Расчет газа в баллоне | Завод по производству технических газов

Расчет газа в баллоне | Завод по производству технических газов Кислород

Введение

Кислород является самым распространенным элементом на земле, встречающимся в виде химических соединений в различными веществами: в земле – до 50 % по массе; в соединении с водородом в воде – около 86 % по массе и в воздухе – до 21 % по объему и 23 % по массе.

При нормальных условиях (температура 20 °С, давление 0,1 МПа) – это бесцветный, прозрачный, негорючий газ, немного тяжелее воздуха, не имеющий запаха, но активно поддерживающий горение. При нормальных условиях масса 1 м3 кислорода равна 1,33 кг.

Кислород обладает высокой химической активностью и способен образовывать химические соединения (оксиды) со всеми элементами, кроме инертных газов (аргон, криптон, ксенон, неон и гелий) и благородных металлов (золото, серебро, платина, палладий, родий и т.д.).

Скорость реакции окисления резко возрастает при повышении температуры или применении катализаторов. Реакции окисления органических веществ в кислороде носят экзотермический характер и протекают с выделением большого количества теплоты. Повышение давления и температуры кислорода в зоне реакции значительно ускоряет ее.

Технический кислород находит широкое применение во многих ведущих отраслях промышленности. Его используют для интенсификации выплавки стали (в мартеновских и электрических печах) и чугуна (в доменных печах), при кислородно-конверторной выплавке стали и получении цветных металлов из руд.

Крупным потребителем кислорода является химическая промышленность. С его применением осуществляется газификация твердых топлив, конверсия газообразных углеводородов при получении синтетического аммиака, метанола и формальдегида, производство ацетилена из природного газа, азотной и серной кислот и другие процессы.

Технический газообразный кислород применяют для газопламенной обработки металлов и других технических целей. Медицинский газообразный кислород применяют для дыхания и лечебных целей.

Согласно ГОСТ 5583-78 кислород различается различной степенью чистоты (99,7–99,2 %). Следует учесть важное значение чистоты газа при сварке и резке металла. Снижение чистоты кислорода на 1 % не только ухудшает качество сварного шва, но и требует увеличения расхода кислорода на 1,5 %.

Производство кислорода из воздуха

В промышленности технически чистый кислород получают двумя способами:

  • из воздуха – методом глубоко охлаждения;
  • из воды – путем электролиза.

Способ производства кислорода из воздуха более экономичный: на 1 м3 кислорода расходуется 0,5–1,6 кВт/ч электроэнергии. Чтобы получить 1 м3 кислорода путем электролиза воды требуется 10–21 кВт/ч.

Атмосферный осушенный воздух представляет собой смесь, содержащую 20,93 % кислорода и 78,03 % азота, остальное – инертные газы, углекислый газ и пр. Содержание водяных паров в воздухе может изменяться в зависимости от температуры и степени их насыщения.

Для получения технически чистого кислорода воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при нормальном атмосферном давлении –194,5 °С). Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах.

Воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, затем проходит последовательно ступени компрессора. За каждой ступенью компрессора давление воздуха возрастает и достигает 5–22 МПа в зависимости от системы установки и стадии производства.

Сжатый воздух из компрессора проходит через осушительную батарею из баллонов, заполненных кусками едкого натра, поглощающего влагу и остатки углекислоты. Затем сжатый воздух поступает в кислородный аппарат, где происходит охлаждение, сжижение и ректификация (разделением на кислород и азот). Газообразный азот применяют как защитный газ для сварки меди.

Кислород направляется в газгольдер и подается для наполнения кислородных баллонов под давлением до 16,5 МПа; масса 1 м3 кислорода при нормальном атмосферном давлении (0,1 МПа) и 0 °С составляет 1,43 кг, при 20 °С – 1,31 кг; масса 1 л жидкого кислорода равна 1,13 кг; в результате испарения образуется 0,79 м3 газообразного кислорода (при 0 °С и нормальном атмосферном давлении);

Расчет газа в баллоне | завод по производству технических газов

Кислород

Параметры и размеры кислородных баллонов можно посмотреть по ГОСТ 949-73 «Баллоны стальные малого и среднего для газов на Рр ≤ 19,7МПа». Наиболее популярными являются баллоны объемами 5, 10 и 40 литров.

