- Сера отличается от кислорода тем, что? — химия
- Конспект урока химии «кислород. сера»
- Оксид серы (iv)
- Оксид серы (vi)
- Оксиды серы
- Положение в периодической системе химических элементов
- Сернистая кислота
- Соединения серы
- Соли серной кислоты – сульфаты
- Способы получения
- Способы получения сероводорода
- Способы получения серы
- Способы получения сульфидов
- Сравнить строение атомов кислорода и серы; физические свойства кислорода и серы — знания.org
- Строение молекулы и физические свойства
- Сульфиды
- Физические свойства и нахождение в природе
- Химические свойства
- Химические свойства сероводорода
- Химические свойства серы
- Химические свойства сульфидов
- Электронное строение серы
Сера отличается от кислорода тем, что? — химия
Если вам необходимо получить ответ на вопрос Сера отличается от кислорода тем, что?, относящийся
к уровню подготовки учащихся 5 — 9 классов, вы открыли нужную страницу.
В категории Химия вы также найдете ответы на похожие вопросы по
интересующей теме, с помощью автоматического «умного» поиска. Если после
ознакомления со всеми вариантами ответа у вас остались сомнения, или
полученная информация не полностью освещает тематику, создайте свой вопрос с
помощью кнопки, которая находится вверху страницы, или обсудите вопрос с
посетителями этой страницы.
Конспект урока химии «кислород. сера»
Урок поможет рассмотреть строение атомов кислорода и серы, изучить, физические и химические свойства, их аллотропные модификации, применение.
Цели урока:
обучающие:
Рассмотреть строение атомов кислорода и серы.
Изучить, физические и химические свойства, их аллотропные модификации, применение.
развивающие:
Создать условия для развития умений учащихся анализировать, обобщать, делать выводы, сравнивать.
воспитательные:
Способствовать развитию навыков коммуникативного общения учащихся.
Тип урока: комбинированный урок
Формы работы: фронтальная, индивидуальная, групповая.
ХОД УРОКА
ОРГАНИЗАЦИОННЫЙ МОМЕНТ.
Проверка д/з
— в. 3 стр115. Получить MgCl2
АКТУАЛИЗАЦИЯ ЗНАНИЙ.
Мы продолжаем изучение отдельных элементов периодической системы Д. И. Менделеева.
Сегодня мы с вами будем изучать самый распространенный химический элемент ПС. Он входит в состав воды (89%), которая покрывает 2/3 поверхности земного шара, образуя его водную оболочку – гидросферу, в состав воздуха (21%), который образует воздушную оболочку земли – атмосферу. Как вы считаете, о каком химическом элементе идет речь?
Предполагаемые ответы учащихся:
Кислород.
Правильно, это кислород. Мы с вами познакомимся с первыми двумя химическими элементами подгруппы кислорода ПС. Это кислород и сера. Поэтому тема нашего урока Кислород. Сера.
ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА
Для изучения новой темы я вам предлагаю объединиться в группы (5 — 7 мин)
- Строение атома кислорода по ПС
- Строение атома серы по ПС
- Значение кислорода (учебник 9 класс, стр. 125 п. 21)
- Значение серы (учебник 9 класс, стр. 132 п. 22)
Выступления групп:
- группа: Строение атома кислорода по ПС
Предполагаемые ответы учащихся:
Кислород – химический элемент VI группы главной подгруппы. На последнем энергетическом уровне находится 6 электронов. Наиболее распространенная степень окисления — 2. но он может проявлять и положительную степень окисления в соединениях с фтором. Химический элемент кислород имеет два аллотропных видоизменения: кислород и озон.
- группа: Строение атома серы по ПС
Предполагаемые ответы учащихся:
Сера — химический элемент VI группы главной подгруппы. На последнем энергетическом уровне находится 6 электронов. Степени окисления серы в соединениях: — 2, 4, 6. Сера имеет больший радиус атома, чем кислород. Химический элемент сера имеет аллотропные видоизменения: ромбическая сера и пластическая сера.
В чем сходство в строении между атомами кислорода и серы?
Предполагаемые ответы учащихся:
Атомы кислорода и серы находятся в 6 группе и поэтому имеют на последнем энергетическом уровне 6 электронов.
