Получение кислорода в промышленности – способы собирания и распознавания

Получение кислорода в промышленности – способы собирания и распознавания Кислород

Основные свойства

Кислород расположен на 8 месте в таблице периодических элементов Менделеева. Он поддерживает горение и осуществляет окисление веществ. Способы получения кислорода могут осуществляться как лабораторным, так и промышленным методом.

Основные свойства и месторасположение в атмосфере спустя некоторое время смог получить коллега Пристли французский ученый Антуан Лавуазье. Основными характеристиками при электролизе и производстве являются:

  1. Газ не имеет какого-либо окраса.
  2. Также у него при добыче нет запаха и вкуса.
  3. По плотности тяжелее воздуха.
  4. В составе молекулы источника содержится два атома.
  5. Жидкое состояние приводит к появлению бледно-голубого цвета.
  6. В воде почти не растворяется и сильно окисляется.

Наличие кислорода в перекиси достаточно легко проверять. Для этого опускают в сосуд с газом догорающую лучину. Если в нем имеется кислород, то она немедленно вспыхнет. Аналогично можно делать и с другими предметами.

Что такое кислород в химии — где находится в природе

Определение

Кислород (O, лат. oxygenium) — является  химическим элементом 16-й группы (согласно устаревшей сокращенной форме периодической системы, относится к главной подгруппе VI группы, или к группе VIA) второго периода периодической системы, имеет атомный номер 8.

Кислород относят к химически активным неметаллам. Элемент представляет собой наиболее легкий из всех в группе халькогенов. Являясь простым веществом, кислород при нормальных условиях принимает вид бесцветного и безвкусного газообразного вещества, не обладающего запахом. В молекуле кислорода имеются два атома.

Формула простого вещества кислорода: O2. По этой причине вещество называют дикислородом. Кислород в жидком агрегатном состоянии характеризуется светло-голубой окраской. Твердый кислород в виде кристаллов имеет светло-синий оттенок.

Примечание

Одной из аллотропных форм кислорода является озон. В нормальных условиях вещество имеет голубую окраску и специфический запах. Молекула озона состоит из трех атомов кислорода. Формула вещества: O3.

Электронная конфигурация атома кислорода: 1s22s22p4

В медицине

Основная статья: Кислородная терапия

Медицинский кислород хранится в металлических газовых баллонах высокого давления голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей.

Крупные медицинские учреждения могут использовать не сжатый кислород в баллонах, а сжиженный в сосуде Дьюара большой ёмкости. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки.

Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха.

Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометру редуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм. Объём кислорода в этом случае равен 100 × 2 = 200 литров.

Вода. казалось бы, чего уж проще?

