженного на 3, и количества веществ  изделий транспортной категории «3» не должна превышать 1000″.

Пример: можно ли перевозить совместно 4 баллона пропана и 8 баллонов кислорода?

Расчет: (21[кг] * 4) * 3 40[л] * 8 = 572 < 1000. Следовательно, такая перевозка не будет считаться перевозкой опасного груза.

Вот мы и сумели рассчитать  количество баллонов в одной транспортной единице без учета совместимости.

Дмитрий Кунгер,
старший государственный инспектор
Мозырского межрайонного отдела
Гомельского областного управления Госпромнадзора.

Определение объемной доли водяных паров
конденсационным методом

Объемную долю водяных паров
определяют приборами конденсационного типа с пороговой чувствительностью не
выше 1,5 млн-1 (ррт).

Относительная погрешность
прибора не должна превышать 10 %.

Метод основан на измерении
температуры насыщения газа водяными парами при появлении росы на охлажденной
зеркальной поверхности.

Анализ проводят по
инструкции, приложенной к прибору.

Объемную долю
водяных паров в соответствии с найденной температурой насыщения определяют по
таблице.

Объемная доля водяных
паров, млн (рр m )

Температура насыщения,
°С

Объемная доля водяных
паров, млн ( ppm )

Температура насыщения,
°С

2,55

-70

23,4

-54

3,44

-68

31,1

-52

4,60

-66

39,4

-50

6,10

-64

49,7

-48

8,07

-62

63,2

-46

10,6

-60

80

-44

14,0

-58

101

-42

18,3

-56

127

-40

Примечание. Объемная
доля, равная 1 млн-1, соответствует 1 10-4 %.

За результат анализа принимают
среднее арифметическое результатов двух параллельных определений, относительное
расхождение между которыми не превышает допускаемое расхождение, равное 10 %.

Допускаемая относительная
суммарная погрешность результата анализа ± 25 % при доверительной вероятности Р
= 0,95.

ПРИЛОЖЕНИЕ
3.
(Введено дополнительно, Изм. № 4).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. УТВЕРЖДЕН И ВВЕДЕН В
ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров
СССР от 26.05.78 № 1419

Изменение № 4 принято
Межгосударственным Советом по стандартизации, метрологии и сертификации
(протокол № 8 от 12.10.95)

За принятие изменения
проголосовали:

Наименование
государства

Наименование
национального органа по стандартизации

Республика Беларусь

Госстандарт Беларуси

Республика Казахстан

Госстандарт Республики Казахстан

Республика Молдова

Молдовастандарт

Республика Таджикистан

Таджикгосстандарт

Республика Узбекистан

Узгосстандарт

Российская Федерация

Госстандарт России

Туркменистан

Главная государственная инспекция Туркменистана

Украина

Госстандарт Украины

2. ВЗАМЕН ГОСТ 5583-68

3. ССЫЛОЧНЫЕ
НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на
который дана ссылка

Номер пункта,
приложения

ГОСТ 61-75

3.8.1

ГОСТ 1277-75

3.6.1

ГОСТ 1770-74

3.5.1

ГОСТ 3118-77

3.4.1 , 3.7.1

ГОСТ 3760-79

3.2.1 ; 3.4.1; 3.6.1

ГОСТ 3773-72

3.2.1 ; 3.4.1

ГОСТ 4107-78

3.5.1

ГОСТ 4201-79

3.5.1

ГОСТ 4232-74

3.8.1

ГОСТ 4233-77

3.7.1

ГОСТ 4328-77

3.5.1

ГОСТ 4517-87

3.5.1

ГОСТ 6709-72

3.2.1 ; 3.4.1; 3.5.1;
3.6.1;
3.8.1;
3.9.1

ГОСТ 9293-74

Приложение 1

ГОСТ 10157-79

Приложение 1

ГОСТ 10163-76

3.8.1

ГОСТ 12026-76

3.9.1

ГОСТ 13320-81

3.2.3 ; 3.4.4

ГОСТ 18300-87

3.7.1

ГОСТ 18954-73

3.1.2 ; 3.5.1

ГОСТ 19433-88

4.1

ГОСТ 25336-82

3.5.1

ГОСТ 26460-85

4.1

ГОСТ 29227-91

3.5.1

ГОСТ 29251-91

3.5.1

4. Ограничение срока действия
снято по протоколу № 4-93 Межгосударственного Совета по стандартизации,
метрологии и сертификации (ИУС 4-94)

