Сравните строение атомов и свойства кислорода и серы. укажите их сходство и различия.

Сравните строение атомов и свойства кислорода и серы. укажите их сходство и различия. Кислород

Сера отличается от кислорода тем, что? — химия

Если вам необходимо получить ответ на вопрос Сера отличается от кислорода тем, что?, относящийся
к уровню подготовки учащихся 5 — 9 классов, вы открыли нужную страницу.
В категории Химия вы также найдете ответы на похожие вопросы по
интересующей теме, с помощью автоматического «умного» поиска. Если после
ознакомления со всеми вариантами ответа у вас остались сомнения, или
полученная информация не полностью освещает тематику, создайте свой вопрос с
помощью кнопки, которая находится вверху страницы, или обсудите вопрос с
посетителями этой страницы.

Конспект урока химии «кислород. сера»

Урок поможет рассмотреть строение атомов кислорода и серы, изучить, физические и химические свойства, их аллотропные модификации, применение.

Цели урока:

обучающие:

Рассмотреть строение атомов кислорода и серы.

Изучить, физические и химические свойства, их аллотропные модификации, применение.

развивающие:

Создать условия для развития умений учащихся анализировать, обобщать, делать выводы, сравнивать.

воспитательные:

Способствовать развитию навыков коммуникативного общения учащихся.

Тип урока: комбинированный урок

Формы работы: фронтальная, индивидуальная, групповая.

ХОД УРОКА

ОРГАНИЗАЦИОННЫЙ МОМЕНТ.

Проверка д/з

 — в. 3 стр115. Получить MgCl2

АКТУАЛИЗАЦИЯ ЗНАНИЙ.

Мы продолжаем изучение отдельных элементов периодической системы Д. И. Менделеева.

Сегодня мы с вами будем изучать самый распространенный химический элемент ПС. Он входит в состав воды (89%), которая покрывает 2/3 поверхности земного шара, образуя его водную оболочку – гидросферу, в состав воздуха (21%), который образует воздушную оболочку земли – атмосферу. Как вы считаете, о каком химическом элементе идет речь?

 Предполагаемые ответы учащихся:

Кислород.

Правильно, это кислород. Мы с вами познакомимся с первыми двумя химическими элементами подгруппы кислорода ПС. Это кислород и сера. Поэтому тема нашего урока Кислород. Сера.

 ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

 Для изучения новой темы я вам предлагаю объединиться в группы (5 — 7 мин)

  1. Строение атома кислорода по ПС
  2. Строение атома серы по ПС
  3. Значение кислорода (учебник 9 класс, стр. 125 п. 21)
  4. Значение серы (учебник 9 класс, стр. 132 п. 22)

Выступления групп:

  1. группа: Строение атома кислорода по ПС

Предполагаемые ответы учащихся:

Кислород – химический элемент VI группы главной подгруппы. На последнем энергетическом уровне находится 6 электронов. Наиболее распространенная степень окисления — 2. но он может проявлять и положительную степень окисления в соединениях с фтором. Химический элемент кислород имеет два аллотропных видоизменения: кислород и озон.

  1. группа:  Строение атома серы по ПС

Предполагаемые ответы учащихся:

Сера — химический элемент VI группы главной подгруппы. На последнем энергетическом уровне находится 6 электронов. Степени окисления серы в соединениях: — 2, 4, 6. Сера имеет больший радиус атома, чем кислород. Химический элемент сера имеет аллотропные видоизменения: ромбическая сера и пластическая сера.

В чем сходство в строении между атомами кислорода и серы?

Предполагаемые ответы учащихся:

Атомы кислорода и серы находятся в 6 группе и поэтому имеют на последнем энергетическом уровне 6 электронов.

В чем различие по строению между атомами кислорода и серы?