По ГОСТ 5583-78 «Кислород газообразный технический и медицинский» (приложение 2), объем газообразного кислорода в баллоне (V) в кубических метрах при нормальных условиях вычисляют по формуле:

V = K1•Vб,

Vб — вместимость баллона, дм3;

K1 — коэффициент для определения объема кислорода в баллоне при нормальных условиях, вычисляемый по формуле

К1 = (0,968Р 1) *   *

Р — давление газа в баллоне, измеренное манометром, кгс/см2;

Про кислород:  Температура горения ацетилена с кислородом - Мастерок

0,968 — коэффициент для пересчета технических атмосфер (кгс/см2) в физические;

t — температура газа в баллоне, °С;

Z — коэффициент сжигаемости кислорода при температуре t.

Значения коэффициента К1 приведены в таблице 4, ГОСТ 5583-78.

Посчитаем объем кислорода в самом распространенном баллоне в строительстве: объемом 40л с рабочим давлением 14,7МПа (150кгс/см2). Коэффициент К1 определяем по таблице 4, ГОСТ 5583-78 при температуре 15°С:

V = 0,159 • 40 = 6,36м3

Вывод (для рассматриваемого случая): 1 баллон = 40л = 6,36м3

Пропан-бутан

Параметры и размеры кислородных баллонов для пропана, бутана и их смесей можно посмотреть по ГОСТ 15860-84. В настоящее время применяются четыре типа данных изделий, объемами 5, 12, 27 и 50 литров.

При нормальных атмосферных условиях и температуре 15°С плотность пропана в жидком состоянии составляет 510 кг/м3, а бутана 580 кг/м3. Пропана в газовом состоянии при атмосферном давлении и температуре 15°С равна 1,9 кг/м3, а бутана — 2,55 кг/м3. При нормальных атмосферных условиях и температуре 15°С из 1 кг жидкого бутана образуется 0,392 м3 газа, а из 1 кг пропана 0,526 м3.

Посчитаем вес пропанобутановой смеси в самом распространенном баллоне в строительстве: объемом 50 с максимальным давлением газа 1,6МПа. Доля пропана по ГОСТ 15860-84 должна быть не менее 60% (примечание 1 к табл.2):

50л = 50дм3 = 0,05м3;

0,05м3 • (510 • 0,6 580 •0,4) = 26,9кг

Но из-за ограничения давления газа 1,6МПа на стенки в баллон этого типа не заправляют более 21кг.

Посчитаем объем пропанобутановой смеси в газообразном состоянии:

21кг • (0,526 • 0,6 0,392 •0,4) = 9,93м3

Вывод (для рассматриваемого случая): 1 баллон = 50л = 21кг = 9,93м3

Ацетилен

Параметры и размеры баллонов для ацетилена можно посмотреть по ГОСТ 949-73 «Баллоны стальные малого и среднего для газов на Рр ≤ 19,7МПа». Наиболее популярными являются баллоны объемами 5, 10 и 40 литров. Корпус ацетиленового баллона отличается от корпуса кислородного баллона меньшим размером.

При давлении 1,0 МПа и температуре 20 °С в 40л баллоне вмещается 5 – 5,8 кг ацетилена по массе ( 4,6 – 5,3 м3 газа при температуре 20 °С и 760 мм.рт.ст.).

Приближенное количество ацетилена в баллоне (определяется взвешиванием) можно определить по формуле:

Va = 0,07 • Е • (Р – 0,1)

0,07– коэф., который учитывает количество ацетона в баллоне и растворимость ацетилена.

Е – водяной объем баллона в куб.дм;

Р – давление в баллоне, МПа (давлении 1,9 МПа (19,0 кгс/см2) при 20 °С по ГОСТ 5457-75 «Ацетилен растворенный и газообразный технический»);

0,1 – атмосферное давление в МПа;

Вес 1 м3 ацетилена при температуре 0°С и 760 мм.рт.ст. составляет – 1,17 кг.

Вес 1 куб.м ацетилена при температуре 20°С и 760 мм.рт.ст. составляет 1,09 кг.

