Другие защитные барьеры
Помимо перечисленных выше методов, есть еще несколько вариантов, которые можно использовать. Однако обычно это временные решения, и они требуют регулярного обслуживания.
Например, на лодках многие мелкие металлические детали погружаются в воск, когда они подвергаются воздействию соленого воздуха во время транспортировки. Для больших металлических частей можно использовать воск в спрее.
Детали машины, покрытые смазкой, отталкивают воду и это отличный способ предотвратить ржавчину. Обратная сторона медали – масло должно оставаться на металле. Если его очистить и не наносить повторно, металл заржавеет. Это означает, что машина нуждается в регулярном обслуживании.
Покраска
Это наиболее распространенное и обычно самое дешевое решение. Если вы покроете сталь слоем краски, вы создадите простой и легкий барьер, блокирующий молекулы кислорода.
Чтобы это работало правильно, вам понадобится краска, которая будет прочно держаться на металле. Если он начинает отслаивается, то он больше не защищает металл. Существуют специально разработанные краски для металла, а также порошковые покрытия для пластика и эмаль, которые, по сути, работают в одном направлении.
Это процесс, при котором вы покрываете железо или сталь другим металлом, который не ржавеет. Это можно сделать электрохимическим способом или осаждением из паровой фазы.
Другой распространенный способ нанесения металла – это окунание, как при гальванике. Горячее цинкование – это процесс, при котором сталь погружают в ванну с расплавленным цинком, который защищает металл от ржавчины.
По сути, вы используете другой металл, чтобы создать барьер между железом и кислородом или хлоридом.
Однако для некоторых металлических покрытий (например, цинка) вы также используете металл для поглощения лишних электронов, вызывающих ржавчину. В конце концов цинк подвергнется коррозии, но пока он не исчезнет, сталь под ним будет ржаветь гораздо медленнее. Этот процесс называется катодной защитой.
Процесс химической коррозии железа
Окислительно-восстановительные реакции в данном случае проходят через переход электронов на окислитель. В процессе коррозии такого типа кислород воздуха взаимодействует с поверхностью железа. При этом образуется оксидная пленка, которая называется ржавчиной:
3Fe 2O2 = Fe3O4 (FeO•Fe2O3)
В отличие от плотно прилегающих оксидных пленок, которые образуются в процессе коррозии на щелочных металлах, алюминии, цинке, рыхлая оксидная пленка на железе свободно пропускает к поверхности металла кислород воздуха, а также другие газы и пары воды. Это способствует дальнейшей коррозии железа.
Процесс электрической коррозии
Такой вид разрушения металлических подземных конструкций, кабелей и сооружений могут вызывать блуждающие токи, исходящие от трамваев, метро, электрических железных дорог и различных электроустановок с постоянным током.
Ток с металлических конструкций выходит в грунт в виде положительных ионов металла – происходит электролиз металла. Участок выхода токов – это анодные зоны. Именно в них и протекают активные процессы электрической коррозии железа. Блуждающие токи могут достигать 300 А и действовать в радиусе нескольких десятков километров.
Блуждающими токами, исходящими от источников переменного тока, вызывается слабая коррозия подземных стальных конструкций, и сильная – конструкций из цветных металлов. Защита металлических конструкций от коррозии является очень важной задачей, так как она причиняет огромные убытки.
Ржавчина
Сверхбыстрое образование ржавчины
Не вся ржавчина образована кислородом. Также существует ржавчина, образованная хлоридом.
Обычным источником хлоридов является соль. Вообще-то причудливое название соли — хлорид натрия. Ион хлорида очень сильно реагирует с железом, когда рядом вода. Если кислорода нет, этот ион сам по себе вызовет образование зеленой ржавчины, как на затонувших кораблях.
Вот почему металл так быстро ржавеет в океане. Соленый влажный воздух заметно ускорит этот процесс. Вы даже можете заметить образование ржавчины на голом металле в течение одного дня!
