Бензальдегид, структурная формула, химические свойства

Бензальдегид, структурная формула, химические свойства Кислород

Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

Вторичные спирты окисляются в кетоны:

вторичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с  разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метаналь СН2ОCO2K2CO3
Альдегид R-СНОR-COOHR-COOK
КетонR-COOH/ СО2R-COOK/ K2СО3

Бензальдегид, структурная формула, химические свойства

1

H

ВодородВодород

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

ГелийГелий

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

ЛитийЛитий

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

БериллийБериллий

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

БорБор

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

УглеродУглерод

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

АзотАзот

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

КислородКислород

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

ФторФтор

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

НеонНеон

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

НатрийНатрий

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

МагнийМагний

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

АлюминийАлюминий

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

КремнийКремний

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

ФосфорФосфор

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

СераСера

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

ХлорХлор

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

АргонАргон

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

КалийКалий

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

КальцийКальций

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

СкандийСкандий

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

ТитанТитан

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

ВанадийВанадий

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

ХромХром

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

МарганецМарганец

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

ЖелезоЖелезо

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

КобальтКобальт

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

НикельНикель

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

МедьМедь

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

ЦинкЦинк

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

ГаллийГаллий

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

ГерманийГерманий

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

МышьякМышьяк

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

СеленСелен

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

БромБром

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

КриптонКриптон

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

РубидийРубидий

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

СтронцийСтронций

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

ИттрийИттрий

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

ЦирконийЦирконий

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

НиобийНиобий

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

МолибденМолибден

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

ТехнецийТехнеций

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

РутенийРутений

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

РодийРодий

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

ПалладийПалладий

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

СереброСеребро

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

КадмийКадмий

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

ИндийИндий

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

ОловоОлово

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

СурьмаСурьма

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

ТеллурТеллур

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

ИодИод

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

КсенонКсенон

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

ЦезийЦезий

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

БарийБарий

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

ЛантанЛантан

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

ЦерийЦерий

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

ПразеодимПразеодим

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

НеодимНеодим

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

ПрометийПрометий

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

СамарийСамарий

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

ЕвропийЕвропий

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

ГадолинийГадолиний

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

ТербийТербий

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

ДиспрозийДиспрозий

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

ХольмийХольмий

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

ЭрбийЭрбий

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

ТулийТулий

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

ИттербийИттербий

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

ЛютецийЛютеций

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

ГафнийГафний

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

ТанталТантал

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

ВольфрамВольфрам

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

РенийРений

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

ОсмийОсмий

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

ИрридийИрридий

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

ПлатинаПлатина

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

ЗолотоЗолото

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

РтутьРтуть

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

ТаллийТаллий

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

СвинецСвинец

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

ВисмутВисмут

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

ПолонийПолоний

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

АстатАстат

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

РадонРадон

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

ФранцийФранций

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

РадийРадий

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

АктинийАктиний

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

ТорийТорий

232,04

f-элемент

Серый мягкий металл

91

Pa

ПротактинийПротактиний

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

УранУран

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

НептунийНептуний

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

ПлутонийПлутоний

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

АмерицийАмериций

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

КюрийКюрий

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

БерклийБерклий

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

КалифорнийКалифорний

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

ЭйнштейнийЭйнштейний

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

ФермийФермий

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

МенделевийМенделевий

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

НобелийНобелий

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

ЛоуренсийЛоуренсий

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

РезерфордийРезерфордий

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

ДубнийДубний

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

СиборгийСиборгий

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

БорийБорий

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

ХассийХассий

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

МейтнерийМейтнерий

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

ДармштадтийДармштадтий

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Бензойный альдегид — методика и техника пособие для учителей

^

С бензальдегидом учащихся можно ознакомить кратко. Главная цель, которая преследуется здесь, — показать, что альдегиды существуют среди соединений не только жирного, но и ароматического ряда органических соединений.