Предполагаемые ответы учащихся:

Атомы кислорода и серы находятся в разных периодах, поэтому имеют разное число энергетических уровней кислород — 2 , сера — 3 эн. уровня, что влияет на радиус атома (радиус атома кислорода меньше. чем радиус атома серы. Это сказывается на окислительно — восстановительные свойства: кислород – только окислитель, а сера – и окислитель, и восстановитель.

Строение химических элементов влияет и на химические свойства простых веществ. Кислород – только окислитель, а сера – и окислитель, и восстановитель. Изучим химические свойства простых веществ кислорода и серы.

Химические свойства:

3. 1. Кислород –окислитель:

 взаимодействие с металлами (Видеоопыт: Горение железа в кислороде)

Допишите уравнение реакции.

Fe O2 =

Предполагаемые ответы учащихся:

3Fe 2O2 = Fe3O4

взаимодействие с неметаллами (Видеоопыт: Горение фосфора в кислороде)

Допишите уравнение реакции.

Р О2 =

Предполагаемые ответы учащихся:

4Р 5О2 =2 P2O5

3. 2. Сера – окислитель и восстановитель.

Сера – окислитель: (Видеоопыт: Взаимодействие цинка и серы)

Допишите уравнение реакции.

Zn S =

Предполагаемые ответы учащихся:

Zn S = ZnS

Сера — восстановитель: (Видеоопыт: Горение серы в кислороде)

Допишите уравнение реакции.

S O2 =

Предполагаемые ответы учащихся:

S O2 = SO2

 Еще раз повторим: Сера – окислитель и восстановитель, кислород – только окислитель.

3 группа: Значение кислорода.

Предполагаемые ответы учащихся:

Кислород участвует в процессах медленного окисления различных веществ при обычной температуре, участвует в процессах дыхания и фотосинтеза. Применяется в металлургической и химической промышленности, его используют для жизнеобеспечения на подводных и космических кораблях, при работах пожарных и водолазов.

4 группа: Значение серы

Предполагаемые ответы учащихся:

Сера входит в состав белков, является частью биологически активных веществ организма: витаминов и гормонов, участвует в окислительно — восстановительных процессах организма. Используется в производстве бумаги, спичек, резины, красок, взрывчатых веществ, лекарств.

Молодцы, в своих выступлениях вы отметили биологическое значение химических элементов кислорода и серы, но знаете ли вы, что сера применялась за две тысячи лет до нашей эры для приготовления красок и лечения кожных заболеваний. А кто из вас читал произведение А. Дюма «Граф Монте — Кристо»? В этом произведении тоже упомянут один из способов применения серы. Аббат Фариа притворился, что у него кожное заболевание и ему дали для лечения серу, которую он использовал для приготовления пороха.

ЗАКРЕПЛЕНИЕ:

Заполните пробелы в утверждениях

1. Кислород и сера — элементы ……. . группы ………. . подгруппы.

2. Заряд ядра атома кислорода равен …….

3. В ядре атома кислорода содержится …… протонов, …… нейтронов, …. . электронов.

4. Атомы кислорода и серы имеют на внешнем уровне …. . электронов.

5. Кислород имеет степень окисления в соединениях ……. и является в ходе химической реакции …………. .

6. Сера имеет степени окисления в соединениях …………… и является в ходе химической реакции и окислителем, и …………. .

7. Аллотропные модификации кислорода: …………….

Предполагаемые ответы учащихся:

1. Кислород и сера — элементы VIгруппы главной подгруппы.

2. Заряд ядра атома кислорода равен 8.

3. В ядре атома кислорода содержится 8 протонов, 8 нейтронов, 8 электронов.

4. Атомы кислорода и серы имеют на внешнем уровне 6 электронов.

5. Кислород имеет степень окисления в соединениях — 2 и является в ходе химической реакции окислителем

6. Сера имеет степени окисления в соединениях — 2, 4, 6 и является в ходе химической реакции и окислителем, и восстановителем.