Еще одно место, где соль наносит ущерб металлу – это холодные регионы, где соль используется в качестве антиобледенителя на дорогах. Обычно автомобили ржавеют и гниют значительно быстрее, если металл не обрабатывать и сразу смывать соль.
На самом деле существует несколько видов оксида железа (ржавчины): простое красное вещество из кислорода и зеленое вещество из хлорида, но обычно их довольно редко можно увидеть.
Существует множество способов предотвратить образование ржавчины на металлах, содержащих железо. Все эти методы состоят из создания барьера, который предотвратит контакт железа и кислорода.
Сплавы и нержавеющая сталь
Для металлических компонентов, которые нельзя покрасить или нанести на них защитный барьер, иногда используют металлический сплав вместо обычной стали.
Нержавеющая сталь предотвращает ржавчину, потому что она легирована другими металлами и элементами, которые окисляются и образуют тонкий барьер, предотвращающий ржавление. Существует несколько различных видов нержавеющих сталей, большинство из которых в той или иной степени подвержены ржавчине, так как они содержат железо. Но тонкий оксидный слой, образованный этими легирующими элементами, предотвратит распространение ржавчины.
Общие примеры легирующих элементов для нержавеющих сталей включают хром (самый распространенный элемент в этом металле, предотвращающий коррозию), а также никель и молибден.
Нержавеющая сталь с меньшим содержанием хрома с большей вероятностью ржавеет, тогда как высокое содержание хрома значительно улучшит коррозионную стойкость. Это элемент №1, добавленный для того, чтобы нержавеющая сталь не оставляла пятен.
Удаление ржавчины
Обычно этот процесс трудоемкий. Однако, если вы пытаетесь восстановить что-то, что заржавело, у вас есть несколько вариантов, в зависимости от того, насколько глубоко въелась ржавчина.
- Преобразователи ржавчины – отличный способ «нейтрализовать» легкую ржавчину. Они могут действовать как грунтовка и непосредственно окрашиваться. Это хорошее решение, если вы просто пытаетесь уберечь что-то от распада и не слишком заботитесь о косметическом виде предмета.
- Лазеры помогут добиться аналогичного результата. Есть специально разработанные машины, которые удаляют ржавчину, оставляя лежащий под ней металл относительно неповрежденным. Но они не из дешевых. Большинство единиц стоят несколько десятков тысяч долларов.
- Небольшие металлические детали со средним количеством ржавчины можно смочить в кислоте, которая разъест ржавчину. Обычный домашний лайфхак – замочить инструменты в уксусе на день.
- Электролиз — отличный способ ускорить кислотное удаление ржавчины. Добавив электричество в кислотную ванну, можно очень тщательно удалить ржавчину.
Для более крупных панелей, например, для транспортных средств, наиболее распространенным способом избавиться от ржавчины является нанесение небольшого количества смазки на коленвал. Вы можете использовать проволочный круг или абразивную подушку с угловой шлифовальной машиной, чтобы удалить ржавчину до голого металла.
Электрохимическая коррозия
8.2
ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ
Причиной электрохимической
коррозии * является возникновение на
поверхности металла
короткозамкнутых гальванических
элементов *.
В
тонком слое влаги, обычно покрывающем
металл, растворяются кислород, углекислый, сернистый и
другие газы,
присутствующие в атмосферном воздухе.
Это создает
условия
соприкосновения
металла с электролитом *.
Различные участки
поверхности любого металла
обладают
разными потенциалами. Причинами этого
могут быть наличие примесей в
металле,
различная обработка отдельных его участков, неодинаковые условия
(окружающая
среда), в которых находятся различные участки поверхности металла. При
этом
участки поверхности металла с более электроотрицательным потенциалом
становятся
анодами и растворяются.
Электрохимическая коррозия
может развиваться в результате контакта различных металлов. В этом
случае будет
возникать не микро-, а макрогальванопара,
и коррозия называется контактной (см. детальную классификацию видов
коррозии).