Поэтому будет вполне достаточно ознакомить учащихся на опыте с характерным запахом а/тьдегида (что связано с практическим его использованием), с реакцией серебряного зеркала (что устанавливает принадлежность его к классу альдегидов) и с окислением кислородом воздуха (что наиболее убедительно показывает превращение альдегидов в кислоты).

^. Одновременно с тем, как учитель начинает излагать сведения о бензальдегиде, на ученические столы выдают часовые стекла или стеклянные пластинки, на которых нанесено по нескольку капель бензальдегида. Учащиеся знакомятся с запахом вещества. После того как объяснен дальнейший материал и продемонстрирована реакция серебряного зеркала с бензальдегидом (см. ниже), учитель сообщает, что бензойную кислоту, которую не пришлось наблюдать в проведенной реакции, .можно видеть на выданных пластинках с бензальдегидом. К этому времени на стеклах начинают появляться красивые кристаллы бензойной кислоты (для этого необходимо 10—15 мин). К следующему уроку весь альдегид превращается в кристаллы. Учащиеся составляют соответствующее уравнение реакции:

Бензальдегид, структурная формула, химические свойства

^. Реакцию проводят совершенно так-

же, как с другими альдегидами. К 5—8 мл аммиачного раствора оксида серебра в чистой пробирке прибавляют 2—3 капли бензальдегида и нагревают смесь в горячей воде или осторожно над небольшим пламенем спиртовки. Образуются бензойная кислота и серебро.

^

Школьной программой не предусматривается изучение кетонов. Однако некоторые учителя знакомят учащихся на уроках или в процессе внеклассной работы с окислением вторичных спиртов и практически наиболее важным представителем класса кетонов — ацетоном. Ниже приводятся опыты, которые могут быть использованы с этой целью.

^. Несколько капель ацетона наливают на крышку фарфорового тигля и поджигают. Ацетон горит слабо светящимся пламенем.

Растворимость ацетона в воде. К 2 мл воды добавляют равный объем ацетона. По встряхивании не удается установить расслоения жидкостей. Ацетон растворяется в воде.

^. На этом свойстве ацетона основано его применение для изготовления лаков и для склеивания изделий из пластмасс.

а) В нескольких миллилитрах ацетона в пробирке растворяют при помешивании стеклянной палочкой столько целлулоида, чтобы раствор стал слегка вязким. Смачивают полученным лаком вату и натирают ею гладкий кусочек дерева — после улетучивания растворителя предмет оказывается «лакированным».

б) Два кусочка очищенной кинопленки или органического стекла (плексигласа) смачивают с концов ацетоном.

Через 1—2 мин накладывают концы пленки друг на друга и слегка сдавливают. После высыхания кусочки оказывают прочно склеенными ацетоном.

^. В две пробирки наливают одинаковые количества аммиачного раствора оксида серебра. В одну пробирку прибавляют раствор альдегида, в другую — такой же объем ацетона. Пробирки помещают одновременно в стакан с горячей водой. В пробирке с альдегидом появляется зеркало в пробирке с ацетоном восстановления серебра и, следовательно, окисления кетона не происходит.

^. Ацетон не может быть окислен окисью серебра (см. предыдущий опыт), но он может быть окислен более энергичными окислителями.

Около 1 мл ацетона разбавляют в пробирке водой, приливают

серной кислоты, подогревают и вносят небольшими порциями измельченный перманганат калия, пока не перестанет исчезать его фиолетовая окраска. При нагревании раствора можно обнаружить по запаху пары уксусной кислоты.

При окислении происходит разрыв углеродной цепи и образование двух кислот — уксусной и муравьиной:

Бензальдегид, структурная формула, химические свойства

^. Учащимся можно показать, что углеводородные радикалы кислородсодержащих органических веществ сохраняют в основном свойства углеводородов. Примером тому оказывается реакция бромирования ацетона:

Бензальдегид, структурная формула, химические свойства

Реакция ацетона с бромом, кроме того, дает возможность довольно просто и в безопасной форме ознакомить учащихся с получением одного из слезоточивых веществ (лакриматоров). В настоящее время известны вещества, значительно превосходящие бромацетон по слезоточивому действию. Однако, принимая во внимание, что задача сводится к ознакомлению не с силой, а с характером действия вещества, целесообразно ограничиваться в указанных целях именно этим примером.