В чем различие по строению между атомами кислорода и серы?
Предполагаемые ответы учащихся:
Атомы кислорода и серы находятся в разных периодах, поэтому имеют разное число энергетических уровней кислород — 2 , сера — 3 эн. уровня, что влияет на радиус атома (радиус атома кислорода меньше. чем радиус атома серы. Это сказывается на окислительно — восстановительные свойства: кислород – только окислитель, а сера – и окислитель, и восстановитель.
Строение химических элементов влияет и на химические свойства простых веществ. Кислород – только окислитель, а сера – и окислитель, и восстановитель. Изучим химические свойства простых веществ кислорода и серы.
Химические свойства:
3. 1. Кислород –окислитель:
взаимодействие с металлами (Видеоопыт: Горение железа в кислороде)
Допишите уравнение реакции.
Fe O2 =
Предполагаемые ответы учащихся:
3Fe 2O2 = Fe3O4
взаимодействие с неметаллами (Видеоопыт: Горение фосфора в кислороде)
Допишите уравнение реакции.
Р О2 =
Предполагаемые ответы учащихся:
4Р 5О2 =2 P2O5
3. 2. Сера – окислитель и восстановитель.
Сера – окислитель: (Видеоопыт: Взаимодействие цинка и серы)
Допишите уравнение реакции.
Zn S =
Предполагаемые ответы учащихся:
Zn S = ZnS
Сера — восстановитель: (Видеоопыт: Горение серы в кислороде)
Допишите уравнение реакции.
S O2 =
Предполагаемые ответы учащихся:
S O2 = SO2
Еще раз повторим: Сера – окислитель и восстановитель, кислород – только окислитель.
3 группа: Значение кислорода.
Предполагаемые ответы учащихся:
Кислород участвует в процессах медленного окисления различных веществ при обычной температуре, участвует в процессах дыхания и фотосинтеза. Применяется в металлургической и химической промышленности, его используют для жизнеобеспечения на подводных и космических кораблях, при работах пожарных и водолазов.
4 группа: Значение серы
Предполагаемые ответы учащихся:
Сера входит в состав белков, является частью биологически активных веществ организма: витаминов и гормонов, участвует в окислительно — восстановительных процессах организма. Используется в производстве бумаги, спичек, резины, красок, взрывчатых веществ, лекарств.
Молодцы, в своих выступлениях вы отметили биологическое значение химических элементов кислорода и серы, но знаете ли вы, что сера применялась за две тысячи лет до нашей эры для приготовления красок и лечения кожных заболеваний. А кто из вас читал произведение А. Дюма «Граф Монте — Кристо»? В этом произведении тоже упомянут один из способов применения серы. Аббат Фариа притворился, что у него кожное заболевание и ему дали для лечения серу, которую он использовал для приготовления пороха.
ЗАКРЕПЛЕНИЕ:
Заполните пробелы в утверждениях
1. Кислород и сера — элементы ……. . группы ………. . подгруппы.
2. Заряд ядра атома кислорода равен …….
3. В ядре атома кислорода содержится …… протонов, …… нейтронов, …. . электронов.
4. Атомы кислорода и серы имеют на внешнем уровне …. . электронов.
5. Кислород имеет степень окисления в соединениях ……. и является в ходе химической реакции …………. .
6. Сера имеет степени окисления в соединениях …………… и является в ходе химической реакции и окислителем, и …………. .
7. Аллотропные модификации кислорода: …………….
Предполагаемые ответы учащихся:
1. Кислород и сера — элементы VIгруппы главной подгруппы.
2. Заряд ядра атома кислорода равен 8.
3. В ядре атома кислорода содержится 8 протонов, 8 нейтронов, 8 электронов.
4. Атомы кислорода и серы имеют на внешнем уровне 6 электронов.
5. Кислород имеет степень окисления в соединениях — 2 и является в ходе химической реакции окислителем
6. Сера имеет степени окисления в соединениях — 2, 4, 6 и является в ходе химической реакции и окислителем, и восстановителем.
