Чему равна молярная масса кислорода? — Химия

Чему равна молярная масса кислорода? - Химия Кислород

Анализ

Палеоклиматологи измеряют отношение кислорода-18 и кислорода-16 в оболочках и скелетах морских организмов для определения климата миллионы лет назад. Молекулы морской воды, содержащие более легкий изотоп, кислород-16, испаряются с намного более высокой скоростью, чем молекулы воды, содержащие 12% более тяжелого кислорода-18, и это несоответствие увеличивается при более низких температурах.

В периоды более низких глобальных температур, снег и дождь из этой испаренной воды имеют тенденцию быть выше в кислороде-16, а оставшаяся морская вода имеет тенденцию быть выше в кислороде-18. Морские организмы затем включают больше кислорода-18 в свои скелеты и раковины, чем в более теплом климате.

Палеоклиматологи также непосредственно измеряют это соотношение в молекулах воды образцов ледяного ядра возрастом до сотен тысяч лет. Планетарные геологи измеряли относительные количества изотопов кислорода в образцах с Земли, Луны, Марса и метеоритов, но долго не могли получить контрольные значения для изотопных отношений в Солнце, которые, как полагают, являются такими же, как у первичной солнечной туманности.

Анализ кремниевой пластины, подвергшейся воздействию солнечного ветра в космосе и возвращенной разрушенным космическим аппаратом «Генезис», показал, что Солнце имеет более высокую долю кислорода-16, чем Земля. Это говорит о том, что в ходе неизвестного нам процесса кислород-16 исчез с протопланетного материала диска Солнца до слияния пылевых зерен, которые образовали Землю.

21) Кислород представляет собой две полосы спектрофотометрического поглощения, достигающие максимума на длинах волн 687 и 760 нм. Некоторые ученые, занимающиеся дистанционным зондированием, предложили использовать измерение сияния, исходящего из растительных навесов в этих полосах, чтобы охарактеризовать состояние здоровья растений со спутниковой платформы.

Этот подход использует тот факт, что в этих полосах можно различить отражательную способность растительности от ее флуоресценции, которая намного слабее. Измерение технически затруднено низким отношением сигнал-шум и физической структурой растительности; но оно было предложено как возможный метод мониторинга углеродного цикла со спутников в глобальном масштабе.

История открытия

Официально считается[4][5], что кислород был открыт английским химиком Джозефом Пристли1 августа1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью большой линзы).

2HgO→t2Hg O2↑{displaystyle {ce {2HgO ->[t] 2Hg O2 ^}}}.

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела очень большое значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по изменению веса сожжённых элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Медицина

Употребление кислорода из воздуха является основной целью дыхания, поэтому в медицине используется кислородная терапия, которая не только увеличивает уровень кислорода в крови пациента, но и оказывает вторичное влияние, снижая резистентность к кровотоку во многих типах пораженных легких и ослабляя нагрузку на сердце.

Кислородная терапия используется для лечения эмфиземы, пневмонии, некоторых сердечных заболеваний (застойной сердечной недостаточности), некоторых заболеваний, вызывающих повышенное давление в легочной артерии, и любых заболеваний, ухудшающих способность организма принимать и использовать газообразный кислород.

29)
Такие методы лечения могут использоваться в больничных условиях, на дому или же вообще при помощи переносных устройств. Кислородные палатки когда-то использовались при кислородной терапии, но с тех пор были заменены, в основном, использованием кислородных масок или назальных канюлей.

В гипербарической (с высоким давлением) медицине используются специальные кислородные камеры для увеличения парциального давления O2 вокруг пациента и, при необходимости, медицинского персонала. Этот метод лечения иногда используется при отравлении угарным газом, газовой гангрене и декомпрессионной болезни.

Увеличение количества O2 в легких помогает вытеснить монооксид углерода из гем-группы гемоглобина. Кислородный газ является ядовитым для анаэробных бактерий, которые вызывают газовую гангрену, поэтому увеличение его парциального давления помогает убить их.

30) Декомпрессионная болезнь возникает у дайверов, которые быстро декомпрессируют после погружения, что приводит к образованию пузырьков инертного газа, в основном, азота и гелия, в крови. Как можно более быстрое увеличение давления O2 помогает повторно перевести пузырьки обратно в кровь, чтобы эти избыточные газы могли выдыхаться естественным путем через легкие. 31)

Нахождение в природе

Накопление O2 в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.  1. (3,85—2,45 млрд лет назад) — O2 не производился 2. (2,45—1,85 млрд лет назад) — O2 производился, но поглощался океаном и породами морского дна 3. (1,85—0,85 млрд лет назад) — O2 выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя 4. (0,85—0,54 млрд лет назад) — все горные породы на суше окислены, начинается накопление O2 в атмосфере 5. (0,54 млрд лет назад — по настоящее время) — современный период, содержание O2 в атмосфере стабилизировалось

Накопление O

2

в

атмосфере

Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.