В вытяжном шкафу наливают в пробирку 1 мл ацетона и вносят несколько капель брома. Уже без подогрева обычно начинает ощущаться острый запах бромацетона. Если реакция не наступает, пробирку слегка подогревают (осторожно, беречь глаза!). Смачивают жидкостью из пробирки несколько полосок фильтровальной бумаги и раздают их на стеклышках учащимся или же помещают несколько капель жидкости на железную пластинку и нагревают ее над пламенем спиртовки.

Как только действие бромацетона на глаза обнаружено, хотя бы и в слабой форме, демонстрацию его прекращают и проветривают помещение.

Уравнение реакции учащиеся смогут составить сами, если им указать, что здесь в каждой молекуле ацетона замещается бромом один атом водорода.

В качестве наиболее сильного слезоточивого вещества указывается хлорацетофенон

Бензальдегид, структурная формула, химические свойства

раздражающей концентрацией которого в воздухе считается 0,0003 мг/л.

^. В случае отсутствия в школьной лаборатории ацетон может быть получен для демонстрационных целей из солей уксусной кислоты, например, по реакции:

Бензальдегид, структурная формула, химические свойства

В наиболее простом виде опыт может быть проведен без выделения образующегося продукта.

В пробирке накаливают 2—3 г безводного ацетата натрия CH3COONa. Через 3—5 мин ощущается запах ацетона. Пары его при поджигании горят. По охлаждении пробирки с помощью соляной кислоты можно констатировать образование карбоната:

2CH3COONa  СН3 — СО — СН3 Na2CO3

Na2CO3 2НС!  2NaCl Н2О СО2

^

КАРБОНОВЫЕКИСЛОТЫ

Изучение предельных одноосновных кислот лучше всего начинать со второго члена гомологического ряда — с уксусной кислоты. Эта кислота частично уже известна учащимся, она доступна для школы, на ней более характерно проявляется структура карбоновых кислот. Муравьиная кислота как первый член ряда имеет некоторые особенности в строении и свойствах, а поэтому менее удобна для первоначального ознакомления с классом кислот.

В ряду одноосновных кислот вслед за уксусной и муравьиной рекомендуется рассмотреть также высшие гомологи кислот. Это позволит создать у учащихся более полную картину о гомологическом ряде и не возвращаться к этим кислотам в последующей теме при изучении жиров.

Химические свойства кислот в настоящей главе приводятся не полностью. С целью избежать повторения реакции кислот со спиртами описываются в следующей главе, где они являются специальным предметом рассмотрения.

Г) окисление бензойного альдегида кислородом воздуха.

Несколько капель бензойного альдегида помещают на часовое стекло тонким слоем по всей поверхности и оставляют на воздухе. Через некоторое время наблюдают переход жидкого бензойного альдегида в кристал­лическую бензойную кислоту благодаря реакции окисления альдегида кислородом воздуха. Реакция протекает с образованием промежуточного продукта – надбензойной кислоты:

Бензальдегид, структурная формула, химические свойства

Бензальдегид, структурная формула, химические свойства которая окисляет вторую молекулу бензойного альдегида до бензойной кислоты:

Лабораторная работа 3

Азотсодержащие органические соединения

Опыт 1. Получение анилина (под тягой!)

В пробирку помещают 3-4 капли нитробензола, 1 мл концентрированной соляной кислоты и вносят кусочек металлического цинка; осторожно встряхивают смесь в пробирке. Начинается бурная реакция выделения водорода, во время которой происходит восстановление нитробензола в анилин (реакция Зинина):

С6Н5NO2 6Н → С6Н5NH22О

После прекращения выделения водорода в пробирку добавляют 4-5 мл и несколько капель раствора хлорной извести. Раствор окрашивается в интенсивно фиолетовый цвет. Это указывает на присутствие анилина.