Посчитаем объем ацетилена в баллоне объемом 40л с рабочим давлением 1,9МПа (19кгс/см2) при температуре 20°С:

Va = 0,07 • 40 • (1,9 – 0,1) = 5,04м3

Вес ацетилена в баллоне объемом 40л с рабочим давлением 1,9МПа (19кгс/см2) при температуре 20°С:

5,04 • 1,09 = 5,5кг

Вывод (для рассматриваемого случая): 1 баллон = 40л = 5,5кг = 5,04м3

Двуокись углерода (углекислота)

Углекислота (по ГОСТ 8050-85 «Двуокись углерода газообразная и жидкая») применяется как защитный газ для электросварочных работ. Состав смеси: СО2; Ar CO2 ; Ar CO2 O2. Еще производители могут маркировать ее как смесь MIX1 – MIX5.

Параметры и размеры баллонов для ацетилена можно посмотреть по ГОСТ 949-73 «Баллоны стальные малого и среднего для газов на Рр ≤ 19,7МПа». Наиболее популярными являются баллоны объемами 5, 10 и 40 литров.

При рабочем давлении углекислоты в баллоне 14,7 МПа (150 кгс/см2) коэффициент заполнения: 0,60 кг/л; при 9,8 МПа (100 кгс/см2) – 0,29 кг/л; при 12,25 МПа (125кгс/см2) – 0,47 кг/л.

Объемный вес углекислоты в газообразном состоянии равен 1.98 кг/м³, при нормальных условиях.

Посчитаем вес углекислоты в самом распространенном баллоне в строительстве: объемом 40л с рабочим давлением 14,7 МПа (150 кгс/см2).

40л • 0,6 = 24кг

Посчитаем объем углекислоты в газообразном состоянии:

24кг / 1,98 кг / м3 = 12,12м3

Вывод (для рассматриваемого случая): 1 баллон = 40л = 24кг = 12,12м3

Расчет объема газообразного кислорода в баллоне

Объем газообразного кислорода в баллоне (V) в кубических метрах при нормальных условиях вычисляют по формуле:

где

Vбвместимость баллона, дм3. В расчетах принимают среднюю статистическую величину вместимости баллонов не менее чем из 100 шт.;
K1коэффициент для определения объема кислорода в баллоне при нормальных условиях, вычисляемый по формуле:

где

Pдавление газа в баллоне, измеренное манометром, кгс/см2;
0,968коэффициент для пересчета технических атмосфер (кгс/см2) в физические;
tтемпература газа в баллоне, °С;
Zкоэффициент сжигаемости кислорода при температуре t.
Про кислород:  Количество протонов, нейтронов и электронов химических элементов

Значения коэффициента K1 приведены в таблице 3.

Таблица 3 — Значения коэффициента для определения объема кислорода в баллоне
Температура газа в баллоне, °СЗначение коэффициента K1 при избыточном давлении, МПа (кгс/см2)
13,7
(140)
14,2
(145)
14,7
(150)
15,2
(155)
15,7
(160)
16,2
(165)
16,7
(170)
17,2
(175)
17,7
(180)
18,1
(185)
18,6
(190)
19,1
(195)
19,6
(200)
20,1
(205)
20,6
(210)
-500,2320,2420,2510,2600,2690,2780,2860,2960,3030,3110,3190,3270,3350,3420,349
-400,2120,2210,2290,2360,2450,2530,2600,2690,2750,2840,2900,2980,3050,3120,319
-350,2030,2110,2190,2260,2340,2420,2490,2570,2640,2720,2780,2860,2930,2990,306
-300,1950,2020,2110,2170,2250,2320,2390,2480,2530,2610,2670,2740,2810,2880,294
-250,1880,1950,2020,2090,2170,2230,2300,2380,2430,2510,2570,2640,2700,2770,283
-200,1820,1880,1950,2020,2090,2150,2220,2290,2350,2420,2480,2550,2610,2670,273
-150,1760,1820,1890,1960,2020,2080,2150,2210,2270,2340,2400,2460,2520,2580,263
-100,1710,1770,1830,1890,1950,2020,2080,2140,2200,2260,2320,2380,2440,2500,255
-50,1650,1720,1780,1840,1900,1950,2020,2070,2130,2190,2250,2310,2360,2420,247
00,1610,1670,1720,1790,1840,1900,1960,2010,2070,2130,2190,2240,2290,2350,240
50,1570,1620,1680,1740,1790,1850,1900,1960,2010,2070,2120,2170,2230,2280,233
100,1530,1580,1630,1690,1740,1800,1850,1910,1960,2010,2060,2110,2170,2220,227
150,1490,1540,1590,1650,1700,1750,1800,1860,1910,1960,2010,2060,2110,2160,221
200,1450,1500,1560,1600,1660,1710,1760,1810,1860,1910,1960,2010,2060,2110,215
250,1420,1470,1520,1570,1620,1670,1720,1770,1820,1860,1910,1960,2010,2060,210
300,1390,1430,1480,1530,1580,1630,1680,1730,1770,1820,1870,1920,1960,2010,206
350,1360,1400,1450,1500,1540,1590,1640,1690,1730,1780,1820,1870,1920,1960,201
400,1330,1370,1420,1470,1510,1560,1600,1650,1700,1740,1780,1830,1880,1920,196
500,1270,1320,1360,1410,1450,1490,1540,1580,1630,1670,1710,1750,1800,1840,188