1

. (3,85—2,45 млрд лет назад) — O

2

не производился

2

. (2,45—1,85 млрд лет назад) — O

2

производился, но поглощался океаном и породами морского дна

3

. (1,85—0,85 млрд лет назад) — O

2

выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя

4

. (0,85—0,54 млрд лет назад) — все горные породы на суше окислены, начинается накопление O

2

в атмосфере

5

. (0,54 млрд лет назад — по настоящее время) — современный период, содержание O

2

в атмосфере стабилизировалось

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе).

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн[7]). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад в атмосфере его практически не было.

Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы). Первый миллиард лет практически весь кислород поглощался растворённым в океанах железом и формировал залежи джеспилита.

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими[10].

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму[11]. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время[12].

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов[13].

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере[14][нет в источнике].

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %[6].

Про кислород:  Перезарядка огнетушителей сколько раз в год

В 2022 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад[16].

Оксиды и другие неорганические соединения

Вода (H2O) представляет собой оксид водорода и наиболее известное кислородное соединение36) Благодаря своей электроотрицательности, кислород образует химические связи почти со всеми остальными элементами, чтобы получить соответствующие оксиды. Поверхность большинства металлов, таких как алюминий и титан, окисляется в присутствии воздуха и покрывается тонкой пленкой оксида, которая пассивирует металл и замедляет дальнейшую коррозию. Многие оксиды переходных металлов представляют собой нестехиометрические соединения с немного меньшим количеством металла, чем показывает химическая формула. Например, минерал FeO (wüstite) записывается как Fe1-xO, где x обычно составляет около 0,05. Кислород присутствует в атмосфере в следовых количествах в виде двуокиси углерода (CO2). Породы земной коры состоят в значительной части из оксидов кремния (кремний SiO2, как в граните и кварце), алюминия (оксид алюминия Al2O3, в боксите и корунде), железа (оксид железа (III) Fe2O3 в гематите и ржавчине) и карбоната кальция (в известняке). Остальная часть земной коры также состоит из соединений кислорода, в частности, различных сложных силикатов (в силикатных минералах). Мантия Земли гораздо большей массы, чем кора, и в основном состоит из силикатов магния и железа. Водорастворимые силикаты в форме Na4SiO4, Na2SiO3 и Na2Si2O5 используются в качестве моющих средств и адгезивов. Кислород также действует как лиганд для переходных металлов, образующий комплексы диоксигена с переходными металлами, в которых присутствует металл-O2. Этот класс соединений включает гем-белки гемоглобин и миоглобин. Экзотическая и необычная реакция происходит с PtF6, который окисляет кислород, чтобы получить O2 PtF6 -. 37)

Поддержка жизни и рекреационное использование

O2 как дыхательный газ низкого давления применяется в современных космических костюмах, которые окружают тело пассажира дыхательным газом. В этих устройствах используется почти чистый кислород при примерно одной трети от нормального давления, что приводит к нормальному парциальному давлению в крови O2.

Этот компромисс более высокой концентрации кислорода для более низкого давления необходим для поддержания гибкости костюма. 32)
Дайверы и подводники также используют искусственно поставляемый О2. Подводные лодки и атмосферные подводные костюмы обычно работают при нормальном атмосферном давлении.

Дыхательный воздух очищается от углекислого газа путем химической экстракции, а кислород заменяется для поддержания постоянного парциального давления.
Дайверы, погружающиеся при давлении окружающей среды, дышат воздушными или газовыми смесями с кислородной фракцией, подходящей для рабочей глубины.

Чистый или почти чистый O2 при погружении при давлениях выше атмосферного, обычно ограничивается ребризерами или декомпрессией на относительно небольших глубинах (глубина ~ 6 метров или менее), 33) или медицинской помощи в камерах рекомпрессии при давлениях до 2,8 бар, где от острой кислородной токсичности можно избавиться без риска утопления.

Глубокое погружение требует значительного разведения O2 с другими газами, такими как азот или гелий, для предотвращения кислородной токсичности.
Люди, которые поднимаются на горы или летают в самолётах без давления, иногда имеют приборы для поставки дополнительного O2.

В коммерческих самолетах под давлением, аварийный O2 автоматически подается пассажирам в случае сброса давления в кабине. Внезапная потеря давления в кабине активирует химические генераторы кислорода над каждым сиденьем, в результате чего падают кислородные маски.

