Азот — степени окисления, свойства и реакции

Азот — степени окисления, свойства и реакции Кислород

Азотная кислота

Азотная кислота — одна из важнейших неорганических кислот. Это летучая бесцветная жидкость с резким запахом, которая способна смешиваться с водой в любых пропорциях.

Получают ее в промышленности в несколько этапов. Рассмотрим подробнее каждый из них:

  1. Окисление аммиака кислородом воздуха на платиновом катализаторе
    4NH3 5O2 = 4NO 6H2O

  2. Окисление оксида азота (II)
    2NO O2 = 2NO2

  3. Поглощение образующегося оксида азота (IV) водой в избытке воздуха
    4NO2 O2 2H2O = 4HNO3

Для азотной кислоты характерны особые химические свойства исходя из ее концентрации.

Например, с металлами данная кислота никогда не будет реагировать с выделением газообразного водорода. Рассмотрим таблицу с примерами металлов с различными концентрациями азотной кислоты:

Также азотная кислота как сильный окислитель способна окислять некоторые неметаллы до их кислот. Давайте рассмотрим примеры:

Азотная кислота в соотношении 1:3 с соляной кислотой образуют смесь под названием царская водка. Это желтовато-оранжевая дымящаяся жидкость, которая получила свое название от алхимиков благодаря способности растворять «царские» металлы — золото и платину.

Аммиак

Аммиак впервые был синтезирован из азота и водорода. Установлено, что для оптимального протекания реакции необходимыми условиями являются давление 2 • 104 кПа, температура 500°С и присутствие соответствующего катализатора. Реакция экзотермична, поэтому согласно принципу Ле IНателье равновесие реакции будет смещено вправо тем больше, чем ниже температура. Образование аммиака сопровождается уменьшением объема, так как из четырех объемов реакционной смеси (ЗН2 и Ш2) получается только два объема аммиака.

Следовательно, с уменьшением объема уменьшается и давление. Для сдвига равновесия вправо, т.е. в сторону образования аммиака, необходимо поддерживать высокое давление. Для увеличения скорости реакции используют катализатор.

В лабораторных условиях аммиак получают нагреванием соли аммония со щелочью:

Азот — степени окисления, свойства и реакции

или хлорида аммония с гашеной известью:

Азот — степени окисления, свойства и реакции

Аммиак — бесцветный газ с характерным удушливым запахом. Очень легко растворим в воде (в 1 л воды при 0°С растворяется 1150 л NH3). Раствор аммиака, содержащий 10% NH3, называется нашатырным спиртом.

Из пяти электронов наружной оболочки азота в образовании химической связи с атомами водорода участвуют только три р-электрона (sp3гибридизация), а неподеленная пара электронов отчетливо ориентирована в пространстве. Поэтому молекула NH3 — резко выраженный донор электронной пары и обладает высокой полярностью. Собственная ионизация NH3 очень мала:

Азот — степени окисления, свойства и реакции

Ионное произведение [NHJf |NH21 составляет всего 2 10 33 (при -50°С).

Нейтральная молекула аммиака, присоединяя ион Н , превращается в положительный однозарядный ион — катион аммония:

Азот — степени окисления, свойства и реакции

Молекула аммиака, предоставляя свою пару электронов, является донором электронов, а ион водорода — акцептором. Эта разновидность ковалентной связи называется донорно-акцепторной. При взаимодействии протона с молекулой аммиака положительный заряд его равномерно распределяется по всему иону аммония. По этому механизму аммиак реагирует с водой, а также с любым другим веществом, способным отщеплять протоны, в частности с кислотами. Во всех этих реакциях аммиак проявляет основные свойства.

Водный раствор аммиака имеет щелочную реакцию, так как присоединение иона 1Г приводит к увеличению концентрации ионов ОН:

Азот — степени окисления, свойства и реакции

При взаимодействии ионов NH* и ОН вновь образуются NH3 и Н.;0, т.е. ионное соединение NH^OH (гидроксид аммония) не образуется. Правильнее считать, что между NH3 и Н20 существует водородная связь.

Для качественного обнаружения аммиака и его солей применяется реактив Несслера (K2[HgIJ КОН):

Азот — степени окисления, свойства и реакции

В результате образуется желто-бурый осадок [Hg2NH2I2]I — иодид дииодо- амидодиртути( II).