Свойства

Основные свойства кислорода приведены в таблице 1.

Таблица 1 — Основные свойства кислорода
ПоказательДанные показателя
ФормулаО2
Молекулярная масса31,9988
Плотность (при 0 °С и давлении 760 мм рт. ст.), кг/м31,43
Плотность (при 20 °С и давлении 760 мм рт. ст.), кг/м31,33
Температура критическая, °С-118,8
Давление критическое, кгс/см251,35
Температура кипения (при 760 мм рт. ст.), °С-182,97
Температура плавления (затвердевания) (при 760 мм рт. ст.), °С-218,4
Масса 1 л жидкости кислорода при -182,97 °С и 760 мм рт. ст., кг1,13
Количество газообразного кислорода, получающегося из 1 л жидкого, л850

Массовая концентрация механических примесей в медицинском кислороде, предназначенном для авиации, – не более 0,001 г/м3 с размером частиц не более 0,1 мм при 15 °С и 101, 3 кПа (760 мм рт. ст.).

По физико-химическим показателям газообразный технический и медицинский кислород должен соответствовать нормам, указанным в таблице 2.

Таблица 2 — Физико-химические показатели кислорода
Наименование показателяНорма для марок
Технический кислородМедицинский кислород
Первый сортВторой сорт
Объемная доля кислорода, %, не менее99,799,599,5
Объемная доля водяных паров, %, не более0,0070,0090,009
Объемная доля водорода, %, не более0,30,5
Объемная доля двуокиси углерода, %, не болееНе нормируется0,01
ЗапахНе нормируетсяОтсутствие
Примечания:

1. По согласованию с потребителем допускается в медицинском кислороде объемная доля кислорода не менее 99,2 %.

2. Медицинский кислород, предназначенный для авиации, должен выпускаться с объемной долей водяных паров не более 0,0007 %.

3. В техническом кислороде 2-го сорта, вырабатываемом на установках высокого, среднего и двух давлений, оснащенных щелочными декарбонизаторами для очистки воздуха от двуокиси углерода, а также на установках типа СКДС-70М допускается объемная доля кислорода не менее 99,2 %.

Таблица объема и веса баллонов с техническими газами — регионспецтрейд

Благодаря нижеприведенной таблице вы сможете узнать, сколько килограмм весит азот, пропан, аргона, гелий, углекислота, ацетилен или кислород в стандартных баллонах емкостью 40 литров.

Про кислород:  Найти относительную плотность азота по кислороду. Срочно плиз решите.

Это позволит более точно расcчитать необходимые ресурсы для покупки технических газов и оценить необходимость доставки.

Вид газаЕмкостьОбъемВес
Кислород

технический
ГОСТ 6331-78

40 л6,3 куб.м8,3 кг
Азот

технический
ГОСТ 9293-74

40 л5,7 куб.м7,5 кг
Аргон

газообразный высокой чистоты (99,998%)

40 л6,3 куб.м7,5 кг
Пропан

ГОСТ 20448-90

50 л9,5 куб.м21,5 кг
Ацетилен

технический
ГОСТ 5457-7

40 л5,3 куб.м5 кг
Гелий

технический

40 л5,7 куб.м1 кг

Транспортирование и хранение

Упаковка, маркировка, транспортирование и хранение газообразного технического и медицинского кислорода – по ГОСТ 26460.

Номинальное давление кислорода при 20 °С при наполнении, хранении и транспортировании баллонов и автореципиентов должно составлять (14,7 ± 0,5) МПа [(150 ± 5) кгс/см2] или (19,6 ± 1,0) МПа [(200 ± 10) кгс/см2].