7. Аллотропные модификации кислорода: кислород и озон
Исправь ошибку и запиши правильно уравнения
Na O = Na2O
S F2 = SF6
Fe S2 = FeS
P O2 = PO5
S Cl2 = SCl2
S H2O = H2S O2
Предполагаемые ответы учащихся:
4Na O2 = 2Na2O
S 3 F2 = SF6
Fe S = FeS
4 P 2O2 = 5 P2O5
S 3Cl2 = SCl6
S H2O = реакция не протекает
ПОДВЕДЕНИЕ ИТОГОВ УРОКА.
Д/З
п. 21, 22 в. 3 стр. 134
Придумать кроссворд, ключевым словом которого стали бы названия изученных элементов
Оксид серы (iv)
Оксид серы (IV) – это кислотный оксид. Бесцветный газ с резким запахом, хорошо растворимый в воде.
Cпособы получения оксида серы (IV):
1.Сжигание серы на воздухе:
S O2 → SO2
2.Горение сульфидов и сероводорода:
2H2S 3O2 → 2SO2 2H2O
2CuS 3O2 → 2SO2 2CuO
3. Взаимодействие сульфитов с более сильными кислотами:
Например, сульфит натрия взаимодействует с серной кислотой:
Na2SO3 H2SO4 → Na2SO4 SO2 H2O
4.Обработка концентрированной серной кислотой неактивных металлов.
Например, взаимодействие меди с концентрированной серной кислотой:
Cu 2H2SO4 → CuSO4 SO2 2H2O
Химические свойства оксида серы (IV):
Оксид серы (IV) – это типичный кислотныйоксид. За счет серы в степени окисления 4 проявляет свойства окислителяи восстановителя.
1. Как кислотный оксид, сернистый газ реагирует с щелочамии оксидами щелочных и щелочноземельных металлов.
Например, оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):
SO2 2NaOH(изб) → Na2SO3 H2O
SO2(изб) NaOH → NaHSO3
Еще пример: оксид серы (IV) реагирует с основным оксидом натрия:
SO2 Na2O → Na2SO3
2. При взаимодействии с водой SO2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.
SO2 H2O ↔ H2SO3
3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.
Например, оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:
2SO2 O2 ↔ 2SO3
Сернистый ангидрид обесцвечивает бромную воду:
SO2 Br2 2H2O → H2SO4 2HBr
Азотная кислота очень легко окисляет сернистый газ:
SO2 2HNO3 → H2SO4 2NO2
Озон также окисляет оксид серы (IV):
SO2 O3 → SO3 O2
Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:
5SO2 2H2O 2KMnO4 → 2H2SO4 2MnSO4 K2SO4
Оксид свинца (IV) также окисляет сернистый газ:
SO2 PbO2 → PbSO4
4. В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства.
Например, при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:
SO2 2Н2S → 3S 2H2O
Оксид серы (IV) окисляет угарный газ и углерод:
SO2 2CO → 2СО2 S
SO2 С → S СO2
Оксид серы (vi)
Оксид серы (VI) – это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.
Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.
2SO2 O2 ↔ 2SO3
Сернистый газ окисляют и другие окислители, например, озон или оксид азота (IV):
SO2 O3 → SO3 O2
SO2 NO2 → SO3 NO
Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):
Fe2(SO4)3 → Fe2O3 3SO3
Химические свойства оксида серы (VI)
1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:
SO3 H2O → H2SO4
2. Серный ангидрид является типичным кислотным оксидом, взаимодействует с щелочами и основными оксидами.
Например, оксид серы (VI) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:
SO3 2NaOH(избыток) → Na2SO4 H2O
SO3(избыток) NaOH → NaHSO4
Еще пример: оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):
SO3 MgO → MgSO4
3. Серный ангидрид – очень сильный окислитель, так как сера в нем имеет максимальную степень окисления ( 6). Он энергично взаимодействует с такими восстановителями, как иодид калия, сероводород или фосфор:
SO3 2KI → I2 K2SO3
3SO3 H2S → 4SO2 H2O
5SO3 2P → P2O5 5SO2
4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.