Газообразный аммиак взаимодействует и с кислотами, образуя соли аммония:

Азот — степени окисления, свойства и реакции

Поскольку кислоты отщепляют протон легче, чем вода, то концентрация ионов NHJ в растворе значительно больше. Водный раствор аммиака — слабое основание.

Соли аммония могут быть получены не только взаимодействием газообразного аммиака с кислотами, но и водных растворов аммиака с кислотами.

Сухой аммиак способен взаимодействовать с металлами. При этом атомы водорода могут замещаться на металл с образованием амидов, например для натрия:

Азот — степени окисления, свойства и реакции

Эта реакция указывает на то, что газообразный аммиак обладает кислотными свойствами, которые в целом выражены очень слабо.

Аммиак является восстановителем. Эти свойства аммиака можно объяснить тем, что азот находится в состоянии степени окисления -3 и может легко отдавать электроны и окисляться до N2 или N(11):

а) галогены обычно окисляют аммиак до свободного азота:

Азот — степени окисления, свойства и реакции

б) в смеси с кислородом аммиак горит зеленовато-желтым пламенем:

Азот — степени окисления, свойства и реакции

в) если взаимодействие с кислородом протекает в присутствии катализатора, то окисление NH3 сопровождается образованием оксида азота(П):

Азот — степени окисления, свойства и реакции

Эта реакция имеет важное практическое значение, так как лежит в основе промышленного способа получения азотной кислоты.

Являясь восстановителем, аммиак энергично восстанавливает некоторые металлы из их оксидов:

Азот — степени окисления, свойства и реакции

При 300°С аммиак взаимодействует с хлоратом калия, окисляясь до нитрат-иона:

Азот — степени окисления, свойства и реакции

Жидкий аммиак — сильный ионизирующий растворитель. Так, производные аммония NHj (например, NH4C1 и NH4N03) в жидком аммиаке ведут себя как кислоты, а производные NH2 (амиды) — как основания. Для иллюстрации этих свойств ниже приведены некоторые реакции:

Азот — степени окисления, свойства и реакции

Жидкий аммиак широко используется в промышленности. Устойчивые кристаллические соли тетраэдрического иона NH4 в большинстве растворимы в воде. В солях аммония катион NHj имеет заряд 1. Соли аммония — это кристаллические вещества, напоминающие по строению соли калия и рубидия. Они являются веществами ионного характера, почти полностью диссоциирующими на ионы:

Азот — степени окисления, свойства и реакции

В отличие от солей щелочных металлов соли аммония легко разлагаются при нагревании:

Азот — степени окисления, свойства и реакции

Однако при охлаждении аммиак и хлороводород вновь реагируют с образованием исходной молекулы NH4C1.

При обратимом разложении солей аммония, образованных нелетучими кислотами, улетучивается только аммиак, т.е. происходит частичное разложение:

Азот — степени окисления, свойства и реакции

В химическом отношении соли аммония очень реакционноспособны. Так, при нагревании с растворами гидроксидов соли аммония вступают в реакцию обмена, и при этом выделяется аммиак:

Азот — степени окисления, свойства и реакции

Соли аммония, в которых анион проявляет выраженные окислительные свойства, при нагревании подвергаются окислительно-восстановительным изменениям, вследствие чего разложение таких солей протекает необратимо:

Азот — степени окисления, свойства и реакции

При этом ион NHj окисляется, а анион — восстанавливается. Соли аммония находят широкое применение.

Хлорид аммония NH4C1 (нашатырь) используют при паянии и лужении металлов, в изготовлении гальванических элементов. При соприкосновении нагретого металла с NH4C1 происходит очистка поверхности его от пленки оксида:

Азот — степени окисления, свойства и реакции

В медицине NH4C1 применяют при отеках сердечного происхождения, для усиления действия ртутных диуретиков. Обладает отхаркивающим действием.

Сульфат аммония (NH4)2S04 и нитрат аммония NH4N03 применяют в качестве удобрений, причем в NH4N03, называемом аммиачной селитрой, содержание усвояемого азота выше, чем в других солях аммония. Нитрат аммония в сочетании с горючими веществами (например, углем и алюминием) используют в качестве взрывной смеси (аммоналы).