7. Аллотропные модификации кислорода: кислород и озон

Исправь ошибку и запиши правильно уравнения

 Na O = Na2O

 S F2 = SF6

 Fe S2 = FeS

 P O2 = PO5

 S Cl2 = SCl2

 S H2O = H2S O2

Предполагаемые ответы учащихся:

 4Na O2 = 2Na2O

 S 3 F2 = SF6

 Fe S = FeS

 4 P 2O2 = 5 P2O5

 S 3Cl2 = SCl6

 S H2O = реакция не протекает

 ПОДВЕДЕНИЕ ИТОГОВ УРОКА.

Д/З

п. 21, 22 в. 3 стр. 134

Придумать кроссворд, ключевым словом которого стали бы названия изученных элементов

Оксид серы (iv)

Оксид серы (IV) –  это кислотный оксид. Бесцветный газ с резким запахом, хорошо растворимый в воде.

Cпособы получения оксида серы (IV):

1.Сжигание серы на воздухе:

S      O2  →  SO2

2.Горение сульфидов и сероводорода:

2H2S      3O2  →   2SO2      2H2O

2CuS      3O2  →   2SO2      2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

Например, сульфит натрия взаимодействует с серной кислотой:

Na2SO3       H2SO4    →  Na2SO4      SO2       H2O

4.Обработка концентрированной серной кислотой неактивных металлов.

Например, взаимодействие меди с концентрированной серной кислотой:

Cu       2H2SO4   →   CuSO4      SO2      2H2O

Химические свойства оксида серы (IV):

Оксид серы (IV) – это типичный кислотныйоксид. За счет серы в степени окисления 4 проявляет свойства окислителяи восстановителя.

1. Как кислотный оксид, сернистый газ реагирует с щелочамии оксидами щелочных и щелочноземельных металлов.

Например, оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):

SO2       2NaOH(изб)   →   Na2SO3      H2O

SO2(изб)      NaOH  → NaHSO3

Еще пример: оксид серы (IV) реагирует с основным оксидом натрия:

SO2    Na2O   →  Na2SO3 

2. При взаимодействии с водой SO2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

SO2     H2O   ↔  H2SO3  

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Например, оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:

2SO2       O2    ↔  2SO3

Сернистый ангидрид обесцвечивает бромную воду:

SO2      Br2     2H2O   →  H2SO4    2HBr

Азотная кислота очень легко окисляет сернистый газ:

SO2      2HNO3   →  H2SO4      2NO2

Озон также окисляет оксид серы (IV):

SO2       O3  →   SO3    O2

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

5SO2      2H2O      2KMnO4  → 2H2SO4      2MnSO4      K2SO4    

Оксид свинца (IV) также окисляет сернистый газ:

SO2      PbO2  → PbSO4

4. В присутствии сильных восстановителей SO2  способен проявлять окислительные свойства.

Например, при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:

SO2       2Н2S    →    3S    2H2O

Оксид серы (IV) окисляет угарный газ и углерод:

SO2        2CO    →   2СО2        S 

SO2      С  →   S    СO2

Оксид серы (vi)

Оксид серы (VI) –  это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.

Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.

2SO2       O2    ↔   2SO3

Сернистый газ окисляют и другие окислители, например, озон или оксид азота (IV):

SO2       O3  →   SO3       O2

SO2       NO2  →   SO3      NO

Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):

Fe2(SO4)3    →   Fe2O3      3SO3

Химические свойства оксида серы (VI)

1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:

SO3     H2O  →  H2SO4 

2. Серный ангидрид является типичным кислотным оксидом, взаимодействует с щелочами и основными оксидами.

Например, оксид серы (VI) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

SO3    2NaOH(избыток)  →   Na2SO4      H2O

SO3(избыток)      NaOH → NaHSO4

Еще пример: оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):

SO3    MgO   →  MgSO4 

3. Серный ангидрид – очень сильный окислитель, так как сера в нем имеет максимальную степень окисления ( 6). Он энергично взаимодействует с такими восстановителями, как иодид калия, сероводород или фосфор:

SO3       2KI   →   I2       K2SO3

3SO3       H2S   →   4SO2         H2O

5SO3         2P   →    P2O5         5SO2

4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.