Оксиды серы
Оксиды серы | Цвет | Фаза | Характер оксида |
SO2 Оксид сера (IV), сернистый газ | бесцветный | газ | кислотный |
SO3 Оксид серы (VI), серный ангидрид | бесцветный | жидкость | кислотный |
Положение в периодической системе химических элементов
Сера расположена в главной подгруппе VI группы (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.
Сернистая кислота
Сернистая кислота H2SO3 – это двухосновная кислородсодержащая кислота. При нормальных условиях — неустойчивое вещество, которое распадается на диоксид серы и воду.
Валентность серы в сернистой кислоте равна IV, а степень окисления 4.
Соединения серы
Типичные соединения серы:
Степень окисления | Типичные соединения |
6 | Оксид серы(VI) SO3 Серная кислота H2SO4 Сульфаты MeSO4 Галогенангидриды: SО2Cl2 |
4 | Оксид серы (IV) SO2 Сернистая кислота H2SO3 Сульфиты MeSO3 Гидросульфиты MeHSO3 Галогенангидриды: SOCl2 |
–2 | Сероводород H2S Сульфиды металлов MeS |
Соли серной кислоты – сульфаты
Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.
1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:
BaCl2 Na2SO4 → BaSO4↓ 2NaCl
Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.
2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;
2CuSO4 → 2CuO SO2 O2 (SO3)
2Al2(SO4)3 → 2Al2O3 6SO2 3O2
2ZnSO4 → 2ZnO SO2 O2
2Cr2(SO4)3 → 2Cr2O3 6SO2 3O2
При разложении сульфата железа (II) в FeSO4 Fe (II) окисляется до Fe (III)
4FeSO4 → 2Fe2O3 4SO2 O2
Сульфаты самых тяжелых металлов разлагаются до металла.
3. За счет серы со степенью окисления 6 сульфаты проявляют окислительныесвойстваи могут взаимодействовать с восстановителями.
Например, сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:
CaSO4 4C → CaS 4CO
4.Многие средние сульфаты образуют устойчивые кристаллогидраты:
Na2SO4 ∙ 10H2O − глауберова соль
CaSO4 ∙ 2H2O − гипс
CuSO4 ∙ 5H2O − медный купорос
FeSO4 ∙ 7H2O − железный купорос
ZnSO4 ∙ 7H2O − цинковый купорос
Способы получения
1. Серную кислоту в промышленностипроизводят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.
Основные стадии получения серной кислоты :
- Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
- Очистка полученного газа от примесей.
- Окисление сернистого газа в серный ангидрид.
- Взаимодействие серного ангидрида с водой.
Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):
Аппарат | Назначение и уравненяи реакций |
Печь для обжига | 4FeS2 11O2 → 2Fe2O3 8SO2 Q Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС |
Циклон | Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз. |
Электрофильтр | Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра). |
Сушильная башня | Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота. |
Теплообменник | Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата. |
Контактный аппарат | 2SO2 O2 ↔ 2SO3 Q В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):
Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню. |
Поглотительная башня | Получение H2SO4 протекает в поглотительной башне. Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3. nSO3 H2SO4 → H2SO4·nSO3 Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю. |
Общие научные принципы химического производства:
- Непрерывность.
- Противоток
- Катализ
- Увеличение площади соприкосновения реагирующих веществ.
- Теплообмен
- Рациональное использование сырья
Способы получения сероводорода
В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.
Например, при действии соляной кислоты на сульфид железа (II):
FeS 2HCl → FeCl2 H2S↑
Еще один способ получения сероводорода – прямой синтез из водорода и серы:
S H2 → H2S
Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.
Видеоопытполучения и обнаружения сероводорода можно посмотреть здесь.
Способы получения серы
1. В промышленных масштабах серу получают открытым способом на месторождениях самородной серы, либо из вулканов. Из серной руды серу получают также пароводяными, фильтрационными, термическими, центрифугальными и экстракционными методами. Пароводяной метод — это выплавление из руды с помощью водяного пара.
2. Способ получения серы в лаборатории – неполное окисление сероводорода.
2H2S O2 → 2S 2H2O
3. Еще один способ получения серы – взаимодействие сероводорода с оксидом серы (IV):
2H2S SO2 → 3S 2H2O
Способы получения сульфидов
1.Сульфиды получают при взаимодействии серы с металлами. При этом сера проявляет свойства окислителя.