Гидрокарбонат аммония NH4HC03 применяют в хлебопечении (главным образом в кондитерском деле) для придания тесту необходимой пористости. Действие основано на способности его разлагаться с выделением газов, которые и придают пористость:

Структура гидразина

Азот — степени окисления, свойства и реакции

Рис. 24.1.Структура гидразина

Гидразин NH2—NH2можно представить как производное аммиака, в котором один водород замещен группой — NH2. Степень окисления азота в этом соединении равна -2. Гидразин — полярное соединение и имеет структуру, показанную на рис. 24.1.

В обычных условиях это бесцветная жидкость с Гкип = 113,5°С. Гидразин, будучи бифункциональным основанием, за счет собственной ионизации образует и катион, и анион:

Азот — степени окисления, свойства и реакции

В водных растворах наблюдается ионизация:

Азот — степени окисления, свойства и реакции

Поэтому можно получить два ряда гидразиниевых солей: [N2H5]C1, [N2H6]C12. Соли катиона N2H3 устойчивы в водных растворах, а соли N2H;? сильно гидролизованы.

Гидразин и соли гидразоний-иона более устойчивы, чем аммиак и его соли.

На воздухе гидразин горит со значительным выделением теплоты:

Азот — степени окисления, свойства и реакции

Как сильный восстановитель он окисляется до N2 в присутствии такого окислителя, как КМп04:

Азот — степени окисления, свойства и реакции

Гидроксиламин NH2OH по своему составу и структуре занимает промежуточное положение между гидразином и пероксидом водорода (рис. 24.2). Степень окисления азота в этом соединении равна -1.

NH2OH можно получить восстановлением азотной кислоты в реакции электролиза:
Азот — степени окисления, свойства и реакции

Азот — степени окисления, свойства и реакции

Рис. 24.2.Структура гидразина, гидроксиламина и пероксида водорода

Гидроксиламин является более слабым основанием, чем NH3:

Азот — степени окисления, свойства и реакции

Взаимодействуя с кислотами, гидроксиламин образует устойчивые соли:

Азот — степени окисления, свойства и реакции

Гидроксиламин в кислой среде проявляет окислительные свойства, а в щелочной — восстановительные:

Азот — степени окисления, свойства и реакции

Азотистоводородная кислота HNN2, или HN3, образуется при взаимодействии гидразина с азотистой кислотой:

Азот — степени окисления, свойства и реакции

Структура азотистоводородной кислоты и кислотного остатка азид-иона представлены на рис. 24.3.
Азот — степени окисления, свойства и реакции

Рис. 24.3.Структура азотистоводородной кислоты и кислотного остатка азид-иона

Для азид-иона характерна sp-гибридизация валентных орбиталей Н , что обусловливает линейную структуру.

По силе азотистоводородная кислота близка к уксусной, а по растворимости солей (азидов) похожа на НС1.

Для получения азидов обычно используют азид натрия, который образуется при действии N20 или NaN03 на амид натрия:

Азот — степени окисления, свойства и реакции

Азид-ион обладает окислительными свойствами, напоминая HN03. Так, если ГШ03 при взаимодействии с металлами восстанавливается до NO и Н20, то азотистоводородная кислота восстанавливается до N9 (нитрид азота) и NH3:

Азот — степени окисления, свойства и реакции

Азиды тяжелых металлов взрывчаты, поэтому, например, азид свинца Pb(NN2)2 применяется в детонаторах.