Все тесты

  • Тест на темуАнализ стихотворения «Не с теми я, кто бросил землю» А. Ахматовой5 вопросов
  • Тест на темуАнализ стихотворения «Перемена» Б. Пастернака5 вопросов
  • Тест на темуАнализ стихотворения «Стихи о Петербурге» А. Ахматовой5 вопросов
  • Тест на темуАнализ стихотворения «Стихи к Блоку» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «Клеветникам России» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Завещание» Н. Заболоцкого5 вопросов
  • Тест на темуАнализ стихотворения «Стихи о Москве» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «Молитва» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «И. И. Пущину!» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «День и ночь» Ф. Тютчева5 вопросов
  • Тест на темуАнализ стихотворения «Весна в лесу» Б. Пастернака5 вопросов
  • Тест на темуАнализ стихотворения «Журавли» Р. Гамзатова5 вопросов
  • Тест на темуАнализ стихотворения «Люблю» В. Маяковского5 вопросов
  • Тест на темуАнализ стихотворения «Когда на меня навалилась беда» К. Кулиева5 вопросов
  • Тест на темуАнализ стихотворения «Гамлет» Б. Пастернака5 вопросов
  • Тест на темуАнализ стихотворения «Русь» А. Блока5 вопросов
  • Тест на темуАнализ стихотворения «Ночь» В. Маяковского5 вопросов
  • Тест на темуАнализ стихотворения К. Симонова «Ты помнишь, Алёша, дороги Смоленщины…»5 вопросов
  • Тест на темуАнализ стихотворения Жуковского «Приход весны»5 вопросов
  • Тест на темуАнализ стихотворения Анны Ахматовой «Сероглазый король»5 вопросов
  • Тест на темуАнализ стихотворения «Июль – макушка лета…»5 вопросов
  • Тест на темуАнализ стихотворения «Мелколесье. Степь и дали…» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Не позволяй душе лениться» Н. Заболоцкого5 вопросов
  • Тест на темуАнализ стихотворения «На дне моей жизни» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Нивы сжаты, рощи голы…» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Бабушкины сказки» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Снежок» Н. Некрасова1 вопрос
  • Тест на темуАнализ стихотворения «По вечерам» Н. Рубцова5 вопросов
  • Тест на темуАнализ стихотворения «Вчерашний день, часу в шестом…» Н. Некрасова5 вопросов
  • Тест на темуАнализ стихотворения «Цветы последние милей…» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Я знаю, никакой моей вины…» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Я не ищу гармонии в природе»Н. Заболоцкого5 вопросов
  • Тест на темуАнализ стихотворения «Разбуди меня завтра рано» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Снега потемнеют синие» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Осень» Н. Карамзина5 вопросов
  • Тест на темуАнализ стихотворения «Молитва» А. Ахматовой5 вопросов
  • Тест на темуАнализ стихотворения «Вечер» А. Фета5 вопросов
  • Тест на темуАнализ стихотворения «Не жалею, не зову, не плачу» С. Есенина5 вопросов
  • Тест на темуАнализ стихотворения «Тучи» М. Лермонтова5 вопросов
  • Тест на темуАнализ стихотворения «Книга» Г. Тукая5 вопросов
  • Тест на темуАнализ стихотворения «Необычайное приключение, бывшее с Владимиром Маяковским летом на даче» В. Маяковского5 вопросов
  • Тест на темуАнализ стихотворения «Деревня» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Летний вечер» А. Блока5 вопросов
  • Тест на темуАнализ стихотворения «Я убит подо Ржевом» А. Твардовского5 вопросов
  • Тест на темуАнализ стихотворения «Элегия» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Зимнее утро» А. Пушкина5 вопросов
  • Тест на темуАнализ стихотворения «Троица» И. Бунина5 вопросов
  • Тест на темуАнализ стихотворения «Бабушке» М. Цветаевой5 вопросов
  • Тест на темуАнализ стихотворения «О весна без конца и краю» А. Блока5 вопросов
  • Тест на темуАнализ стихотворения «Море» В. Жуковского5 вопросов

Изотопы

Основная статья: Изотопы кислорода

Кислород имеет три устойчивых изотопа: 16O, 17O и 18O, среднее содержание которых составляет соответственно 99,759 %, 0,037 % и 0,204 % от общего числа атомов кислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16O связано с тем, что ядро атома 16O состоит из 8 протонов и 8 нейтронов (дважды магическое ядро с заполненными нейтронной и протонной оболочками). А такие ядра, как следует из теории строения атомного ядра, обладают особой устойчивостью.

Также известны радиоактивные изотопы кислорода с массовыми числами от 12O до 28O. Все радиоактивные изотопы кислорода имеют малый период полураспада, наиболее долгоживущий из них 15O с периодом полураспада ~120 секунд. Наиболее краткоживущий изотоп 12O имеет период полураспада 5,8⋅10−22 секунд.

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

 2HgO →ot  2Hg O2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Как получают

Известно несколько способов получения кислорода из различных соединений в промышленных и лабораторных условиях. В промышленности кислород получают из воздуха путём его сжижения под давлением и при температуре в -183°С. Жидкий воздух подвергают испарению, т.е. постепенно нагревают. При -196°C азот начинает улетучиваться, а кислород сохраняет жидкое состояние.

В лаборатории кислород образуется из солей, пероксида водорода и в результате электролиза. Разложение солей происходит при нагревании. Например, хлорат калия или бертолетову соль нагревают до 500°С, а перманганат калия или марганцовку – до 240°С:

Нагревание бертолетовой соли
Рис. 3. Нагревание бертолетовой соли.

Также можно получить кислород путём нагревания селитры или нитрата калия:

2KNO3 → 2KNO2 O2↑.

При разложении пероксида водорода используется оксид марганца (IV) – MnO2, углерод или порошок железа в качестве катализатора. Общее уравнение выглядит следующим образом:

2Н2О2 → 2Н2О О2↑.