Например, сера взаимодействует с магнием и кальцием:
S Mg → MgS
S Ca → CaS
Сера взаимодействует с натрием:
S 2Na → Na2S
2. Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей.
Например, гидроксида калия с сероводородом:
H2S 2KOH → K2S 2H2O
3. Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями (любые сульфиды) или взаимодействием сероводорода с солями (только черные сульфиды).
Например, при взаимодействии нитрата меди и сероводорода:
Pb(NO3)2 Н2S → 2НNO3 PbS
Еще пример: взаимодействие сульфата цинка с сульфидом натрия:
ZnSO4 Na2S → Na2SO4 ZnS
Сравнить строение атомов кислорода и серы; физические свойства кислорода и серы — знания.org
В атомах серы имеется 6 валентных электоронов, от сюда: она может быть шестивалентной. У серы больше радиус, чем у кислорода.
У кислорода: незаполненная электронная оболочка, на которой не хватает 2-ух электронов.
Физические св-ва Серы:В отличие от кислорода, образующего 2 аллотропные формы, сера образует большее число аллотропных модификаций, отличающихся всеми св-вами. Образует 2 аллотропные модификации: ромбическую и моноклинную. Способна сера образовывать цепи. Все аллотропные модификации со временем переходят в ромбическую форму.
Ромбическая модификация серы: цвет: лимонно-желтый, плотность: 2,07 г/см^3 , темп. пл : 112,8, нерасторима, плохие проводники тепла и электричества. Моноклинная- цвет: медово-желтый, плотность :1,96, темп. пл. : 119,0 , нерастворима, плохие проводнкии тепла и электричества.
У кислорода: при нормальных условиях кислород-газ без цвета и запаха, немного тяжелее воздуха, слабо растворяется в воде и спирте, при нагревании происходит диссоциация его на атомы.
Существует жидкий кислород — это бледно-голубая жидкость и твердый кислород — синие кристаллы
Строение молекулы и физические свойства
Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.
Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в водунебольшими порциями при постоянном перемешивании.
Валентность серы в серной кислоте равна VI.
Сульфиды
Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.
По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.
Растворимые в воде | Нерастворимые в воде, но растворимые в минеральных кислотах | Нерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.) | Разлагаемые водой, в растворе не существуют |
Сульфиды щелочных металлов и аммония | Сульфиды прочих металлов, расположенных до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS) | Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS) | Сульфиды трехвалентных металлов (алюминия и хрома (III)) |
Реагируют с минеральными кислотами с образованием сероводорода | Не реагируют с минеральными кислотами, сероводород получить напрямую нельзя | Разлагаются водой | |
ZnS 2HCl → ZnCl2 H2S | Al2S3 6H2O → 2Al(OH)3 3H2S |
Физические свойства и нахождение в природе
Сера образует различные простые вещества (аллотропные модификации).
Наиболее устойчивая модификация серы – ромбическая сера S8. Это хрупкое вещество желтого цвета.
Моноклинная сера – это аллотропная модификация серы, в которой атомы соединены в циклы в виде «короны». Это твердое вещество, состоящее из темно-желтых игл, устойчивое при температуре более 96оС, а при обычной температуре превращающееся в ромбическую серу.
Пластическая сера – это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.
В природе сера встречается:
- в самородном виде;
- в составе сульфидов (сульфид цинка ZnS, пирит FeS2, сульфид ртути HgS — киноварь и др.)
- в составе сульфатов (CaSO4·2H2O гипс, Na2SO4·10H2O — глауберова соль)
Химические свойства
Серная кислота – это сильная двухосновная кислота.
1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:
H2SO4 ⇄ H HSO4–
По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:
HSO4– ⇄ H SO42–
2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.
Например, серная кислота взаимодействует с оксидом магния:
H2SO4 MgO → MgSO4 H2O
Еще пример: при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:
H2SO4 КОН → KHSО4 H2O
H2SO4 2КОН → К2SО4 2H2O
Серная кислота взаимодействует с амфотерным гидроксидом алюминия:
3H2SO4 2Al(OH)3 → Al2(SO4)3 6H2O
3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).