Оксиды серы

Оксиды серыЦвет ФазаХарактер оксида
SO2 Оксид сера (IV), сернистый газбесцветныйгазкислотный
SOОксид серы (VI), серный ангидридбесцветныйжидкостькислотный

Положение в периодической системе химических элементов

Сера расположена в главной подгруппе VI группы  (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Сернистая кислота

Сернистая кислота H2SO3 – это двухосновная кислородсодержащая кислота. При нормальных условиях — неустойчивое вещество, которое распадается на диоксид серы и воду.

Валентность серы в сернистой кислоте равна IV, а степень окисления 4.

Соединения серы

Типичные соединения серы:

Степень окисленияТипичные соединения
6Оксид серы(VI) SO3

Серная кислота H2SO4

Сульфаты MeSO4

Галогенангидриды: SО2Cl2

4Оксид серы (IV) SO2

Сернистая кислота H2SO3

Сульфиты MeSO3

Гидросульфиты MeHSO3

Галогенангидриды: SOCl2

–2Сероводород H2S

Сульфиды металлов MeS

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 Na2SO4  →   BaSO4↓  2NaCl

Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe  подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

2CuSO4  →   2CuO      SO2      O2     (SO3)

2Al2(SO4)3    →  2Al2O3      6SO2      3O2

2ZnSO4  →   2ZnO      SO2      O2

2Cr2(SO4)3   →    2Cr2O3      6SO2      3O2

При разложении сульфата железа (II) в FeSO4 Fe (II)  окисляется до Fe (III)

4FeSO4    →  2Fe2O3      4SO2      O2  

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления 6 сульфаты проявляют окислительныесвойстваи могут взаимодействовать с восстановителями.

Например, сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:

CaSO4   4C   →   CaS     4CO

4.Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова соль

CaSO4 ∙ 2H2O − гипс

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Способы получения

1. Серную кислоту в промышленностипроизводят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

АппаратНазначение и уравненяи реакций
Печь для обжига4FeS2 11O2 → 2Fe2O3 8SO2 Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС

Циклон Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат 2SO2 O2 ↔ 2SO3 Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  •  температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500оС. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  •  давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

nSO3 H2SO4  →  H2SO4·nSO3

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Способы получения сероводорода

В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например, при действии соляной кислоты на сульфид железа (II):

FeS     2HCl   →   FeCl2     H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

S    H2  →  H2S

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопытполучения и обнаружения сероводорода можно посмотреть здесь.

Способы получения серы

1. В промышленных масштабах серу получают открытым способом на месторождениях самородной серы, либо из вулканов. Из серной руды серу получают также пароводяными, фильтрационными, термическими, центрифугальными и экстракционными методами. Пароводяной метод —  это выплавление из руды с помощью водяного пара.

2. Способ получения серы в лаборатории – неполное окисление сероводорода.

2H2S      O2    →   2S        2H2O

3. Еще один способ получения серы – взаимодействие сероводорода с оксидом серы (IV):

2H2S    SO2   →   3S     2H2O

Способы получения сульфидов

1.Сульфиды получают при взаимодействии серы с металлами. При этом сера проявляет свойства окислителя.

Например, сера взаимодействует с магнием и кальцием:

S      Mg   →   MgS

S       Ca   →   CaS

Сера взаимодействует с натрием:

S      2Na   →  Na2S

2. Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей.

Например, гидроксида калия с сероводородом:

H2S    2KOH  →   K2S    2H2O

3. Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями (любые сульфиды) или взаимодействием сероводорода с солями (только черные сульфиды).