Экзотермическая реакция затем производит постоянный поток газообразного кислорода.
Кислород, предположительно вызывающий мягкую эйфорию, имеет историю рекреационного использования в кислородных барах и в спорте. Кислородные бары существуют в Японии, Калифорнии и Лас-Вегасе, штат Невада, с конца 1990-х годов, предлагая пользователю вдохнуть больше O2, чем обычно, за плату.

34) Профессиональные спортсмены, особенно в американском футболе, иногда выходят с поля между играми и надевают кислородные маски, чтобы повысить производительность. Фармакологический эффект таких действий сомнителен; эффект плацебо – более вероятное объяснение.

Доступные исследования подтверждают эффект повышения производительности от употребления обогащенных кислородом смесей, только если они используются во время аэробных упражнений.
Другие виды рекреационного использования, в которых не используется дыхание, включают в себя пиротехнические применения.

Поздняя история

Согласно оригинальной атомной гипотезе Джона Далтона, все элементы являются одноатомными, а атомы в соединениях обычно имеют простейшие атомные отношения по отношению друг к другу. Например, Далтон предположил, что формула воды была НО, а атомная масса кислорода в 8 раз больше, чем у водорода, вместо современного значения около 16.

В 1805 году Джозеф Луи Гей-Люссак и Александр фон Гумбольдт показали, что вода образуется из двух объемов водорода и одного объема кислорода; и к 1811 году Амедео Авогадро пришел к правильной интерпретации состава воды, основанной на том, что теперь называется законом Авогадро и двухатомными элементарными молекулами в этих газах. 7)
К концу 19 века ученые поняли, что воздух может быть сжижен и его компоненты могут быть изолированы путем сжатия и охлаждения.

Используя каскадный метод, швейцарский химик и физик Рауль Пьер Пикте испарял жидкий диоксид серы, чтобы сжижать углекислый газ, который, в свою очередь, испарялся, чтобы охладить кислородный газ, что достаточно для его сжижения. 22 декабря 1877 года он отправил телеграмму во Французскую академию наук в Париже, объявив о своем открытии жидкого кислорода.

Спустя два дня, французский физик Луи-Поль Кайете объявил о своем собственном методе сжижения молекулярного кислорода. В каждом случае производилось всего несколько капель жидкости, и никакого значимого анализа не проводилось. Кислород впервые был сжижен в стабильном состоянии 29 марта 1883 года польскими учеными из Ягеллонского университета, Зигмунтом Врублевски и Каролем Ольшевски.

В 1891 году шотландский химик Джеймс Дьюар смог получить достаточно жидкого кислорода для исследования. Первый коммерчески жизнеспособный процесс получения жидкого кислорода был независимо разработан в 1895 году немецким инженером Карлом фон Линде и британским инженером Уильямом Хэмпсоном.

Они оба опустили температуру воздуха до такой степени, пока газ не стал сжижаться, а затем перегоняли составляющие газы, кипятя их по очереди и захватывая их отдельно. Позднее, в 1901 году, впервые была продемонстрирована сварка оксиацетиленом, при сжигании смеси ацетилена и сжатого О2.

Этот метод сварки и резки металла стал более распространенным. 8) В 1923 году американский ученый Роберт Х. Годдард стал первым человеком, разработавшим двигатель, сжижающий жидкое топливо; в этом двигателе использовался бензин для топлива и жидкий кислород в качестве окислителя.

16 марта 1926 года в Оберне, штат Массачусетс, США, Годдард успешно пролетел на небольшой ракете с жидким топливом 56 м на скорости 97 км / ч. Уровни кислорода в атмосфере слегка различаются по всему миру, возможно, из-за сжигания ископаемого топлива.

Получение

В пром. мас­шта­бах К. про­из­во­дят пу­тём сжи­же­ния и фрак­ци­он­ной пе­ре­гон­ки воз­ду­ха (см. в ст. Воз­ду­ха раз­де­ле­ние), а так­же элек­тро­ли­зом во­ды. В ла­бо­ра­тор­ных ус­ло­ви­ях К. по­лу­ча­ют раз­ло­же­ни­ем при на­гре­ва­нии пе­рок­си­да во­до­ро­да (2Н2О2=2О О2), ок­си­дов ме­тал­лов (напр., ок­си­да рту­ти: 2HgO=2Hg O2), со­лей ки­сло­род­со­дер­жа­щих ки­слот-окис­ли­те­лей (напр., хло­ра­та ка­лия: 2KClO3=2KCl 3O2, пер­ман­га­на­та ка­лия: 2KMnO4=K2MnO4 MnO2 O2), элек­тро­ли­зом вод­но­го рас­тво­ра NaOH. Га­зо­об­раз­ный К. хра­нят и транс­пор­ти­ру­ют в сталь­ных бал­ло­нах, ок­ра­шен­ных в го­лу­бой цвет, при дав­ле­нии 15 и 42 МПа, жид­кий К. – в ме­тал­лич. со­су­дах Дьюа­ра или в спец. цис­тер­нах-тан­ках.