Электролизу подвергается раствор гидроксида натрия. В результате образуется вода и кислород:

4NaOH → (электролиз) 4Na 2H2O O2↑.

Также кислород с помощью электролиза выделяют из воды, разложив её на водород и кислород:

2H2O → 2H2 O2↑.

Кислород и его получение

СВОЙСТВА КИСЛОРОДА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ

ПОЛУЧЕНИЕ КИСЛОРОДА ИЗ ВОЗДУХА

СВОЙСТВА КИСЛОРОДА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ

Кислород О2 является наиболее распространенным элементом на земле. Он находится в большом количестве в виде химических соединений с различными веществами в земной коре (до 50% вес.), в соединении с водородом в воде (около 86% вес.) и в свободном состоянии в атмосферном воздухе в смеси главным образом с азотом в количестве 20,93% об. (23,15% вес.).

Кислород имеет большое значение в народном хозяйстве. Он широко применяется в металлургии; химической промышленности; для газопламенной обработки металлов, огневого бурения твердых горных пород, подземной газификации углей; в медицине и различных дыхательных аппаратах, например для высотных полетов, и в других областях.

В нормальных условиях кислород представляет собой газ без цвета, запаха и вкуса, не горючий, но активно поддерживающий горение. При весьма низких температурах кислород превращается в жидкость и даже твердое вещество.

Важнейшие физические константы кислорода следующие:

Кислород обладает большой химической активностью и образует соединения со всеми химическими элементами, кроме редких газов. Реакции кислорода с органическими веществами имеют резко выраженный экзотермический характер. Так, при взаимодействии сжатого кислорода с жировыми или находящимися в мелкодисперсном состоянии твердыми горючими веществами происходит мгновенное их окисление и выделяющееся тепло способствует самовозгоранию этих веществ, что может быть причиной пожара или взрыва. Это свойство особенно необходимо учитывать при обращении с кислородной аппаратурой.

Одним из важных свойств кислорода является способность его образовывать в широких пределах взрывчатые смеси с горючими газами и парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры. Взрывчатыми являются и смеси воздуха с газо- или парообразными горючими.

Кислород может быть получен: 1) химическими способами; 2) электролизом воды; 3) физическим способом из воздуха.

Химические способы, заключающиеся в получении кислорода из различных веществ, малопроизводительны и в настоящее время имеют лишь лабораторное значение.

Электролиз воды, т. е. разложение ее на составляющие — водород и кислород, осуществляется в аппаратах, называемых электролизерами. Через воду, в которую для повышения электропроводности добавляется едкий натр NaOH, пропускается постоянный ток; кислород собирается на аноде, а водород — на катоде. Недостатком способа является большой расход электроэнергии: на 1 м3 02 (кроме того, получается 2 м3 Н2) расходуется 12-15 квт.ч. Этот способ рационален при наличии дешевой электроэнергии, а также при получении электролитического водорода, когда кислород является отходом производства.

Физический способ заключается в разделении воздуха на составляющие методом глубокого охлаждения. Этот способ позволяет получать кислород практически в неограниченном количестве и имеет основное промышленное значение. Расход электроэнергии на 1 м3 О2 составляет 0,4-1,6 квт.ч, в зависимости от типа установки.

ПОЛУЧЕНИЕ КИСЛОРОДА ИЗ ВОЗДУХА

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем объемном их содержании: азота — 78,09%, кислорода — 20,93%, аргона — 0,93%. Кроме того, в нем содержится около 0,03% углекислого газа и малые количества редких газов, водорода, закиси азота и др.

Главная задача при получении кислорода из воздуха заключается в разделении воздуха на кислород и азот. Попутно производится отделение аргона,-применение которого в специальных способах сварки непрерывно возрастает, а также и редких газов, играющих важную роль в ряде производств. Азот имеет некоторое применение в сварке как защитный газ, в медицине и других областях.

Сущность способа заключается в глубоком охлаждении воздуха с обращением его в жидкое состояние, что при нормальном атмосферном давлении может быть достигнуто в интервале температур от —191,8° С (начало сжижения) до -193,7° С (окончание сжижения).

Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Ткип. о2 = -182,97° С; Ткип.N2 = -195,8° С (при 760 мм рт. ст.).