Опыт 2. Окисление анилина и получение красителя «черный анилин»

В фарфоровую чашку помещают 5 капель анилина и осторожно добавляют 5 капель концентрированной серной кислоты. Образуется сернокислый анилин. К полученной смеси добавляют 5 капель 10%-ного водного раствора бихромата калия. Смесь окрашиваются последовательно в зеленый, голубой, синий, а затем черный цвет. Продукт окисления анилина содержит хиноидные окрашенные группировки. «Черный анилин» устойчив к кислотам и щелочам; применяется для окраски тканей, кожи, и др.

Опыт 3. Получение триброманилина (под тягой!)

В пробирку помещают 5 капель анилина, 5 мл воды и перемешивают встряхиванием. К образовавшейся эмульсии добавляют 4-5 мл бромной воды и слегка встряхивают. Выделяется маслянистый осадок три­бро­ма­нилина. Осадок затвердевает:

Бензальдегид, структурная формула, химические свойства

Опыт 4. Получение ацетанилида (под тягой!).

Бензальдегид, структурная формула, химические свойства В пробирку помещают 0,5 мл анилина 2 мл воды, встряхивают до образования эмульсии. Затем добавляют 0,5 мл ускусного ангидрида и сно­ва встряхивают; вначале осторожно, затем сильнее. Образуется обильный осадок, состоящий из кристаллов ацетанилида:

Для перекристаллизации ацетанилида к полученному осадку приливают 3-4 мл горячей воды, нагревают до растворения кристаллов. После охлаж­дения кристаллы отсасывают на воронке Бюхнера и высушивают.


Дата добавления: 2022-12-20; просмотров: 31 | Нарушение авторских прав


lektsii.net — Лекции.Нет — 2022-2022 год. (0.015 сек.)
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав

Механизм реакции

Реакции серебряного зеркала соответствует уравнение:

2[Ag(NΗ3)2]OΗ НСОΗ -> 2Ag↓ ΗCOONΗ4 3NΗ3 Н2О

Стоит отметить, что для альдегидов такое взаимодействие изучено недостаточно. Механизм данной реакции неизвестен, но предполагается радикальный или же ионный вариант окисления. По гидроксиду диамминсеребра вероятнее всего реализуется присоединение с образованием серебряной соли диола, от которого затем отщепляется серебро с образованием карбоновой кислоты.

Для успешного проведения опыта чрезвычайно важна чистота используемой посуды. Связано это с тем, что образующиеся в ходе опыта коллоидные частицы серебра должны прицепиться к поверхности стекла, создав зеркальную поверхность. В присутствии малейших загрязнений оно будет выпадать в виде серого хлопьевидного осадка.

Для очистки емкости следует использовать растворы щелочей. Так, для этих целей можно взять раствор NaOH, который нужно смыть большим объемом дистиллированной водой. На поверхности стекла не должно присутствовать жировых следов и механических частиц.

Окисление — бензальдегид
— большая энциклопедия нефти и газа, статья, страница 1

Cтраница 1

Окисление бензальдегида в бензойную кислоту-процесс самопроизвольно, хотя и медленно, протекающий уже при стоянии бензальдегида на воздухе. Блан нашел, что этот процесс ускоряется от добавления катализаторов, каковы металлы: Ag, Pt, Ni, Си, и окислы и соли металлов Ni, Co, Си.
[1]

Окисление бензальдегида в бензойную кислоту может совершаться двумя независимыми друг от друга путями. Альдегид легко поглощает одну молекулу кислорода, образуя перекись, которая с одной молекулой избыточного альдегида дает две молекулы бензойной кислоты. Другой путь окисления идет через расщепление воды, причем одна молекула альдегида присоединяет ОН — ионы, другая молекула альдегида или какой-либо другой субстрат, способный восстанавливаться, связывает Н — ионы.
[2]