Промышленное производство

Сто тысяч миллионов тонн O2 экстрагируются из воздуха для промышленного использования ежегодно двумя основными методами. Наиболее распространенным методом является фракционная перегонка сжиженного воздуха с перегонкой N2 в виде пара, в то время как O2 остается в виде жидкости.

Другой первичный способ получения O2 – пропускать поток чистого сухого воздуха через один слой пары идентичных цеолитных молекулярных сит, который поглощает азот и доставляет газовый поток, составляющий от 90% до 93% O2. Одновременно с этим, азот выделяется из другого насыщенного азотом цеолитного слоя, уменьшая рабочее давление в камере и отводя часть кислородного газа из проецирующего слоя через него в обратном направлении потока.

Про кислород:  Вес баллона с гелием 40 литров и баллон с гелием b

По истечении установленного времени цикла работы, два слоя взаимозаменяются, что позволяет обеспечить непрерывную подачу газообразного кислорода, прокачиваемого по трубопроводу. Это известно как адсорбция под давлением. Кислородный газ все чаще получают при помощи этих некриогенных технологий.

28) Кислородный газ также может быть получен путем электролиза воды в молекулярный кислород и водород. Должно использоваться электричество постоянного тока: при использовании переменного тока, газы в каждом конце состоят из водорода и кислорода во взрывоопасном отношении 2: 1.

Вопреки распространенному мнению, соотношение 2: 1, наблюдаемое при электролизе постоянного тока подкисленной водой, не доказывает, что эмпирическая формула воды представляет собой H2O, если не будут сделаны определенные предположения о молекулярных формулах самого водорода и кислорода.

Аналогичным методом является электрокаталитическая эволюция O2 из оксидов и оксокислот. Также могут использоваться химические катализаторы, такие как химические генераторы кислорода или кислородные свечи, которые используются как часть оборудования для жизнеобеспечения на подводных лодках, и все еще являются частью стандартного оборудования на коммерческих авиалайнерах в случае чрезвычайных ситуаций сброса давления.

Разложение кислородсодержащих веществ

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

2KMnO4→tK2MnO4 MnO2 O2↑{displaystyle {ce {2KMnO4 ->[t] K2MnO4 MnO2 O2 ^}}}

Используют также реакцию каталитического разложения пероксида водорода H2O2 в присутствии оксида марганца(IV):

2H2O2→MnO22H2O O2↑{displaystyle {ce {2H2O2 ->[MnO2] 2H2O O2 ^}}}

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

2KClO3⟶2KCl 3O2↑{displaystyle {ce {2KClO3 -> 2KCl 3O2 ^}}}

Разложение оксида ртути(II) (при t = 100 °C) было первым методом синтеза кислорода:

2HgO→100°C2Hg O2↑{displaystyle {ce {2HgO ->[100{°}C] 2Hg O2 ^}}}

Распространённость в природе.

К. – са­мый рас­про­стра­нён­ный хи­мич. эле­мент на Зем­ле: со­дер­жа­ние хи­ми­че­ски свя­зан­но­го К. в гид­ро­сфе­ре со­став­ля­ет 85,82% (гл. обр. в ви­де во­ды), в зем­ной ко­ре – 49% по мас­се. Из­вест­но бо­лее 1400 ми­не­ра­лов, в со­став ко­то­рых вхо­дит К. Сре­ди них пре­об­ла­да­ют ми­не­ра­лы, об­ра­зо­ван­ные со­ля­ми ки­сло­род­со­дер­жа­щих ки­слот (важ­ней­шие клас­сы – кар­бо­на­ты при­род­ные, си­ли­ка­ты при­род­ные, суль­фа­ты при­род­ные, фос­фа­ты при­род­ные), и гор­ные по­ро­ды на их ос­но­ве (напр., из­вест­няк, мра­мор), а так­же разл. ок­си­ды при­род­ные, гид­ро­кси­ды при­род­ные и гор­ные по­ро­ды (напр., ба­зальт). Мо­ле­ку­ляр­ный К. со­став­ля­ет 20,95% по объ­ё­му (23,10% по мас­се) зем­ной ат­мо­сфе­ры. К. ат­мо­сфе­ры име­ет био­ло­гич. про­ис­хо­ж­де­ние и об­ра­зу­ет­ся в зе­лё­ных рас­те­ни­ях, со­дер­жа­щих хло­ро­филл, из во­ды и ди­ок­си­да уг­ле­ро­да при фо­то­син­те­зе. Ко­ли­че­ст­во К., вы­де­ляе­мое рас­те­ния­ми, ком­пен­си­ру­ет ко­ли­че­ст­во К., рас­хо­дуе­мое в про­цес­сах гние­ния, го­ре­ния, ды­ха­ния. К. – био­ген­ный эле­мент – вхо­дит в со­став важ­ней­ших клас­сов при­род­ных ор­га­нич. со­еди­не­ний (бел­ков, жи­ров, нук­леи­но­вых ки­слот, уг­ле­во­дов и др.) и в со­став не­ор­га­нич. со­еди­не­ний ске­ле­та.