При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения и по мере его выделения жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией.

Для производства кислорода из воздуха имеются специализированные предприятия, оснащенные высокопроизводительными установками. Кроме того, на крупных металлообрабатывающих предприятиях имеются свои кислородные станции.

Низкие температуры, необходимые для сжижения воздуха, получают с помощью так называемых холодильных циклов. Ниже кратко рассматриваются основные холодильные циклы, используемые в современных установках.

Получение кислорода в промышленности – способы собирания и распознаванияХолодильный цикл с дросселированием воздуха основан на эффекте Джоуля—Томсона, т. е. резком снижении температуры газа при свободном его расширении. Схема цикла приведена на рис. 2.

Воздух сжимается в многоступенчатом компрессоре 1 до 200 кгс/см2 и затем проходит через холодильник 2 с проточной водой. Глубокое охлаждение воздуха происходит в теплообменнике 3 обратным потоком холодного газа из сборника жидкости (ожижителя) 4. В результате расширения воздуха в дроссельном вентиле 5 он дополнительно охлаждается и частично сжижается.

Давление в сборнике 4 регулируется в пределах 1—2 кгс/см2. Жидкость периодически сливается из сборника в специальные емкости через вентиль 6. Несжиженная часть воздуха отводится через теплообменник, производя охлаждение новых порций поступающего воздуха.

Охлаждение воздуха до температуры сжижения происходит постепенно; при включении установки имеется пусковой период, в течение которого сжижения воздуха не наблюдается, а происходит лишь охлаждение установки. Этот период занимает несколько часов.

Достоинством цикла является его простота, а недостатком — относительно высокий расход электроэнергии — до 4,1 квт.ч на 1 кг сжиженного воздуха при давлении в компрессоре 200 кгс/см2; при меньшем давлении удельный расход электроэнергии резко возрастает. Данный цикл применяется в установках малой и средней производительности для получения газообразного кислорода.

Несколько более сложным является цикл с дросселированием и предварительным аммиачным охлаждением воздуха.

Получение кислорода в промышленности – способы собирания и распознаванияХолодильный цикл среднего давления с расширением в детандере основан на понижении температуры газа при расширении с отдачей внешней работы. Кроме того, используется и эффект Джоуля— Томсона. Схема цикла приведена на рис. 3.

Воздух сжимается в компрессоре 1 до 20-40 кгс/см2, проходит через холодильник 2 и затем через теплообменники 3 и 4. После теплообменника 3 большая часть воздуха (70-80%) направляется в поршневую расширительную машину-детандер 6, а меньшая часть воздуха (20-30%) идет на свободное расширение в дроссельный вентиль 5 и далее сборник 7, имеющий кран 8 для слива жидкости. В детандере 6

воздух, уже охлажденный в первом теплообменнике, производит работу — толкает поршень машины, давление его падает до 1 кгс/см2, за счет чего резко снижается температура. Из детандера холодный воздух, имеющий температуру около —100° С, выводится наружу через теплообменники 4 и 3, охлаждая поступающий воздух. Таким образом, детандер обеспечивает весьма эффективное охлаждение установки при сравнительно небольшом давлении в компрессоре. Работа детандера используется полезно и это частично компенсирует затрату энергии на сжатие воздуха в компрессоре.

Достоинствами цикла являются: сравнительно небольшое давление сжатия, что упрощает конструкцию компрессора и повышенная холодопроизводительность (благодаря детандеру), что обеспечивает устойчивую работу установки при отборе кислорода в жидком виде.

Холодильный цикл низкого давления с расширением в турбодетандере, разработанный акад. П. Л. Капицей, основан на применении воздуха низкого давления с получением холода только за счет расширения этого воздуха в воздушной турбине (турбодетандере) с производством внешней работы. Схема цикла приведена на рис. 4.

Получение кислорода в промышленности – способы собирания и распознавания

Воздух сжимается турбокомпрессором 1 до 6-7 кгс/см2, охлаждается водой в холодильнике 2 и поступает в регенераторы 3 (теплообменники), где охлаждается обратным потоком холодного воздуха. До 95% воздуха после регенераторов направляется в турбодетандер 4, расширяется до абсолютного давления 1 кгс/см2 с выполнением внешней работы и при этом резко охлаждается, после чего он подается в трубное пространство конденсатора 5 и конденсирует остальную часть сжатого воздуха (5%), поступающую в межтрубное пространство. Из конденсатора 5 основной поток воздуха направляется в регенераторы и охлаждает поступающий воздух, а жидкий воздух пропускается через дроссельный вентиль 6 в сборник 7, из которого сливается через вентиль 8. На схеме показан один регенератор, а в действительности их ставят несколько и включают поочередно.