5.
ПЕРЕИЗДАНИЕ (июнь 1998 г.) с Изменениями № 1, 2, 3, 4, утвержденными в мае 1984
г., марте 1985 г., марте 1989 г., апреле 1996 г. (ИУС 8-84, 6-85, 6-89, 7-96)

СОДЕРЖАНИЕ

1. Технические требования . 1

2. правила
приемки . 2

3. Методы анализа . 3

4. Упаковка, маркировка, транспортирование и хранение . 9

5. Гарантии изготовителя . 9

6. Требования безопасности . 10

Приложение 1 Определение
объемной доли водорода в кислороде, получаемом электролизом воды,
хроматографическим методом .. 10

Приложение 2 Расчет
объема газообразного кислорода в баллоне . 11

Приложение 3 Определение объемной доли водяных паров конденсационным
методом .. 12

Расчет объема газообразного кислорода в баллоне

1. Объем газообразного
кислорода в баллоне (V) в кубических метрах при нормальных условиях
вычисляют по формуле

V = K1·V б ,

где V б —   вместимость баллона, дм3. В расчетах принимают среднюю статистическую
величину вместимости баллонов не менее чем из 100 шт.;

K 1 —    коэффициент
для определения объема кислорода в баллоне при нормальных условиях, вычисляемый
по формуле

где Р — давление газа в баллоне, измеренное
манометром, кгс/см2;

0,968 — коэффициент для пересчета технических
атмосфер (кгс/см2) в физические;

t —
температура газа в баллоне, °С;

Z —
коэффициент сжигаемости кислорода при температуре t .

Значения коэффициента К1
приведены в таблице
4.

Таблица 4

Температура
газа в баллоне, °С

Значение коэффициента Ki при избыточном давлении, МПа (кгс/см2)

13,7 (140)

14,2 (145)

14,7 (150)

15,2 (155)

15,7 (160)

16,2 (165)

16,7 (170)

17,2 (175)

17,7 (180)

18,1 (185)

18,6 (190)

19,1 (195)

19,6 (200)

20,1 (205)

20,6 (210)