Реакция перекисных соединений с углекислым газом

На подводных лодках и орбитальных станциях обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

2Na2O2 2CO2⟶2Na2CO3 O2↑{displaystyle {ce {2Na2O2 2CO2 -> 2Na2CO3 O2 ^}}}

Для соблюдения баланса объёмов поглощённого углекислого газа и выделившегося кислорода, к нему добавляют надпероксид калия. В космических кораблях для уменьшения веса иногда используется пероксид лития.

Сварка и резка металлов

Кислород в баллонах голубого цвета широко используется для газопламенной резки и сварки металлов.

В качестве окислителя для ракетного топлива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения.
Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

Медицинский кислород хранится в металлических газовых баллонах высокого давления голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей.

Крупные медицинские учреждения могут использовать не сжатый кислород в баллонах, а сжиженный в сосуде Дьюара большой ёмкости. Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки.

Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха.

Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометруредуктора) умножают на величину ёмкости баллона в литрах. Например, в баллоне вместимостью 2 литра манометр показывает давление кислорода 100 атм.

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавкиE948[26], как пропеллент и упаковочный газ.

В химической промышленности кислород используют как реактив-окислитель в многочисленных синтезах, например, окисления углеводородов в кислородсодержащие соединения (спирты, альдегиды, кислоты), диоксид серы в триоксид серы, аммиака в оксиды азота в производстве азотной кислоты.

В тепличном хозяйстве для изготовления кислородных коктейлей, для прибавки в весе у животных, для обогащения кислородом водной среды в рыбоводстве.

Свойства

Строе­ние внеш­ней элек­трон­ной обо­лоч­ки ато­ма К. 2s22p4; в со­еди­не­ни­ях про­яв­ля­ет сте­пе­ни окис­ле­ния –2, –1, ред­ко 1, 2; элек­тро­от­ри­ца­тель­ность по По­лин­гу 3,44 (наи­бо­лее элек­тро­от­ри­ца­тель­ный эле­мент по­сле фто­ра); атом­ный ра­ди­ус 60 пм; ра­ди­ус ио­на О2– 121 пм (ко­ор­ди­нац. чис­ло 2). В га­зо­об­раз­ном, жид­ком и твёр­дом состояни­ях К. су­ще­ст­ву­ет в ви­де двух­атом­ных мо­ле­кул О2. Мо­ле­ку­лы О2 па­ра­маг­нит­ны. Су­ще­ст­ву­ет так­же ал­ло­троп­ная мо­ди­фи­ка­ция К. – озон, со­стоя­щая из трёх­атом­ных мо­ле­кул О3.

В осн. со­стоя­нии атом К. име­ет чёт­ное чис­ло ва­лент­ных элек­тро­нов, два из ко­то­рых не спа­ре­ны. По­это­му К., не имею­щий низ­кой по энер­гии ва­кант­ной d-ор­би­та­ли, в боль­шин­ст­ве хи­мич. со­еди­не­ний двух­ва­лен­тен. В за­ви­си­мо­сти от ха­рак­те­ра хи­мич. свя­зи и ти­па кри­стал­лич. струк­ту­ры со­еди­не­ния ко­ор­ди­нац. чис­ло К. мо­жет быть раз­ным: 0 (ато­мар­ный К.), 1 (напр., О2, СО2), 2 (напр., Н2О, Н2О2), 3 (напр., Н3О ), 4 (напр., ок­со­аце­та­ты Ве и Zn), 6 (напр., MgO, CdO), 8 (напр., Na2O, Cs2O). За счёт не­боль­шо­го ра­диу­са ато­ма К. спо­со­бен об­ра­зо­вы­вать проч­ные π-свя­зи с др. ато­ма­ми, напр. с ато­ма­ми К. (О2, О3), уг­ле­ро­да, азо­та, се­ры, фос­фо­ра. По­это­му для К. од­на двой­ная связь (494 кДж/моль) энер­ге­ти­че­ски бо­лее вы­год­на, чем две про­стые (146 кДж/моль).