Достоинствами цикла низкого давления с турбодетандером являются: более высокий к. п. д. турбомашин по сравнению с машинами поршневого типа, упрощение технологической схемы, повышение надежности и взрывобезопасности установки. Цикл применяется в установках большой производительности.

Разделение жидкого воздуха на составляющие осуществляется посредством процесса ректификации, сущность которого состоит в том, что образующуюся при испарении жидкого воздуха парообразную смесь азота и кислорода пропускают через жидкость с меньшим содержанием кислорода. Поскольку кислорода в жидкости меньше, а азота больше, то она имеет более низкую температуру, чем проходящий через нее пар, а это вызывает конденсацию кислорода из пара и обогащение им жидкости с одновременным испарением из жидкости азота, т. е. обогащение им паров над жидкостью.

Получение кислорода в промышленности – способы собирания и распознавания

Представление о сущности процесса ректификации может дать приведенная на рис. 5 упрощенная схема процесса многократного испарения и конденсации жидкого воздуха.

Принимаем, что воздух состоит только из азота и кислорода. Представим, что имеется несколько соединенных друг с другом сосудов (I—V), в верхнем находится жидкий воздух с содержанием 21% кислорода. Благодаря ступенчатому расположению сосудов жидкость будет стекать вниз и при этом постепенно обогащаться кислородом, а температура ее будет повышаться.

Допустим, что в сосуде II находится жидкость, содержащая 30% 02, в сосуде III — 40%, в сосуде IV — 50% и в сосуде V — 60% кислорода.

Для определения содержания кислорода в паровой фазе воспользуемся специальным графиком — рис. 6, кривые которого указывают содержание кислорода в жидкости и паре при различных давлениях.

Начнем испарять жидкость в сосуде V при абсолютном давлении 1 кгс/см2. Как видно из рис. 6, над жидкостью в этом сосуде, состоящей из 60% 02 и 40% N2, может находиться равновесный по составу пар, содержащий 26,5% 02 и 73,5% N2, имеющий такую же температуру, что и жидкость. Подаем этот пар в сосуд IV, где жидкость содержит только 50% 02 и 50% N2 и поэтому будет более холодной. Из рис. 6 видно, что над этой жидкостью пар может содержать лишь 19% 02 и 81% N2, и только в этом случае его температура будет равна температуре жидкости в данном сосуде.

Получение кислорода в промышленности – способы собирания и распознавания 

Следовательно, подводимый в сосуд IV из сосуда V пар, содержащий 26,5% О2, имеет более высокую температуру, чем жидкость в сосуде IV; поэтому кислород пара конденсируется в жидкости сосуда IV, а часть азота из нее будет испаряться. В результате жидкость в сосуде IV обогатится кислородом, а пар над нею — азотом.

Аналогично будет происходить процесс и в других сосудах и, таким образом, при сливе из верхних сосудов в нижние жидкость обогащается кислородом, конденсируя его из поднимающихся паров и отдавая им свой азот.

Продолжая процесс вверх, можно получить пар, состоящий почти из чистого азота, а в нижней части — чистый жидкий кислород. В действительности процесс ректификации, протекающий в ректификационных колоннах кислородных установок, значительно сложнее описанного, но принципиальное его содержание такое же.

Независимо от технологической схемы установки и вида холодильного цикла процесс производства кислорода из воздуха включает следующие стадии:

1) очистка воздуха от пыли, паров воды и углекислоты. Связывание СО2 достигается пропусканием воздуха через водный раствор NaOH;

2) сжатие воздуха в компрессоре с последующим охлаждением в холодильниках;

3) охлаждение сжатого воздуха в теплообменниках;

4) расширение сжатого воздуха в дроссельном вентиле или детандере для его охлаждения и сжижения;

5) сжижение и ректификация воздуха с получением кислорода и азота;

6) слив жидкого кислорода в стационарные цистерны и отвод газообразного в газгольдеры;

7) контроль качества получаемого кислорода;

8) наполнение жидким кислородом транспортных резервуаров и наполнение баллонов газообразным кислородом.