При окислении бензальдегида воздухом в присутствии уксусного ангидрида удается задержать реакцию на стадии образования перекиси, причем гидроперекись бензоила превращается о этих условиях в перекись ацетилбензоила.
[3]

При окислении бензальдегида в уксусном ангидриде по ходу процесса меняется соотношение между цепной реакцией образования надбензойной кислоты и реакцией ее ацилирования уксусным ангидридом. Вначале наиболее медленной стадией является образование надкислоты, в то время как на более глубоких стадиях — реакция ацилирования.
[4]

При окислении бензальдегида в паровой фазе на ванадате олова было констатировано, что процесс идет практически при той же температуре, которая характерна и для окисления толуола в бензойную кислоту. Таким образом, температура образования продукта окисления зависит в большей степени от качества катализатора, чем от природы исходного материала.
[5]

При окислении бензальдегида воздухом в присутствии уксусного ангидрида удается задержать реакцию на стадии образования перекиси, причем гидроперекись бензоила превращается в этих условиях в перекись ацетилбензоила.
[6]

При окислении бензальдегида в паровой фазе на ванадате олова было кон-статирогано. Таким образом, температура образования продукта окисления зависит в большей степени от качества катализатора, чем от природы исходного материала.
[7]

При окислении бензальдегида воздухом в присутствии уксусного ангидрида удается задержать реакцию на стадии образования перекиси, причем гидроперекись бензоила превращается в этих условиях в перекись ацетилбензоила.
[8]

При окислении незамещенного бензальдегида единственным 155, 63 — 67 ] или основным [56, 57] продуктом реакции является бензойная кислота, что соответствует большей легкости перемещения водорода по сравнению с фенилом. Однако одновременное образование небольших количеств фенола [56, 57] и муравьиной кислоты [56] свидетельствует о том, что окисление идет частично и по другому пути-с перемещением фенила.
[9]

Изменение скорости окисления бензальдегида w3 носит также линейный характер, однако w3 растет со временем контакта.
[11]

Нами было изучено окисление бензальдегида — в присутствии хлористого бензоила, n — хлорбензоилхлорида, п-бромбензоилхлори-да, хлористого ацетила и н-валерилхлорида; n — хлорбензойного и к-масляного альдегидов — в присутствии хлористого бензоила.
[12]

Нами было изучено окисление бензальдегида — в присутствии хлористого бензоила, n — хлорбензоилхлорида, п-бромбензоилхлори-да, хлористого ацетила и н-валерилхлорида; n — хлорбензойного и н-масляного альдегидов — в присутствии хлористого бензоила.
[13]

Логарифм обратной скорости окисления бензальдегида в присутствии ароматического углеводорода прямо пропорционален индексу свободной валентности Fr. Это свидетельствует о том, что тормозящее действие ароматических углеводородов заключается в присоединении к ним перекисных радикалов. Чем менее насыщены атомы углерода в таком углеводороде, тем он быстрее присоединяет перекисный радикал.
[15]

Страницы:  

   1

   2

   3

   4

Окисление альдегидов перманганатом калия

Наиболее успешно эта реакция происходит в кислой среде. Визуально оценить ее прохождение можно по потере интенсивности и полному обесцвечиванию розовой окраски раствора марганцовки. Реакция проходит при комнатной температуре и нормальном давлении, поэтому она не требует особых условий.

5СН3-СОН 2KMnO4 3H2SO4 = 5СН3-СООН 2MnSO4 K2SO4 3Н2О

Если ту же реакцию вести при повышенных температурах, то метаналь легко окисляется до углекислого газа:

5СН3-СОН 4KMnO4 6H2SO4 = 5СО2 4MnSO4 2K2SO4 11Н2О

Окисление диоксидом селена

В отличие от предыдущих реактивов, под действием диоксида селена альдегиды превращаются в дикарбонильные соединения, а из формальдегида образуется глиоксаль. Если рядом с карбонилом расположены метиленовые или метильные группы, то они могут превращаться в карбонильные. Как растворитель для SeO2 обычно используют диоксан, этанол или ксилол.