Например, при взаимодействии нитрата меди и сероводорода:

Pb(NO3)2     Н2S    →   2НNO3      PbS

Еще пример: взаимодействие сульфата цинка с сульфидом натрия:

ZnSO4     Na2S    →   Na2SO4      ZnS

Сравнить строение атомов кислорода и серы; физические свойства кислорода и серы — знания.org

В атомах серы имеется 6 валентных электоронов, от сюда: она может быть шестивалентной. У серы больше радиус, чем у кислорода.

 У кислорода: незаполненная электронная оболочка, на которой не хватает 2-ух электронов.

Физические св-ва Серы:В отличие от кислорода, образующего 2 аллотропные формы, сера образует большее число аллотропных модификаций, отличающихся всеми св-вами. Образует 2 аллотропные модификации: ромбическую и моноклинную. Способна сера образовывать цепи. Все аллотропные модификации со временем переходят в ромбическую форму.  

Ромбическая модификация серы: цвет: лимонно-желтый, плотность: 2,07 г/см^3 , темп. пл : 112,8, нерасторима, плохие проводники тепла и электричества. Моноклинная- цвет: медово-желтый, плотность :1,96, темп. пл. : 119,0 , нерастворима, плохие проводнкии тепла и электричества.

У кислорода: при нормальных условиях кислород-газ без цвета и запаха, немного тяжелее воздуха, слабо растворяется в воде и спирте, при нагревании происходит диссоциация его на атомы.

 Существует жидкий кислород — это бледно-голубая жидкость и твердый кислород — синие кристаллы

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в водунебольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Сульфиды

Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Растворимые в водеНерастворимые в воде, но растворимые в минеральных кислотахНерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.)Разлагаемые водой, в растворе не существуют
Сульфиды щелочных металлов и аммонияСульфиды прочих металлов, расположенных  до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS)Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)Сульфиды трехвалентных металлов (алюминия и хрома (III))
Реагируют с минеральными кислотами с образованием сероводородаНе реагируют с минеральными кислотами, сероводород получить напрямую нельзя

Разлагаются водой

ZnS     2HCl   →   ZnCl2     H2S

Al2S 6H2O → 2Al(OH) 3H2S

Физические свойства и нахождение в природе

Сера образует различные простые вещества (аллотропные модификации).

Наиболее устойчивая модификация серы – ромбическая сера S8. Это хрупкое вещество желтого цвета. 

Моноклинная сера – это аллотропная модификация серы, в которой атомы соединены в циклы в виде «короны». Это твердое вещество, состоящее из темно-желтых игл, устойчивое при температуре более 96оС, а при обычной температуре превращающееся в ромбическую серу. 

Пластическая сера – это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.

В природе сера встречается:

  • в самородном виде;
  • в составе сульфидов (сульфид цинка ZnS, пирит FeS2, сульфид ртути HgS — киноварь и др.)
  • в составе сульфатов (CaSO4·2H2O гипс, Na2SO4·10H2O — глауберова соль)

Химические свойства

Серная кислота – это сильная двухосновная кислота.

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

H2SO4  ⇄  H HSO4–

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4–  ⇄  H SO42–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами. 

Например, серная кислота взаимодействует с оксидом магния:

H2SO4      MgO   →   MgSO4      H2O

Еще пример: при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

H2SO4       КОН     →     KHSО4     H2O

H2SO4       2КОН      →     К2SО4     2H2O

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3H2SO4         2Al(OH)3    →   Al2(SO4)3        6H2O

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.).  Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например, серная кислота взаимодействует с гидрокарбонатом натрия:

Н2SO4      2NaHCO3   →   Na2SO4      CO2    H2O

Или с силикатом натрия:

H2SO4       Na2SiO3    →  Na2SO4     H2SiO3

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

NaNO3(тв.)      H2SO4   →   NaHSO4      HNO3

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например, хлорида натрия:

NaCl(тв.)      H2SO4   →   NaHSO4      HCl

4. Также серная кислота вступает в обменные реакции с солями.