Качество газообразного и жидкого кислорода регламентируется соответствующими ГОСТами.

По ГОСТу 5583-58 выпускается газообразный технический кислород трех сортов: высший — с содержанием не менее 99,5% О2, 1-й — не менее 99,2% О2 и 2-й — не менее 98,5% О2, остальное — аргон и азот (0,5—1,5%). Содержание влаги не должно превышать 0,07 г/ж3. Кислород, получаемый электролизом воды, не должен содержать водорода более 0,7% по объему.

По ГОСТу 6331-52 выпускается жидкий кислород двух сортов: сорт А с содержанием не менее 99,2% О2 и сорт Б с содержанием не менее 98,5% О2. Содержание ацетилена в жидком кислороде не должно превышать 0,3 см3/л.

Применяемый для интенсификации различных процессов на предприятиях металлургической, химической и других отраслей промышленности технологический кислород содержит 90—98% О2.

Контроль качества газообразного, а также и жидкого кислорода производится непосредственно в процессе производства с помощью специальных приборов.

Автор: Администрация   

Нахождение в природе

Кислород

Накопление O

2

в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.

1

. (3,85—2,45 млрд лет назад) — O

2

не производился

2

. (2,45—1,85 млрд лет назад) O

2

производился, но поглощался океаном и породами морского дна

3

. (1,85—0,85 млрд лет назад) O

2

выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя

4

. (0,85—0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление O

2

в атмосфере

5

. (0,54 млрд лет назад — по настоящее время) современный период, содержание O

2

в атмосфере стабилизировалось

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад, в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы).

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.

В 2022 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.

Общая характеристика элементов via группы

Общее название элементов VIa группы O, S, Se, Te, Po — халькогены. Халькогены (греч. χαλκος — руда γενος —
рождающий) — входят в состав многих минералов. Например, кислород составляет 50% массы земной коры.


От O к Po (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств.
Уменьшается электроотрицательность, энергия ионизации, сродство к электрону.

Среди элементов VIa группы O, S, Se — неметаллы. Te, Po — металлы.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np4:

  • O — 2s22p4
  • S — 3s23p4
  • Se — 4s24p4
  • Te — 5s25p4
  • Po — 6s26p4

Применение вещества

Собирание и распознавание нужно, чтобы получать чистый химический элемент. Он необходим в промышленности для окисления веществ и поддержки дыхательных процессов в космосе или проблемных помещениях. Еще он нужен пациентам с затрудненным дыханием в реанимации.

Также он требуется в сжигании топлива. Среди них уголь, нефть, природный газ. Широкое распространение получил в металлургической промышленности и машиностроении. В качестве процессов выступают плавка, резка и сварка металлоконструкций.

Поэтому такой химический элемент важен как для лабораторных исследований, так и промышленных работ. С его помощью идет значительное число реакций в химии. Получение его необходимо также и для облегчения дыхания в труднодоступных местах, включая задымленные помещения и глубоководные пространства.

Применение кислорода

Помимо того, что все живые существам в природе, за исключением немногих микроорганизмов, при дыхании потребляют кислород, он широко применяется во многих отраслях промышленности: металлургической, химической, машиностроении, авиации, ракетостроении и даже в медицине.

В химической промышленности его применяет:

В металлургии его используют:

В медицинских целях больным, у которых нарушена нормальная деятельность органов дыхания или кровообращения, искусственно увеличивают содержание O2 в воздухе или дают дышать непродолжительное время чистым O2. Медицинский кислород, выпускаемый ГОСТ 5583, особенно тщательно очищают от всех примесей.

Применение кислорода в сварке

Сам по себе O2 является негорючим газом, но из-за свойства активно поддерживать горение и увеличения интенсивности (интенсификации) горения газов и жидкого топлива его используют в ракетных энергетических установках и во всех процессах газопламенной обработки.

В таких процессах газопламенной обработки, как газовая сварка, поверхностная закалка высокая температура пламени достигается путем сжигания горючих газов в O2, а при газовой резке благодаря ему происходит окисление и сгорание разрезаемого металла.