По одной из методик реакцию проводят в трехгорлой колбе, соединенной с мешалкой, термометром и обратным холодильником. К исходному веществу, взятому в количестве 0,25 моль, каплями прибавляют раствор 0,25 моль диоксида селена в 180 мл диоксана, а также 12 мл Н2О.

Температура не должна превышать 20 °C (при необходимости колбу охлаждают). После этого при постоянном перемешивании раствор кипятят в течении 6 часов. Далее горячий раствор фильтруют для отделения селена и промывают осадок диоксаном. После вакуумной отгонки растворителя остаток фракционируют. Основную фракцию отбирают в широком температурном интервале (20-30 °C) и повторно ректифицируют.

Опыт № 8. получение и свойства метана…………………………………………14

Опыт № 9. Получение и свойства этилена………………………………………..15

Опыт № 10. Получение и свойства бензола………………………………………15

Опыт № 11. Свойства терпенов……………………………………………………16

IV. ГАЛОГЕНПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ.. 17

Опыт № 12. Получение
этилхлорида. 17

Опыт № 13. Образование
иодоформа из этилового спирта. 18

V. СПИРТЫ. ФЕНОЛЫ. ПРОСТЫЕ ЭФИРЫ… 18

Опыт № 14. Растворимость
спиртов в воде. 18

Опыт № 15. Выделение тепла
при смешивании этилового спирта с водой. 19

Опыт № 16. Горючесть
спиртов. 19

Опыт № 17. Обнаружение
воды в спирте-ректификате. 19

Опыт № 18. Образование
глицерата меди. 20

Опыт № 19. Окисление
этилового спирта перманганатом калия. 20

Опыт № 20. Получение
простого (диэтилового) эфира. 21

Опыт № 21. Получение
сложного (уксусноэтилового) эфира. 21

Опыт № 22. Получение
фенолята натрия. 22

Опыт № 23. Реакция фенола
с хлоридом железа (III) 22

Опыт № 24. Реакция фенола
с бромной водой. 23

Опыт № 25. Окисление
фенолов. 23

VI. АЛЬДЕГИДЫ И КЕТОНЫ… 23

Опыт № 26. Получение
уксусного альдегида. 23

Опыт № 27. Реакция
серебряного зеркала. 24

Опыт № 28. Восстановление
альдегидами гидроксида меди (II) 24

Опыт № 29. Восстановление
альдегидами реактива Фелинга. 25

Опыт № 30. Реакция
альдегидов с фуксинсернистой кислотой (реакция Шиффа) 25

Опыт № 31. Получение
ацетона и иодоформа из него. 26

Опыт № 32. Образование
альдегидами и кетонами гидросульфитных соединений  27

Опыт № 33. Окисление
бензойного альдегида кислородом воздуха. 28

Опыт № 34. Окисление
бензойного альдегида перманганатом калия. 28

Опыт № 35. Реакция
окисления-восстановления бензальдегида (реакция Канниццаро) 28

VII. КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ.. 29

Опыт № 36. Окисление
муравьиной кислоты.. 29

Опыт № 37. Восстановление
аммиачного раствора гидроксида серебра муравьиной кислотой. 29

Опыт
№ 32. образование альдегидами и кетонами гидросульфитных соединений

Альдегиды и кетоны, имеющие метильную группу,
связанную с кетонной группой, легко вступают в реакцию с гидросульфитом натрия,
образуя кристаллические вещества.

Реактивы:

Насыщенный
раствор гидросульфита натрия

Формальдегид
(уксусный альдегид или ацетон)

Ход работы:

В пробирку к ~1 мл насыщенного
раствора гидросульфита натрия прибавляют ~1 мл формалина (уксусного
альдегида или ацетона) и смесь энергично взбалтывают. Если необходимо,
реакционную смесь охлаждают холодной водой (в процессе реакции происходит саморазогрев
реакционной смеси).