Па­ра­маг­не­тизм мо­ле­кул О2 объ­яс­ня­ет­ся на­ли­чи­ем двух не­спа­рен­ных элек­тро­нов с па­рал­лель­ны­ми спи­на­ми на два­ж­ды вы­ро­ж­ден­ных раз­рых­ляю­щих π*-ор­би­та­лях. По­сколь­ку на свя­зы­ваю­щих ор­би­та­лях мо­ле­ку­лы на­хо­дит­ся на че­ты­ре элек­тро­на боль­ше, чем на раз­рых­ляю­щих, по­ря­док свя­зи в О2 ра­вен 2, т. е. связь ме­ж­ду ато­ма­ми К. двой­ная. Ес­ли при фо­то­хи­мич. или хи­мич. воз­дей­ст­вии на од­ной π*-ор­би­та­ли ока­зы­ва­ют­ся два элек­тро­на с про­ти­во­по­лож­ны­ми спи­на­ми, воз­ни­ка­ет пер­вое воз­бу­ж­дён­ное со­стоя­ние, по энер­гии рас­по­ло­жен­ное на 92 кДж/моль вы­ше ос­нов­но­го. Ес­ли при воз­бу­ж­де­нии ато­ма К. два элек­тро­на за­ни­ма­ют две раз­ные π*-ор­би­та­ли и име­ют про­ти­во­по­лож­ные спи­ны, воз­ни­ка­ет вто­рое воз­бу­ж­дён­ное со­стоя­ние, энер­гия ко­то­ро­го на 155 кДж/моль боль­ше, чем ос­нов­но­го. Воз­бу­ж­де­ние со­про­во­ж­да­ет­ся уве­ли­че­ни­ем меж­атом­ных рас­стоя­ний О–О: от 120,74 пм в осн. со­стоя­нии до 121,55 пм для пер­во­го и до 122,77 пм для вто­ро­го воз­бу­ж­дён­но­го со­стоя­ния, что, в свою оче­редь, при­во­дит к ос­лаб­ле­нию свя­зи О–О и к уси­ле­нию хи­мич. ак­тив­но­сти К. Оба воз­бу­ж­дён­ных со­стоя­ния мо­ле­ку­лы О2 иг­ра­ют важ­ную роль в ре­ак­ци­ях окис­ле­ния в га­зо­вой фа­зе.

К. – газ без цве­та, за­па­ха и вку­са; tпл –218,3 °C, tкип –182,9 °C, плот­ность га­зо­об­раз­но­го К. 1428,97 кг/дм3 (при 0 °C и нор­маль­ном дав­ле­нии). Жид­кий К. – блед­но-го­лу­бая жид­кость, твёр­дый К. – си­нее кри­стал­лич. ве­ще­ст­во. При 0 °C те­п­ло­про­вод­ность 24,65·103 Вт/(м·К), мо­ляр­ная те­п­ло­ём­кость при по­сто­ян­ном дав­ле­нии 29,27 Дж/(моль·К), ди­элек­трич. про­ни­цае­мость га­зо­об­раз­но­го К. 1,000547, жид­ко­го 1,491. К. пло­хо рас­тво­рим в во­де (3,1% К. по объ­ё­му при 20 °C), хо­ро­шо рас­тво­рим в не­ко­то­рых фто­рор­га­нич. рас­тво­ри­те­лях, напр. пер­фтор­де­ка­ли­не (4500% К. по объ­ё­му при 0 °C). Зна­чит. ко­ли­че­ст­во К. рас­тво­ря­ют бла­го­род­ные ме­тал­лы: се­реб­ро, зо­ло­то и пла­ти­на. Рас­тво­ри­мость га­за в рас­плав­лен­ном се­реб­ре (2200% по объ­ё­му при 962 °C) рез­ко по­ни­жа­ет­ся с умень­ше­ни­ем темп-ры, по­это­му при ох­ла­ж­де­нии на воз­ду­хе рас­плав се­реб­ра «за­ки­па­ет» и раз­брыз­ги­ва­ет­ся вслед­ст­вие ин­тен­сив­но­го вы­де­ле­ния рас­тво­рён­но­го ки­сло­ро­да.

Про кислород:  Увлажнитель кислорода пузырьковый Armed XY-98BII с ротаметром купить в Москве - Медтехника №7 Москва