Например, серная кислота взаимодействует с гидрокарбонатом натрия:
Н2SO4 2NaHCO3 → Na2SO4 CO2 H2O
Или с силикатом натрия:
H2SO4 Na2SiO3 → Na2SO4 H2SiO3
Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:
NaNO3(тв.) H2SO4 → NaHSO4 HNO3
Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например, хлорида натрия:
NaCl(тв.) H2SO4 → NaHSO4 HCl
4. Также серная кислота вступает в обменные реакции с солями.
Например, серная кислота взаимодействует с хлоридом бария:
H2SO4 BaCl2 → BaSO4 2HCl
5.Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.
Например, серная кислота реагирует с железом. При этом образуется сульфат железа (II):
H2SO4(разб.) Fe → FeSO4 H2
Серная кислота взаимодействует с аммиакомс образованием солей аммония:
H2SO4 NH3 → NH4HSO4
Концентрированнаясерная кислота является сильным окислителем. При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы S, или сероводорода Н2S.
Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.
6H2SO4(конц.) 2Fe → Fe2(SO4)3 3SO2 6H2O
6H2SO4(конц.) 2Al → Al2(SO4)3 3SO2 6H2O
При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:
2H2SO4(конц.) Cu → CuSO4 SO2 ↑ 2H2O
2H2SO4(конц.) Hg → HgSO4 SO2 ↑ 2H2O
2H2SO4(конц.) 2Ag → Ag2SO4 SO2↑ 2H2O
При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:
3Mg 4H2SO4 → 3MgSO4 S 4H2O
При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:
5H2SO4(конц.) 4Zn → 4ZnSO4 H2S↑ 4H2O
6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:
BaCl2 Na2SO4 → BaSO4↓ 2NaCl
Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.
7.Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.
Например, концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):
5H2SO4(конц.) 2P → 2H3PO4 5SO2↑ 2H2O
2H2SO4(конц.) С → СО2↑ 2SO2↑ 2H2O
2H2SO4(конц.) S → 3SO2 ↑ 2H2O
Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:
3H2SO4(конц.) 2KBr → Br2↓ SO2↑ 2KHSO4 2H2O
5H2SO4(конц.) 8KI → 4I2↓ H2S↑ K2SO4 4H2O
H2SO4(конц.) 3H2S → 4S↓ 4H2O
Химические свойства сероводорода
1.В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:
Например, сероводород реагирует с гидроксидом натрия:
H2S 2NaOH → Na2S 2H2OH2S NaOH → NaНS H2O
2.Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):
2H2S O2 → 2S 2H2O
В избытке кислорода:
2H2S 3O2 → 2SO2 2H2O
3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.
Например, бром и хлор окисляют сероводород до молекулярной серы:
H2S Br2 → 2HBr S↓
H2S Cl2 → 2HCl S↓
Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:
H2S 4Cl2 4H2O → H2SO4 8HCl
Например, азотная кислота окисляет сероводород до молекулярной серы:
H2S 2HNO3(конц.) → S 2NO2 2H2O
При кипячении сера окисляется до серной кислоты:
H2S 8HNO3(конц.) → H2SO4 8NO2 4H2O
Прочие окислители окисляют сероводород, как правило, до молекулярной серы.
Например, оксид серы (IV) окисляет сероводород:
2H2S SO2 → 3S 2H2O
Соединения железа (III) также окисляют сероводород:
H2S 2FeCl3 → 2FeCl2 S 2HCl
Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:
3H2S K2Cr2O7 4H2SO4 → 3S Cr2(SO4)3 K2SO4 7H2O
2H2S 4Ag O2 → 2Ag2S 2H2O
Серная кислота окисляет сероводород либо до молекулярной серы:
H2S H2SO4(конц.) → S SO2 2H2O
Либо до оксида серы (IV):
H2S 3H2SO4(конц.) → 4SO2 4H2O
4.Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.
Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:
H2S Pb(NO3)2 → PbS 2HNO3
Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.
Видеоопытвзаимодействия сероводорода с нитратом свинца можно посмотреть здесь.
Химические свойства серы
В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.
1. Сера проявляет свойства окислителя(при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя(с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами.