Сочетания металлов, сильно
отличающихся
значениями электродных потенциалов *,
в технике
недопустимы (например, алюминий
– медь). В
случае коррозии,
возникающей при контакте какого-либо металла
со
сплавом, последний имеет потенциал, соответствующий наиболее активному
металлу,
входящему в состав сплава. Например, при контакте латуни
(сплав цинка и меди) с железомкорродировать
будет латунь за счет наличия в
ней цинка.
Представим схематично работу
короткозамкнутого гальванического элемента,
возникающего на поверхности
металла, подверженного коррозии в электролите *
(рисунок 8.1). Анодный
участок
имеет более электроотрицательный потенциал, поэтому на нем идет процесс
окисления металла. Образовавшиеся
в процессе окисления ионы
переходят в электролит, а часть освободившихся при этом электронов
может
перемещаться к катодному участку (на рисунке 8.1 показано стрелками).
Процесс
коррозии будет продолжаться в том случае, если электроны, перешедшие на
катодный
участок, будут с него удаляться. Иначе произойдет поляризация электродов *,
и
работа коррозионного гальванического элемента прекратится.
Рисунок 8.1 – Схема
электрохимической коррозии. Д
–
деполяризатор
Процесс отвода электронов с
катодных участков называется деполяризацией.
Вещества, при
участии
которых
осуществляется деполяризация, называются деполяризаторами. На практике
чаще
всего приходится встречаться с двумя типами деполяризации: водородной и
кислородной.
Тип деполяризации
(катодный процесс) зависит от реакции
среды
раствора электролита.
В
кислой среде
электрохимическая коррозия протекает с водородной
деполяризацией.
Рассмотрим
коррозию железной пластинки с примесями меди во влажной хлористоводородной
атмосфереИмеется в виду атмосфера с
примесью газообразного HCl.. В этом случае
железо будет анодом (E°= –0,44В), а медь
– катодом
(E°= 0,34В). На анодном участке
будет происходить процесс окисления железа, а на катодном –
процесс деполяризации ионами
водорода, которые присутствуют в электролите:
А:
Fe
– 2e → Fe2 –
окисление
К:
2 H 2e → H2↑
– восстановление
Схема возникающего
короткозамкнутого гальванического
элемента выглядит следующим образом:
A (–)
Fe|HCl|Cu ( ) К
В
нейтральной среде коррозия
протекает с кислородной
деполяризацией, т.е.
роль деполяризатора
выполняет
кислород, растворенный в воде. Этот вид коррозии наиболее широко
распространен
в природе: он наблюдается при коррозии металлов в воде, почве и в
незагрязненной промышленными газами атмосфере. Если коррозии во влажном
воздухе
подвергается железо с примесями меди, то электродные процессы можно
записать в
виде:
(А)
Fe
– 2e → Fe2
– окисление
(К)
2 H2O O2
4e → 4 OH– – восстановление
Схема короткозамкнутого
гальванического элемента:
А (–)
Fe| H2O, O2|Cu ( ) К
У поверхности металла в электролите
протекают
следующие реакции:
Fe2
2 OH–→Fe(OH)2
4 Fe(OH)2
O2 2 H2O → 4 Fe(OH)3
Основная масса черных металлов
разрушается
вследствие процесса ржавления, в основе которого лежат вышеуказанные
реакции.
Коррозия
металла в результате неравномерного доступа кислорода. Случаи электрохимической
коррозии, возникающей вследствие неравномерной аэрации
кислородом
различных
участков металла, очень часто встречаются в промышленности и в
подземных
сооружениях. Примером может служить коррозия стальной сваи, закопанной
в речное
дно (рис 8.2).
Рисунок
8.2 – Коррозия в
результате неравномерного доступа кислорода. Б – техническое
сооружение; А
– анодный участок; К – катодный участок.
Часть конструкции,
находящаяся в воде, омывается
растворенным в ней кислородом и, в случае возникновения условий для электрохимической
коррозии, будет выполнять
ролькатода. Другая же часть конструкции, находящаяся в почве, будет анодом
и
подвергнется разрушению.
К
следующему разделу
К
оглавлению
©
А.И. Хлебников, И.Н. Аржанова, О.А. Напилкова