Технический и медицинский кислород транспортируют также автомобильными газификационными установками, осуществляющими газификацию жидкого кислорода непосредственно у потребителя.

Технический кислород транспортируют и по трубопроводу. Давление кислорода, транспортируемого по трубопроводу, должно быть согласовано между изготовителем и потребителем. К месту сварки кислород доставляется в кислородных баллонах, и в жидком виде – в специальных сосудах с хорошей теплоизоляцией.

Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода. При нормальном атмосферном давлении и температуре 20 °С 1 дм3 жидкого кислорода при испарении дает 860 дм3 газообразного.

Возвратные баллоны и автореципиенты должны иметь остаточное давление кислорода не ниже 0,05 МПа (0,5 кгс/см2).

Требования безопасности

Кислород не токсичен, не горюч и не взрывоопасен, однако, являясь сильным окислителем, резко увеличивает способность других материалов к горению. Поэтому для работы в контакте с кислородом могут использоваться только разрешенные для этого материалы.

При соприкосновении сжатого газообразного кислорода с органическими веществами, маслами, жирами, угольной пылью, горючими пластмассами, даже в ничтожном количестве, может произойти их самовоспламенение в результате выделения теплоты при быстром сжатии кислорода, трении и ударе твердых частиц о металл, а также электростатического искрового разряда.

Поэтому при использовании кислорода необходимо тщательно следить за тем, чтобы он не находился в контакте с легковоспламеняющимися и горючими веществами. В кислороде могут загораться также углеродистые стали при достаточном количестве теплоты в месте контакта и небольшой массе металла (например, при трении тонких платин о массивные части машин, наличии стружки, частиц окалины или железного порошка).

Для предотвращения аварий всю кислородную аппаратуру, кислородопроводы и баллоны подвергают тщательному обезжириванию. Необходимо исключить возможность попадания и накопления масел и жиров на поверхности деталей, работающих в среде кислорода.

Цилиндры компрессоров, накачивающих кислород в баллоны, смазывают не маслом, а дистиллированной водой, в которую иногда добавляют 10 % глицерина. Кроме того, в кислородных компрессорах применяют поршневые кольца из графита и других антифрикционных материалов, работающие без смазки и не загрязняющие кислород органическими примесями.

Также опасны пропитанные жидким кислородом пористые горячие вещества (уголь, сажа, войлок, пакля, ветошь, вата и др.), которые в этом случае становятся взрывчатыми. Одежда и волосы, будучи насыщенны кислородом, легко загораются. Смеси кислорода с горючими газами, жидкостями и их парами взрывоопасны при определенных соотношениях кислорода и горючего в смеси.

Накопление кислорода в воздухе помещений создает опасность возникновения пожаров. Объемная доля кислорода в рабочих помещениях не должна превышать 23 %. В помещениях, где возможно увеличение объемной доли кислорода, должно быть ограничено пребывание людей и не должны находиться легковоспламеняющиеся материалы. Эти помещения должны быть оборудованы средствами контроля воздушной среды и вытяжной вентиляцией для проветривания.

Перед проведением ремонтных работ или освидетельствованием трубопроводов, баллонов, стационарных и передвижных реципиентов или другого оборудования, используемого для хранения и транспортирования газообразного кислорода, необходимо продуть все внутренние объемы воздухом. Разрешается начинать работы только после снижения объемной доли кислорода во внутренних объемах оборудования до 23 %.

После пребывания в среде, обогащенной кислородом, не разрешается курить, использовать открытый огонь и приближаться к огню. Одежда должна быть проветрена в течение 30 мин.

Баллоны, автореципиенты и трубопроводы, предназначенные для транспортирования технического и медицинского кислорода, запрещается использовать для хранения и транспортирования других газов, а также запрещается производить какие-либо операции, которые могут загрязнить их внутреннюю поверхность и ухудшить физико-химические показатели продукции.

При погрузке, разгрузке, транспортировании и хранении баллонов должны применяться меры, предотвращающие падение, удары друг о друга, повреждение и загрязнение баллонов маслом. Баллоны должны быть предохранены от атмосферных осадков и нагревания солнечными лучами и другими источниками тепла.

Оцените статью
Кислород
Добавить комментарий