Аммиак, химические свойства, получение

1

H

ВодородВодород

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

ГелийГелий

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

ЛитийЛитий

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

БериллийБериллий

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

БорБор

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

УглеродУглерод

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

АзотАзот

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

КислородКислород

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

ФторФтор

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

НеонНеон

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

НатрийНатрий

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

МагнийМагний

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

АлюминийАлюминий

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

КремнийКремний

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

ФосфорФосфор

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

СераСера

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

ХлорХлор

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

АргонАргон

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

КалийКалий

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

КальцийКальций

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

СкандийСкандий

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

ТитанТитан

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

ВанадийВанадий

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

ХромХром

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

МарганецМарганец

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

ЖелезоЖелезо

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

КобальтКобальт

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

НикельНикель

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

МедьМедь

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

ЦинкЦинк

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

ГаллийГаллий

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

ГерманийГерманий

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

МышьякМышьяк

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

СеленСелен

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

БромБром

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

КриптонКриптон

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

РубидийРубидий

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

СтронцийСтронций

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

ИттрийИттрий

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

ЦирконийЦирконий

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

НиобийНиобий

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

МолибденМолибден

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

ТехнецийТехнеций

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

РутенийРутений

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

РодийРодий

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

ПалладийПалладий

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

СереброСеребро

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

КадмийКадмий

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

ИндийИндий

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

ОловоОлово

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

СурьмаСурьма

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

ТеллурТеллур

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

ИодИод

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

КсенонКсенон

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

ЦезийЦезий

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

БарийБарий

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

ЛантанЛантан

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

ЦерийЦерий

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

ПразеодимПразеодим

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

НеодимНеодим

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

ПрометийПрометий

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

СамарийСамарий

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

ЕвропийЕвропий

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

ГадолинийГадолиний

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

ТербийТербий

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

ДиспрозийДиспрозий

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

ХольмийХольмий

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

ЭрбийЭрбий

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

ТулийТулий

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

ИттербийИттербий

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

ЛютецийЛютеций

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

ГафнийГафний

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

ТанталТантал

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

ВольфрамВольфрам

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

РенийРений

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

ОсмийОсмий

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

ИрридийИрридий

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

ПлатинаПлатина

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

ЗолотоЗолото

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

РтутьРтуть

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

ТаллийТаллий

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

СвинецСвинец

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

ВисмутВисмут

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

ПолонийПолоний

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

АстатАстат

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

РадонРадон

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

ФранцийФранций

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

РадийРадий

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

АктинийАктиний

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

ТорийТорий

232,04

f-элемент

Серый мягкий металл

91

Pa

ПротактинийПротактиний

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

УранУран

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

НептунийНептуний

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

ПлутонийПлутоний

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

АмерицийАмериций

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

КюрийКюрий

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

БерклийБерклий

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

КалифорнийКалифорний

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

ЭйнштейнийЭйнштейний

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

ФермийФермий

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

МенделевийМенделевий

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

НобелийНобелий

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

ЛоуренсийЛоуренсий

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

РезерфордийРезерфордий

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

ДубнийДубний

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

СиборгийСиборгий

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

БорийБорий

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

ХассийХассий

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

МейтнерийМейтнерий

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

ДармштадтийДармштадтий

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Вопросы для самопроверки

  1. Какую связь образуют между собой атомы азота?

    1. Одинарную.

    2. Двойную.

    3. Тройную.

  2. Выберите высшую и низшую степени окисления азота:

    1. −3 и 5,

    2. −5 и 3,

    3. 0 и 4,

    4. −3 и 3.

  3. Максимальная валентность азота равна:

    1. V,

    2. III,

    3. IV,

    4. II.

  4. В каком качестве выступает аммиак в окислительно-восстановительных реакциях?

    1. Только окислитель.

    2. Только восстановитель.

    3. И окислитель, и восстановитель.

    4. Не участвует в реакциях с изменением степеней окисления.

  5. Выберите формулу веселящего газа:

    1. NO,

    2. N2O3,

    3. N2O,

    4. N2O4.

Горение аммиака в кислороде

Аммиак – это летучее водородное соединение азота. Его эмпирическая формула имеет вид NH_3.
В обычных условиях аммиак представляет собой бесцветный газ, который при комнатной температуре под избыточным давлением может быть сжижаться (жидкий аммиак — бесцветная жидкость). Кроме того, в он существует и в твердом виде – кристаллы белого цвета. Аммиак хорошо растворяется в воде, образует гидрат состава NH_3 times Н_2О.
В обычных условиях аммиак представляет собой бесцветный газ, который при комнатной температуре под избыточным давлением может быть сжижаться (жидкий аммиак — бесцветная жидкость). Кроме того, в он существует и в твердом виде – кристаллы белого цвета. Аммиак хорошо растворяется в воде, образует гидрат состава NH_3 times Н_2О
. Раствор аммиака имеет слабощелочную среду. 10%-й раствор NH_3 называют нашатырным спиртом, а 8,5—25%-е растворы — аммиачной водой.
Аммиак весьма реакционноспособен, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами, металлами, галогенами, оксидами и галогенидами.
Горение аммиака в кислороде можно отобразить с помощью следующего уравнения реакции:
4NH_3   2O_2 = 2N_2   6H_2O называют нашатырным спиртом, а 8,5—25%-е растворы — аммиачной водой.
Аммиак весьма реакционноспособен, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами, металлами, галогенами, оксидами и галогенидами.
Горение аммиака в кислороде можно отобразить с помощью следующего уравнения реакции:
4NH_3   2O_2 = 2N_2   6H_2O
.
Для того, чтобы провести подобный опыт в лаборатории необходимо налить в колбу фиксированный объем концентрированного раствора аммиака и закрыть её пробкой с горелкой для сжигания газов. Затем нужно осторожно нагревать раствор аммиака и небольшими порциями подавать в горелку кислород. После этого можно поднести зажженную лучинку к отверстию горелки – аммиак загорается и горит желтовато-зеленым пламенем.

Оксиды азота

В отличие от других химических элементов, азот образует большое число оксидов: N2O, NO, N2O3, NO2, N2O4 и N2O5, каждый из которых является кислотным. В таблице показали, какой оксид какой кислоте соответствует:

Оксид азота (I) N2O. Несолеобразующий оксид, представляет собой бесцветный газ с приятным запахом и сладковатым привкусом. По своей молярной массе тяжелее воздуха и растворим в воде. У этого оксида есть и другие названия, самое распространенное из них — закись азота.

Оксид азота (II) NO. Несолеобразующий оксид, который при нормальный условиях является бесцветным газом, плохо растворяется в воде и в больших концентрациях ядовит для человека.

Оксид азота (III) N2O3. Соединение очень неустойчивое и существует только при низких температурах. В твердом и жидком состоянии оксид азота (III) окрашен в ярко-синий цвет. При температуре выше 0 градусов разлагается до оксида азота (II) и оксида азота (IV).

Оксиды азота (IV) NO2 и N2O4. Твердый оксид азота (IV) бесцветный, так как состоит из молекул N2O4. При нагревании появляется коричневая окраска, которая усиливается с повышением температуры по мере увеличения NO2 в смеси. Эти оксиды хорошо растворимы в воде и взаимодействуют с ней.

Оксид азота (V) N2O5. Азотный ангидрид, который образуется в виде летучих бесцветных гигроскопичных кристаллов. Это крайне неустойчивое вещество, которое распадается в течение нескольких часов. При нагревании распадается со взрывом на оксид азота (IV) и газообразный кислород.

Ответы

  1. c

  2. a

  3. c

  4. b

  5. c

Способы получения аммиака

В лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поскольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества.

Например, аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды:

2NH4Cl      Са(OH)2   →   CaCl2   2NH3     2Н2O

Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака.

Видеоопытполучения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь.

Еще один лабораторныйспособ получения аммиака – гидролиз нитридов.

Например, гидролиз нитрида кальция:

Ca3N2       6H2O  →  ЗСа(OH)2        2NH3

В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота.

N2      3Н2    ⇄    2NH3

Процесс проводят при температуре 500-550оС и в присутствии катализатора.  Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непровзаимодействовавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор.

Более подробно про технологию производства аммиака можно прочитать здесь.

Строение молекулы азота

Азот — двухатомная молекула, атомы которой связаны между собой прочной тройной связью. Длина связи — 0,110 нм.

Почему именно тройная связь и из чего она состоит?

Напомним, что у каждого атома в молекуле азота 3 неспаренных электрона, которые и образуют впоследствии тройную связь, которая, в свою очередь, состоит из одной сигма-связи и двух пи-связей.