Например, серная кислота взаимодействует с хлоридом бария:

H2SO4  BaCl2  →  BaSO4      2HCl

5.Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например, серная кислота реагирует с железом. При этом образуется сульфат железа (II):

H2SO4(разб.)       Fe   →  FeSO4       H2

Серная кислота взаимодействует с аммиакомс образованием солей аммония:

H2SO4     NH3    →    NH4HSO4

Концентрированнаясерная кислота является сильным окислителем. При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы  S, или сероводорода Н2S.

Железо Fe, алюминий  Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

6H2SO4(конц.)       2Fe   →   Fe2(SO4)3      3SO2     6H2O

6H2SO4(конц.)        2Al   →   Al2(SO4)3      3SO2     6H2O

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

2H2SO4(конц.)      Cu     →  CuSO4       SO2 ↑    2H2O

2H2SO4(конц.)      Hg     →  HgSO4       SO2 ↑    2H2O

2H2SO4(конц.)      2Ag     →  Ag2SO4       SO2↑    2H2O

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

3Mg     4H2SO4   →   3MgSO4      S    4H2O

При взаимодействии с щелочными металлами и цинком  концентрированная серная кислота восстанавливается до сероводорода:

5H2SO4(конц.)     4Zn     →    4ZnSO4      H2S↑     4H2O

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 Na2SO4  →   BaSO4↓  2NaCl

Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

7.Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например, концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

5H2SO4(конц.)       2P   →   2H3PO4      5SO2↑     2H2O

2H2SO4(конц.)       С   →   СО2↑       2SO2↑     2H2O

2H2SO4(конц.)       S   →   3SO2 ↑     2H2O

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

3H2SO4(конц.)      2KBr   →  Br2↓      SO2↑      2KHSO4      2H2O

5H2SO4(конц.)      8KI     →  4I2↓       H2S↑      K2SO4     4H2O

H2SO4(конц.)      3H2S →  4S↓    4H2O

Химические свойства сероводорода

1.В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например, сероводород реагирует с гидроксидом натрия:

H2S    2NaOH  →   Na2S    2H2OH2S    NaOH → NaНS    H2O

2.Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

2H2S      O2    →   2S        2H2O

В избытке кислорода:

2H2S      3O2  →   2SO2     2H2O           

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S    Br2   →  2HBr     S↓

H2S    Cl2   →  2HCl     S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H2S     4Cl2      4H2O →  H2SO4    8HCl

Например, азотная кислота окисляет сероводород до молекулярной серы:

H2S    2HNO3(конц.)  →  S    2NO2    2H2O

При кипячении сера окисляется до серной кислоты:

H2S     8HNO3(конц.)  →  H2SO4    8NO2      4H2O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например, оксид серы (IV) окисляет сероводород:

2H2S    SO2  →  3S     2H2O

Соединения железа (III) также окисляют сероводород:

H2S    2FeCl3  →  2FeCl2    S    2HCl

Бихроматы, хроматы и прочие окислители также  окисляют сероводород до молекулярной серы:

3H2S      K2Cr2O7       4H2SO4    →   3S       Cr2(SO4)3      K2SO4      7H2O

2H2S      4Ag    O2  →  2Ag2S    2H2O

Серная кислота окисляет сероводород либо до молекулярной серы:

H2S      H2SO4(конц.)  →  S      SO2      2H2O

Либо до оксида серы (IV):

H2S      3H2SO4(конц.)  →  4SO2     4H2O

4.Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H2S     Pb(NO3)2   →  PbS     2HNO3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопытвзаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1. Сера проявляет свойства окислителя(при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя(с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами.