-50

0,232

0,242

0,251

0,260

0,269

0,278

0,286

0,296

0,303

0,311

0,319

0,327

0,335

0,342

0,349

-40

0,212

0,221

0,229

0,236

0,245

0,253

0,260

0,269

0,275

0,284

0,290

0,298

0,305

0,312

0,319

-35

0,203

0,211

0,219

0,226

0,234

0,242

0,249

0,257

0,264

0,272

0,278

0,286

0,293

0,299

0,306

-30

0,195

0,202

0,211

0,217

0,225

0,232

0,239

0,248

0,253

0,261

0,267

0,274

0,281

0,288

0,294

-25

0,188

0,195

0,202

0,209

0,217

0,223

0,230

0,238

0,243

0,251

0,257

0,264

0,270

0,277

0,283

-20

0,182

0,188

0,195

0,202

0,209

0,215

0,222

0,229

0,235

0,242

0,248

0,255

0,261

0,267

0,273

-15

0,176

0,182

0,189

0,196

0,202

0,208

0,215

0,221

0,227

0,234

0,240

0,246

0,252

0,258

0,263

-10

0,171

0,177

0,183

0,189

0,195

0,202

0,208

0,214

0,220

0,226

0,232

0,238

0,244

0,250

0,255

-5

0,165

0,172

0,178

0,184

0,190

0,195

0,202

0,207

0,213

0,219

0,225

0,231

0,236

0,242

0,247

0

0,161

0,167

0,172

0,179

0,184

0,190

0,196

0,201

0,207

0,213

0,219

0,224

0,229

0,235

0,240

5

0,157

0,162

0,168

0,174

0,179

0,185

0,190

0,196

0,201

0,207

0,212

0,217

0,223

0,228

0,233

10

0,153

0,158

0,163

0,169

0,174

0,180

0,185

0,191

0,196

0,201

0,206

0,211

0,217

0,222

0,227

15

0,149

0,154

0,159

0,165

0,170

0,175

0,180

0,186

0,191

0,196

0,201

0,206

0,211

0,216

0,221

20

0,145

0,150

0,156

0,160

0,166

0,171

0,176

0,181

0,186

0,191

0,196

0,201

0,206

0,211

0,215

25

0.142

0,147

0,152

0,157

0,162

0,167

0,172

0,177

0,182

0,186

0,191

0,196

0,201

0,206

0,210

30

0,139

0,143

0,148

0,153

0,158

0,163

0,168

0,173

0,177

0,182

0,187

0,192

0,196

0,201

0,206

35

0,136

0,140

0,145

0,150

0,154

0,159

0,164

0,169

0,173

0,178

0,182

0,187

0,192

0,196

0,201

40

0,133

0,137

0,142

0,147

0,151

0,156

0,160

0,165

0,170

0,174

0,178

0,183

0,188

0,192

0,196

50

0,127

0,132

0,136

0,141

0,145

0,149

0,154

0,158

0,163

0,167

0,171

0,175

0,180

0,184

0,188

ПРИЛОЖЕНИЕ 2. (Измененная редакция, Изм.№ 3).

Схемы кислородного дыхания

В зависимости от типа гипоксии стоит использовать различные схемы кислородного дыхания. Вопрос того, на сколько хватает кислородного баллончика, зависит от текущих нужд организма и его индивидуальных особенностей, в частности от объема легких. Приведем рекомендации врачей по использованию медицинского кислорода в различных ситуациях.

  • Восстановление после болезней.

Для восстановления после перенесенных болезней или сложного лечения стоит дышать кислородом дважды в день, делая от 3 до 5 вдохов. В этом случае таблица того, на сколько хватает кислородного баллончика, выглядит следующим образом.

Емкость баллона

Расчетное количество вдохов

На сколько дней хватит

8 л

50-70 вдохов

8-9 дней

12 л

70-100 вдохов

12-13 дней

16 л

100-120 вдохов

17-18 дней

  • Во время интенсивных тренировок для отодвигания аэробного порога.

Вдыхание медицинского кислорода у спортсменов повышает мощность на 6 % и более, а также помогает отодвинуть аэробный порог. В этом случае во время тренировки необходимо делать 2-3 подхода по 5 вдохов, после занятий и на следующий день — 2 подхода по 5 вдохов.

Емкость баллона

Расчетное количество вдохов

На сколько тренировок хватит

8 л

50-70 вдохов

3

12 л

70-100 вдохов

4

16 л

100-120 вдохов

5-6

  • При умственных нагрузках.

Во время высоких умственных нагрузок мозг намного интенсивнее расходует кислород, поэтому, снабжая его дополнительным О2, можно улучшить результаты. В этом случае то, на сколько хватает кислородного баллона для дыхания, зависит от продолжительности умственной активности. Обычно рекомендуют делать 4-6 вдохов каждые 1,5-2 часа.

Емкость баллона

Расчетное количество вдохов

На сколько часов непрерывной умственной активности хватит

8 л

50-70 вдохов

28 часов

12 л

70-100 вдохов

40 часов

16 л

100-120 вдохов

56 часов

  • При стрессе, переутомлении, бессоннице.

Кислородное дыхание превосходно работает при стрессе и общем переутомлении. Также оно помогает бороться с бессонницей, повышенной нервозностью, нервным напряжением и другими неприятными психоэмоциональными проявлениями. Для этих целей рекомендуется делать 5 вдохов утром после пробуждения, 5 вдохов перед сном и по 4-6 вдохов в течение дня каждые 1,5-2 часа. Расчетная таблица того, на сколько хватит кислородного баллона 16 л, 12 л или 8 л, выглядит так.

Емкость баллона

Расчетное количество вдохов

На сколько дней хватит

8 л

50-70 вдохов

2

12 л

70-100 вдохов

3

16 л

100-120 вдохов

4

Расчеты приведены для максимального расхода кислородной смеси, когда человек дышит ей на протяжении всего дня.


Стоит отметить, что кислородные баллоны также используются для приготовления кислородных коктейлей. Баллончика объемом 16 литров хватает на 25-30 порций полезного десерта. 

Оцените статью
Кислород
Добавить комментарий