1.1. При горениисеры на воздухе образуется оксид серы (IV):
S O2 → SO2
1.2. При взаимодействии серы с галогенами (со всеми, кроме йода)образуются галогениды серы:
S Cl2 → SCl2 (S2Cl2)
S 3F2 → SF6
1.3. При взаимодействии фосфора иуглерода с серой образуются сульфиды фосфора и сероуглерод:
2P 3S → P2S3
2P 5S → P2S5
2S C → CS2
1.4. При взаимодействии с металламисера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.
Например, железо и ртуть реагируют с серой с образованием сульфидов железа (II) и ртути:
S Fe → FeS
S Hg → HgS
Еще пример: алюминий взаимодействует с серой с образованием сульфида алюминия:
3S 2Al → Al2S3
1.5. С водородомсера взаимодействует при нагревании с образованием сероводорода:
S H2 → H2S
2.Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.
2.1. При взаимодействии с окислителямисера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).
Например, азотная кислота окисляет серу до серной кислоты:
S 6HNO3 → H2SO4 6NO2 2H2O
Серная кислотатакже окисляет серу. Но, поскольку S 6 не может окислить серу же до степени окисления 6, образуется оксид серы (IV):
S 2H2SO4 → 3SO2 2H2O
Соединения хлора, например, бертолетова соль, также окисляют серу до 4:
S 2KClO3 → 3SO2 2KCl
Взаимодействие серы с сульфитами(при кипячении) приводит к образованию тиосульфатов:
S Na2SO3 → Na2S2O3
2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.
Например, сера реагирует с гидроксидом натрия:
S 6NaOH → Na2SO3 2Na2S 3H2O
При взаимодействии с перегретым паром сера диспропорционирует:
3S 2H2O (пар) → 2H2S SO2
Химические свойства сульфидов
1. Растворимые сульфиды гидролизуютсяпо аниону, среда водных растворов сульфидов щелочная:
K2S H2O ⇄ KHS KOHS2– H2O ⇄ HS– OH–
2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.
Например, сульфид кальция растворяется в соляной кислоте:
CaS 2HCl → CaCl2 H2S
А сульфид никеля, например, не растворяется:
NiS HСl ≠
3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.
Например, сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:
CuS 8HNO3 → CuSO4 8NO2 4H2O
или горячей концентрированной серной кислоте:
CuS 4H2SO4(конц. гор.) → CuSO4 4SO2 4H2O
4.Сульфиды проявляют восстановительныесвойства и окисляются пероксидом водорода, хлором и другими окислителями.
Например, сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):
PbS 4H2O2 → PbSO4 4H2O
Еще пример: сульфид меди (II) окисляется хлором:
СuS Cl2 → CuCl2 S
5.Сульфиды горят(обжиг сульфидов). При этом образуются оксиды металла и серы (IV).
Например, сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):
2CuS 3O2 → 2CuO 2SO2
Аналогично сульфид хрома (III) и сульфид цинка:
2Cr2S3 9O2 → 2Cr2O3 6SO2
2ZnS 3O2 → 2SO2 ZnO
6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественныена ион S2−.
Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:
Na2S Pb(NO3)2 → PbS↓ 2NaNO3
Na2S 2AgNO3 → Ag2S↓ 2NaNO3
Na2S Cu(NO3)2 → CuS↓ 2NaNO3
7.Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).
Например, сульфид алюминия разлагается до гидроксида алюминия и сероводорода:
Al2S3 6H2O → 2Al(OH)3 3H2S
Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.
Например, сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:
3Na2S 2AlCl3 6H2O → 2Al(OH)3 3H2S 6NaCl
Электронное строение серы
Электронная конфигурация серы в основном состоянии:
Атом серы содержит на внешнем энергетическом уровне 2 неспаренных электрона и две неподеленные электронные пары в основном энергетическом состоянии. Следовательно, атом серы может образовывать 2 связи по обменному механизму, как и кислород.
Электронная конфигурация серы во втором возбужденном состоянии:
Таким образом, максимальная валентность серы в соединениях равна VI (в отличие от кислорода). Также для серы характерна валентность — IV.
Степени окисления атома серы – от -2 до 4. Характерные степени окисления -2, 0, 4, 6.