Строение молекулы и физические свойства

В молекуле аммиака NH3 атом азота соединен тремя одинарными ковалентнымиполярными связями с атомами водорода:

Геометрическая форма молекулы аммиака — правильная треугольная пирамида. Валентный угол H-N-H составляет 107,3о:

 У атома азота в аммиаке на внешнем энергетическом уровне остается одна неподеленная электронная пара. Эта электронная пара оказывает значительное влиение на свойства аммиака, а также на его структуру. Электронная структура аммиака — тетраэдр , с атомом азота в центре:

Аммиак– бесцветный газ с резким характерным запахом. Ядовит. Весит меньше воздуха. Связь N-H — сильно полярная, поэтому между молекулами аммиака в жидкой фазе возникают водородные связи.

Тематический тест на свойства соединений азота (часть 1).

Задание №78

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 421

Задание №79

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 213

Задание №80

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 231

Задание №81

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 124

Задание №82

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 231

Задание №83

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 314

Задание №84

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 412

Задание №85

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 321

Задание №86

Установите соответствие между веществом и набором реагентов, с каждым из которых оно может взаимодействовать.

Запишите в таблицу выбранные цифры под соответствующими буквами.

Решение

Ответ: 341

Химические свойства азота

Азот химически малоактивен из-за наличия все той же тройной связи. Она же обуславливает малую термическую устойчивость соединений азота при нагревании. В химических реакциях азот может проявлять себя и как окислитель, и как восстановитель благодаря широкому спектру возможных степеней окисления.

Как восстановитель азот реагирует:

  • с фтором
    N2 F2 = 2NF3

  • с кислородом
    N2 O2 = 2NO

Эти реакции проходят при температуре выше 1000 градусов Цельсия либо в электрическом заряде.

Как окислитель азот реагирует:

  • с металлами
    N2 6Li = 2Li3N

    азот реагирует при обычных условиях только с литием, а с щелочноземельными металлами — только при нагревании;

  • с водородом
    N2 3H2 = 2NH3

    реакция протекает обратимо в присутствии металлического железа в качестве катализатора.

Рассмотрим способы получения азота. В промышленности его получают фракционной перегонкой жидкого воздуха, а вот в лаборатории азот получают иначе. Вот лишь некоторые способы:

  • реакция взаимодействия хлорида аммония и нитрита натрия
    NaNO2 NH4Cl = N2 NaCl 2H2O

  • разложение некоторых солей аммония (на примере нитрита аммония)
    NH4NO2 = N2 2H2O

Азот — основной компонент любого белка в организме человека. Давайте рассмотрим способы получения исходных компонентов для синтеза собственных белков.

Электронное строение азота

Рассмотрим строение атома и электронную конфигурацию азота, а затем сделаем некоторые заключения.

Атомный или порядковый номер азота равен 7, что соответствует количеству электронов и протонов в ядре. Молярная масса равна 14,00728 г/моль, а количество нейтронов в атоме этого изотопа равно семи.

Теперь перейдем к электронному строению. В основном состоянии электронная формула азота: 1s2 2s2 2p3, в сокращенном виде — [He]2s2 2p3. На внешнем энергетическом уровне 5 валентных электронов, среди которых 3 неспаренных p-электрона.

Исходя из такой конфигурации, азот может образовывать только 3 связи по обменному механизму и еще одну по донорно-акцепторному механизму. Это связано с тем, что на втором подуровне у азота больше нет вакантных орбиталей, куда могли бы распариться электроны с 2s-подуровня. Отсюда вытекает максимальная валентность азота IV.

Важно

Валентности азота V нет!

Для азота характерен весь спектр возможных степеней окисления от −3 до 5.

https://www.youtube.com/watch?v=kursoteka.ruplayer

Давайте рассмотрим шкалу, где отражены соединения азота в различных веществах.

Вывод формул соединений. задача 58 — задачи по химии

Некоторый газ горит в хлоре, образуя азот и хлороводород, причем объемы вступивших в реакцию хлора и образовавшегося азота относятся как 3:1. какой это газ?

Так как, в результате реакции образуются азот и хлороводород, то в состав газа также должны входить эти элементы:

NH Cl2 = N2 HCl, с учетом отношения объемов вступивших в реакцию газов:

NH 3Cl2 = N2 HCl

Уравняем уравнение реакции: 2NH3 3Cl2 = N2 6HCl

Следовательно, этот газ аммиак.

Оцените статью
Кислород
Добавить комментарий