H-CHO NaHSO3   ®   H-CH(OH)-SO3Na¯

CH3-CHO NaHSO3   ®   CH3-CH(OH)-SO3Na¯

Гидросульфитные соединения легко разлагаются под
действием разбавленных растворов кислоты, щелочи или соды с выделением
свободного альдегида или кетона, поэтому гидросульфитные соединения используют
для выделения и очистки альдегидов и кетонов.

Отдельные представители альдегидов

Формальдегид (муравьиный альдегид или метаналь) СН2О является газообразным веществом с весьма острым запахом, который получают обычно пропусканием смеси паров метанола с воздухом через раскаленную сетку из медной или серебряной сетки. Его 40%-й водный раствор называется формалином.

Формальдегид легко вступает в реакции, многие из которых лежат в основе промышленного синтеза целого ряда важных веществ. Его используют и для получения изопренового каучука, пентаэритрита, многих лекарственных веществ, различных красителей, для дубления кожи, в качестве дезинфицирующего и дезодорирующего средства. Формальдегид довольно токсичен, его ПДК в воздухе составляет 0,001 мг/л.

Ацетальдегид (уксусный альдегид, этаналь) СН3СОН является бесцветной жидкостью с удушающим запахом, который при разбавлении его водой приобретает фруктовый аромат. Ацетальдегид обладает всеми основными свойствами альдегидов. Окислением уксусного альдегида производят огромные объемы уксусной кислоты и уксусного ангидрида, разнообразных фармацевтических препаратов.

Акролеин (пропеналь) CH2=CH-СОН, простейший ненасыщенный альдегид является бесцветной легколетучей жидкостью. Его пары сильно раздражают слизистые глаз и верхних дыхательных путей. Очень ядовит, ПДК его содержания в воздухе составляет 0,7 мг/м3.

Бензальдегид (бензойный альдегид) С6Н5СОН является бесцветной желтеющей при хранении жидкостью с ароматом горького миндаля. Он довольно быстро окисляется воздухом до бензойной кислоты. Содержится в эфирных маслах растений (нероли, пачулей), а в виде глюкозида — в ядрах косточек горького миндаля, вишни, абрикоса и персика.

Приготовление реактивов

Для качественного определения группы -СОН в альдегидах сначала готовят комплексное соединение серебра. Для этого в пробирку наливают немного раствора аммиака (гидроксида аммония) в воде и следом небольшое количество нитрата серебра. При этом образующийся осадок оксида серебра тут же исчезает:

2AgNO3 2NH3 Н2О -> Ag2O↓ 2NH4NO3

Ag2O 4NΗ3 Η2О -> 2[Ag(NΗ3)2]ОΗ

Более надежные результаты дает реактив Толленса, приготовленный с добавлением щелочи. Для этого 1 г AgNO3 растворяют в 10 г дистиллированной воды и добавляют равный объем концентрированного гидроксида натрия. В результате выпадает осадок Ag2O, который исчезает при добавлении концентрированного раствора гидроксида аммония. Использовать для проведения реакции нужно только свежеприготовленный реактив.

Строение карбонильной группы

Электронное строение двойной связи в группе С=О характеризуется образованием одной σ-связи и еще одной π-связи. Атом С находится в состоянии sp2-гибридизации, молекула плоского строения с валентными углами между связями около 1200.

Содержание в альдегидной группе такой поляризованной двойной связи можно назвать главной причиной высокой реакционноспособности альдегидов. Для альдегидов наиболее характерны реакции присоединения атомов или их групп по С=О связи. И легче всего протекают реакции нуклеофильного присоединения.

Также для альдегидов типичны реакции с участием атомов Н из функциональной группы альдегидов. Из-за электроноакцепторного влияния группы С=О происходит повышение полярности связи. Это в свою очередь является причиной относительно легкого окисления альдегидов.

Оцените статью
Кислород
Добавить комментарий