К. об­ла­да­ет вы­со­кой ре­ак­ци­он­ной спо­соб­но­стью, силь­ный окис­ли­тель: взаи­мо­дей­ст­ву­ет с боль­шин­ст­вом про­стых ве­ществ при нор­маль­ных ус­ло­ви­ях, в осн. с об­ра­зо­ва­ни­ем со­от­вет­ст­вую­щих ок­си­дов (мн. ре­ак­ции, про­те­каю­щие мед­лен­но при ком­нат­ной и бо­лее низ­ких темп-рах, при на­гре­ва­нии со­про­во­ж­да­ют­ся взры­вом и вы­де­ле­ни­ем боль­шо­го ко­ли­че­ст­ва те­п­ло­ты). К. взаи­мо­дей­ст­ву­ет при нор­маль­ных ус­ло­ви­ях с во­до­ро­дом (об­ра­зу­ет­ся во­да Н2О; сме­си К. с во­до­ро­дом взры­во­опас­ны – см. Гре­му­чий газ), при на­гре­ва­нии – с се­рой (се­ры ди­ок­сид SO2 и се­ры три­ок­сид SO3), уг­ле­ро­дом (уг­ле­ро­да ок­сид СО, уг­ле­ро­да ди­ок­сид СО2), фос­фо­ром (фос­фо­ра ок­си­ды), мн. ме­тал­ла­ми (ок­си­ды ме­тал­лов), осо­бен­но лег­ко со ще­лоч­ны­ми и щё­лоч­но­зе­мель­ны­ми (в осн. пе­рок­си­ды и над­пе­рок­си­ды ме­тал­лов, напр. пе­рок­сид ба­рия BaO2, над­пе­рок­сид ка­лия KO2). С азо­том К. взаи­мо­дей­ст­ву­ет при темп-ре вы­ше 1200 °C или при воз­дей­ст­вии элек­трич. раз­ря­да (об­ра­зу­ет­ся мо­но­ок­сид азо­та NO). Со­еди­не­ния К. с ксе­но­ном, крип­то­ном, га­ло­ге­на­ми, зо­ло­том и пла­ти­ной по­лу­ча­ют кос­вен­ным пу­тём. К. не об­ра­зу­ет хи­мич. со­еди­не­ний с ге­ли­ем, не­оном и ар­го­ном. Жид­кий К. так­же яв­ля­ет­ся силь­ным окис­ли­те­лем: про­пи­тан­ная им ва­та при под­жи­га­нии мгно­вен­но сго­ра­ет, не­ко­то­рые ле­ту­чие ор­га­нич. ве­ще­ст­ва спо­соб­ны са­мо­вос­пла­ме­нять­ся, ко­гда на­хо­дят­ся на рас­стоя­нии не­сколь­ких мет­ров от от­кры­то­го со­су­да с жид­ким ки­сло­ро­дом.

К. об­ра­зу­ет три ион­ные фор­мы, ка­ж­дая из ко­то­рых оп­ре­де­ля­ет свой­ст­ва отд. клас­са хи­мич. со­еди­не­ний: $ce{O2^-}$су­пер­ок­си­дов (фор­маль­ная сте­пень окис­ле­ния ато­ма К. –0,5),  $ce{O2^2^-}$пе­рок­сид­ных со­еди­не­ний (сте­пень окис­ле­ния ато­ма К. –1, напр. во­до­ро­да пе­рок­сид Н2О2), О2– – ок­си­дов (сте­пень окис­ле­ния ато­ма К. –2). По­ло­жи­тель­ные сте­пе­ни окис­ле­ния 1 и 2 К. про­яв­ля­ет во фто­ри­дах O2F2 и ОF2 со­от­вет­ст­вен­но. Фто­ри­ды К. не­ус­той­чи­вы, яв­ля­ют­ся силь­ны­ми окис­ли­те­ля­ми и фто­ри­рую­щи­ми реа­ген­та­ми.

Мо­ле­ку­ляр­ный К. яв­ля­ет­ся сла­бым ли­ган­дом и при­сое­ди­ня­ет­ся к не­ко­то­рым ком­плек­сам Fe, Co, Mn, Cu. Сре­ди та­ких ком­плек­сов наи­бо­лее ва­жен же­ле­зо­пор­фи­рин, вхо­дя­щий в со­став ге­мо­гло­би­на – бел­ка, ко­то­рый осу­ще­ст­в­ля­ет пе­ре­нос К. в ор­га­низ­ме те­п­ло­кров­ных.

Токсичность кислорода

Газообразный кислород (O2) может быть токсичным при повышенном парциальном давлении, приводя к судорогам и другим проблемам со здоровьем. 38) Кислородная токсичность обычно начинает наблюдаться при парциальном давлении более 50 килопаскалей (кПа), равном примерно 50% состава кислорода при стандартном давлении или в 2,5 раза выше нормального давления O2 на уровне моря около 21 кПа.

Это может вызывать беспокойство только у пациентов с механической вентиляцией легких, поскольку газ, поставляемый через кислородные маски в медицинских применениях, обычно состоит только из 30-50% O2 по объему (около 30 кПа при стандартном давлении).