1.1. При горениисеры на воздухе образуется оксид серы (IV):

S    O2  →  SO2

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода)образуются галогениды серы:

S      Cl2  →  SCl2   (S2Cl2)

S     3F2  →   SF6

1.3. При взаимодействии фосфора иуглерода с серой образуются сульфиды фосфора и сероуглерод:

2P       3S   →   P2S3

2P       5S   →   P2S5

2S     C   →   CS2

1.4. При взаимодействии с металламисера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

Например, железо и ртуть реагируют с серой с образованием сульфидов железа (II)  и ртути:

S      Fe   →  FeS

S     Hg   →  HgS

Еще пример: алюминий взаимодействует с серой с образованием сульфида алюминия:

3S     2Al   →  Al2S3

1.5. С водородомсера взаимодействует при нагревании с образованием сероводорода:

S    H2  →  H2S

2.Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителямисера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Например, азотная кислота окисляет серу до серной кислоты:

S      6HNO3   →  H2SO4    6NO2      2H2O

Серная кислотатакже окисляет серу. Но, поскольку S 6 не может окислить серу же до степени окисления 6, образуется оксид серы (IV):

S        2H2SO4   →   3SO2      2H2O

Соединения хлора, например, бертолетова соль,  также окисляют серу до 4:

S     2KClO3  →   3SO2      2KCl

Взаимодействие серы с сульфитами(при кипячении) приводит к образованию тиосульфатов:

S      Na2SO3  →   Na2S2O3

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

Например, сера реагирует с гидроксидом натрия:

S       6NaOH   →  Na2SO3      2Na2S      3H2O

При взаимодействии с перегретым паром сера диспропорционирует:

3S      2H2O (пар)   →  2H2S      SO2

Химические свойства сульфидов

1. Растворимые сульфиды гидролизуютсяпо аниону, среда водных растворов сульфидов щелочная:

K2S   H2O  ⇄  KHS    KOHS2–   H2O  ⇄  HS–   OH–

2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.

Например, сульфид кальция растворяется в соляной кислоте:

CaS    2HCl →  CaCl2    H2S

А сульфид никеля, например, не растворяется:

NiS     HСl   ≠

3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.

Например, сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:

CuS      8HNO3  →   CuSO4      8NO2     4H2O

или горячей концентрированной серной кислоте:

CuS      4H2SO4(конц. гор.)  →   CuSO4      4SO2        4H2O

4.Сульфиды проявляют восстановительныесвойства и окисляются пероксидом водорода, хлором и другими окислителями.

Например, сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):

PbS 4H2O2    →   PbSO4 4H2O

Еще пример: сульфид меди (II) окисляется хлором:

СuS      Cl2  → CuCl2      S

5.Сульфиды горят(обжиг сульфидов). При этом образуются оксиды металла и серы (IV).

Например, сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):

2CuS      3O2  →   2CuO      2SO2

Аналогично сульфид хрома (III) и сульфид цинка:

2Cr2S3      9O2  →   2Cr2O3      6SO2

2ZnS       3O2  →   2SO2     ZnO

6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественныена ион S2−.

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

Na2S       Pb(NO3)2    →   PbS↓      2NaNO3

Na2S       2AgNO3    →   Ag2S↓      2NaNO3

Na2S       Cu(NO3)2    →   CuS↓      2NaNO3

7.Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).

Например, сульфид алюминия разлагается до гидроксида алюминия и сероводорода:

Al2S3  6H2O → 2Al(OH)3  3H2S

Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

Например, сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:

3Na2S 2AlCl3 6H2O → 2Al(OH)3  3H2S 6NaCl

Электронное строение серы

Электронная конфигурация  серы в основном состоянии:

Атом серы содержит на внешнем энергетическом уровне 2 неспаренных электрона и две неподеленные электронные пары в основном энергетическом состоянии. Следовательно, атом серы может образовывать 2 связи по обменному механизму, как и кислород.

Электронная конфигурация  серы во втором возбужденном состоянии:

Таким образом, максимальная валентность серы в соединениях равна VI (в отличие от кислорода). Также для серы характерна валентность — IV.

Степени окисления атома серы – от -2 до 4. Характерные степени окисления -2, 0, 4, 6.

Оцените статью
Кислород
Добавить комментарий