При полуавтоматической сварке (MIG/MAG) кислород O2 используют как компонент защитных газовых смесей с аргоном (Ar) или углекислым газом (CO2).

Кислород добавляют в аргон при полуавтоматической сварке легированных сталей для обеспечения устойчивости горения дуги и струйного переноса расплавленного металла в сварочную ванну. Дело в том, что как поверхностно активный элемент он уменьшает поверхностное натяжение жидкого металла, способствуя образованию на конце электрода более мелких капель.

При сварке низколегированных и низкоуглеродистых сталей полуавтоматом O2 добавляют в углекислый газ для обеспечения глубокого проплавления и хорошего формирования сварного шва, а также для уменьшения разбрызгивания.

Чаще всего кислород используют в газообразном виде, а в виде жидкости используют только при его хранении и транспортировке от завода-изготовителя до потребителей.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygene), предложенного А.

Лавуазье (от др.-греч. ὀξύς — «кислый» и γεννάω — «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его — «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами.

Способы получения кислорода

В основном кислород получают тремя способами:

Из атмосферного воздуха его получают методом глубокого охлаждения, как побочный продукт при получении азота.

Также O2 добывают путем пропускания электрического тока через воду (электролиз воды) с попутным получением водорода.

Химические способ получения малопроизводителен, а, следовательно, и неэкономичен, он не нашел широкого применения и используются в лабораторной практике.

Наверно многие помнят химический опыт, когда в колбе нагревают марганцовку (перманганат калия KMnO4), а потом выделяющийся в процессе нагрева газ собирают в другую колбу?

2KMnO4 = K2MnO4 MnO2 O2 ↑

Способы получения, для чего это нужно, применение

Одним из промышленных методов получения кислорода является перегонка жидкого воздуха. Основной способ — криогенная ректификация. Активно применяют кислородные установки, которые функционируют по принципу мембранной технологии и адсорбции.

В лабораторных условиях используют кислород промышленного производства. Вещество поставляют в баллонах из стали, давление внутри которых достигает 15 МПа.

Получение кислорода в лаборатории основано на разложении кислородсодержащих веществ.

В небольших количествах вещество синтезируют путем нагрева перманганата калия KMnO4:

Физические свойства

При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Хорошо растворяется в перфторированных углеводородах (20-40 об/об %).

Межатомное расстояние — 0,12074 нм. Является парамагнетиком. В жидком виде притягивается магнитом.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

Твёрдый кислород (температура плавления −218,35 °C) — синие кристаллы. Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

  • α-O2 — существует при температуре ниже 23,65 K; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.
  • β-O2 — существует в интервале температур от 23,65 до 43,65 K; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°.
  • γ-O2 — существует при температурах от 43,65 до 54,21 K; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

Химические свойства

Сильный окислитель, самый активный неметалл после фтора, образует бинарные соединения (оксиды) со всеми элементами, кроме гелия, неона, аргона. Наиболее распространённая степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

 4Li O2 → 2Li2O
 2Sr O2 → 2SrO

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

 2NO O2 → 2NO2

Окисляет большинство органических соединений в реакциях горения:

 2C6H6 15O2 → 12CO2 6H2O
 CH3CH2OH 3O2 → 2CO2 3H2O

При определённых условиях можно провести мягкое окисление органического соединения:

 CH3CH2OH O2 → CH3COOH H2O

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета.

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

 2Na O2 → Na2O2
 2BaO O2 → 2BaO2
 H2 O2 → H2O2
 Na2O2 O2 → 2NaO2
 K O2 → KO2
 3KOH 3O3 → 2KO3 KOH ∗ H2O 2O2
 PtF6 O2 → O2PtF6

В этой реакции, кислород проявляет восстановительные свойства.

Хранение и транспортировка кислорода

Кислород газообразный технический и медицинский выпускают по ГОСТ 5583.

Хранят и транспортируют его в стальных баллонах ГОСТ 949 под давлением 15 МПа. Кислородные баллоны окрашены в синий цвет с надписью черными буквами «КИСЛОРОД».

Жидкий кислород выпускается по ГОСТ 6331. O2 находится в жидком состоянии только при получении, хранении и транспортировке. Для газовой сварки или газовой резки его необходимо снова превратить в газообразное состояние.

Оцените статью
Кислород
Добавить комментарий