В свое время, преждевременно рожденных младенцев помещали в инкубаторы, содержащие воздух, богатый О2, но эта практика была прекращена после того, как некоторые дети были ослеплены слишком высоким содержанием кислорода.
Вдыхание чистого О2 в космических применениях, например, в некоторых современных космических костюмах или в ранних космических аппаратах, таких как Apollo, не нанесет пользователю ущерба из-за низкого общего давления.

В случае скафандров, парциальное давление O2 в дыхательном газе, как правило, составляет около 30 кПа (в 1,4 раза выше нормы), а полученное парциальное давление O2 в артериальной крови космонавта лишь незначительно больше, чем нормальное О2 парциальное давление на уровне моря.

Кислородная токсичность для легких и центральной нервной системы также может возникать при глубоководном плавании и погружении. Длительное вдыхание воздушной смеси с парциальным давлением O2 более 60 кПа может, в конечном итоге, привести к постоянному легочному фиброзу.

Воздействие парциального давления O2 более 160 кПа (около 1,6 атм) может привести к судорогам (обычно смертельным для дайверов). Острая кислородная токсичность (вызывающая приступы, наиболее опасный эффект для дайверов) может возникать при вдыхании воздушной смеси с 21% O2 на глубине 66 м или более; то же самое может произойти при вдыхании 100% O2 на глубине всего 6 м. 39)

Физические свойства

При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

1 л его при нормальных условиях имеет массу 1,429 г., то есть немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C,2,09 мл/100 г при 50 °C) и спирте(2,78 мл/100 г при 25 °C).

Межатомное расстояние — 0,12074 нм. Является парамагнетиком. В жидком виде притягивается магнитом.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы, концентрация диссоциированных атомов в смеси при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород кипит под давлением 101,325 кПа при температуре −182,98 °C и представляет собой бледно-голубую жидкость. Критическая температура кислорода 154,58 К (-118,57 °C), критическое давление 4,882 МПа[17].

Твёрдый кислород (температура плавления −218,35 °C) — синие кристаллы.

Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

    α2 — существует при температуре ниже 23,65 K; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейкиa=5,403 Å,b=3,429 Å,c=5,086 Å;β=132,53°[18].β-O2 — существует в интервале температур от 23,65 до 43,65 K; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å,α=46,25°[18].γ-O2 — существует при температурах от 43,65 до 54,21 K; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å[18].

Ещё три фазы существуют при высоких давлениях:

Фториды кислорода

2F2 2NaOH⟶2NaF H2O OF2↑{displaystyle {ce {2F2 2NaOH -> 2NaF H2O OF2 ^}}}
F2 O2⟶O2F2{displaystyle {ce {F2 O2 -> O2F2}}}

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 годуПьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3[23][24].

Химические свойства

Сильный окислитель, самый активный неметалл после фтора, образует бинарные соединения (оксиды) со всеми элементами, кроме гелия, неона, аргона, фтора (с фтором кислород образует фторид кислорода, так как фтор более электроотрицателен, чем кислород).

4Li O2⟶2Li2O{displaystyle {ce {4Li O2 -> 2Li2O}}}
2Sr O2⟶2SrO{displaystyle {ce {2Sr O2 -> 2SrO}}}

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

2NO O2⟶2NO2↑{displaystyle {ce {2NO O2 -> 2NO2 ^}}}

Окисляет большинство органических соединений в реакциях горения:

2C6H6 15O2⟶12CO2 6H2O{displaystyle {ce {2C6H6 15O2 -> 12CO2 6H2O}}}
CH3CH2OH 3O2⟶2CO2 3H2O{displaystyle {ce {CH3CH2OH 3O2 -> 2CO2 3H2O}}}

При определённых условиях можно провести мягкое окисление органического соединения:

CH3CH2OH O2⟶CH3COOH H2O{displaystyle {ce {CH3CH2OH O2 -> CH3COOH H2O}}}

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета.

Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже #Фториды кислорода).

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

2Na O2⟶Na2O2{displaystyle {ce {2Na O2 -> Na2O2}}}
2BaO O2⟶2BaO2{displaystyle {ce {2BaO O2 -> 2BaO2}}}
H2 O2⟶H2O2{displaystyle {ce {H2 O2 -> H2O2}}}
Na2O2 O2⟶2NaO2{displaystyle {ce {Na2O2 O2 -> 2NaO2}}}
K O2⟶KO2{displaystyle {ce {K O2 -> KO2}}}
3KOH 3O3⟶2KO3 KOH⋅H2O 2O2↑{displaystyle {ce {3KOH 3O3 -> 2KO3 KOH * H2O 2O2 ^}}}
PtF6 O2⟶O2PtF6{displaystyle {ce {PtF6 O2 -> O2PtF6}}}

В этой реакции кислород проявляет восстановительные свойства.

Оцените статью
Кислород
Добавить комментарий