- Как проверить лямбда-зонд на предмет неисправностей
- Конструкция и принцип работы кислородного датчика
- Коэффициент избытка воздуха λ
- Общие правила подключения
- От какого производителя выбрать универсальный лямбда-зонд
- Портал «кузов» — все про ремонт и сервис автомобилей!
- Ресурс кислородника и его неисправности
Как проверить лямбда-зонд на предмет неисправностей
Проверять исправность лямбда-зонда рекомендуется каждые 10 000 км пробега, причем делать это надо даже в том случае, если никаких проблем в работе датчика не наблюдается.
Первым этапом диагностики должна быть проверка надежности соединения клеммы с датчиком и последующий осмотр лямбды на предмет наличия внешних деформаций. После этих действий необходимо выкрутить лямбда-зонд из коллектора и осмотреть защитный кожух (в случае необходимости следует очистить накопившиеся отложения).
1. Визуальная проверка трубки зонда.
Если в ходе осмотра на защитной трубке датчика кислорода обнаружены следы сажи белого, серого или серебристого оттенка, лямбда-зонд подлежит замене.
2. Как проверить лямбда-зонд мультиметром (тестером).
Использование мультиметра позволяет проверить:
- наличие напряжения в нагревательной цепи;
- «опорное» напряжение;
- состояние нагревателя;
- сигнал датчика.
Работа с мультиметром или вольтметром осуществляется согласно нижеописанному алгоритму:
- не снимая разъем с датчика, включаем двигатель;
- щупы прикрепляем к цепи подогрева.
Показания устройства должны соответствовать напряжению на аккумуляторе – 12 В.
«Плюс» передается на датчик от аккумулятора через предохранитель. Если показания отсутствуют, значит, проблему следует искать в этой цепи.
«Минус» передается на датчик от блока управления. Соответственно, отсутствие показаний связано с проблемами цепи «лямбда-зонд – ЭБУ».
Этими же аппаратами можно измерить опорное напряжение. Примерный алгоритм:
- Заводим двигатель.
- Измеряем напряжение между сигнальным проводом и массой.
- Показания прибора должны остановиться на отметке 0,45 В.
В целях диагностики нагревателя мультиметр выставляют в режим омметра. Этапы проверки:
- Снимаем разъем.
- Замеряем сопротивление между контактами нагревателя.
- Разные датчики могут показывать различные сведения, нормальными показаниями при этом считаются цифры в пределах 2–10 Ом.
Обратите внимание! При отсутствии сопротивления можно говорить о возможных разрывах в цепи нагревателя.
Вольтметр или мультиметр также применяют в целях проверки сигнала датчика. Необходимые действия:
- Включаем зажигание.
- Прогреваем двигатель до рабочей температуры.
- Соединяем щупы устройства с сигнальным проводом и проводом массы.
- Увеличиваем количество оборотов мотора до 3 000 в минуту.
- Отслеживаем колебания напряжения (скачки от 0,1 В до 0,9 В считаются нормой).
Если на каком-либо этапе проверки лямбда-зонда показатели датчика выходят за рамки указанных пределов, его необходимо менять на новый.
3. Проверка осциллографом.
Основное достоинство проверки осциллографом заключается в возможности определения времени между однообразными изменениями выходного напряжения. Оно не должно превышать 120 мс.
Пошаговый алгоритм:
- Соединяем щуп устройства с сигнальным проводом.
- Прогреваем двигатель до рабочей температуры.
- Увеличиваем количество оборотов до 2 600.
- Изучаем данные измерительного прибора и устанавливаем работоспособность кислородного датчика.
Стоит отметить, что именно осциллограф позволяет выявить максимальное количество недостатков, связанных с работой лямбда-зонда.
Правильно заменить вышедшее из строя устройство на новое можно, посмотрев видео-фрагмент:
Конструкция и принцип работы кислородного датчика

Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них – датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:
- Наружный электрод – осуществляет контакт с выхлопными газами.
- Внутренний электрод – контактирует с атмосферой.
- Нагревательный элемент – используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
- Твердый электролит – расположен между двумя электродами (диоксид циркония).
- Корпус.
- Защитный кожух наконечника – имеет специальные отверстия (перфорацию) для проникновения отработавших газов.

Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов.
Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области:
Коэффициент избытка воздуха λ
Прежде чем разбирать конструкцию датчика кислорода и принцип его работы, необходимо определиться с таким важным параметром, как коэффициент избытка воздуха топливовоздушной смеси: что это такое, на что влияет и зачем его измеряет датчик.
В теории работы ДВС существует такое понятие как стехиометрическое отношение – это идеальная пропорция воздуха и топлива, при которой происходит полное сгорание топлива в камере сгорания цилиндра двигателя. Это очень важный параметр, на основании которого рассчитывается топливоподача и режимы работы двигателя.

Коэффициент избытка воздуха (λ) – это отношение действительного количества воздуха, поступившего в двигатель, к теоретически необходимому (стехиометрическому) для полного сгорания топлива. Говоря простым языком, это “на сколько больше (меньше) воздуха поступило в цилиндр, чем должно было бы”.
В зависимости от значения λ различают три вида топливовоздушной смеси:
- λ = 1 – стехиометрическая смесь;
- λ < 1 – “богатая” смесь (избыток – топливо; недостаток – воздух);
- λ > 1 – “бедная” смесь (избыток – воздух; недостаток – топливо).
Современные двигатели могут работать на всех трех типах смеси, в зависимости от текущих задач (экономия топлива, интенсивное ускорение, снижение концентрации вредных веществ в отработавших газах). С точки зрения оптимальных значений мощности двигателя, коэффициент лямбда должен иметь значение около 0,9 (“богатая” смесь), минимальный расход топлива будет соответствовать стехиометрической смеси (λ = 1).
Общие правила подключения
Начиная с 1999 года на автомобили, как правило, устанавливаются циркониевые либо титановые кислородные датчики, отвечающие определенным стандартам относительно расцветки проводов. Количество проводов – обычно четыре. Чуть ниже представлены таблицы для тех и других зондов.
Если при сверке выявлено, что сочетание цветов в одной из колонок таблицы соответствует цветам проводов лямбда-зонда вашего автомобиля, то это означает, что зонд конструктивно устроен именно так, и распиновку следует производить в соответствии с этими данными.
Предназначение | Сочетания цветов (циркониевые зонды) | ||||
1 | 2 | 3 | 5 | 6 | |
Сигнал (плюс) | Синий | Черный | Черный | Фиолетовый | Зеленый |
Сигнал (минус) | Белый | Серый | Серый | Бежевый | Белый |
Нагреватель (плюс) | Черный | Фиолетовый | Белый | Коричневый | Черный |
Нагреватель (минус) | Черный | Белый | Белый | Коричневый | Черный |
Предназначение | Сочетания цветов (титановые зонды) | ||
1 | 2 | ||
Сигнал (плюс) | Серый | Желтый | |
Сигнал (минус) | Серый | Черный | |
Нагреватель (плюс) | Черный | Красный | |
Нагреватель (минус) | Черный | Белый | |
Совет по использованию таблицы:
- Проверьте провода датчика кислорода в своем авто.
- Сравните их цвета с колонками в таблицах.
- Если с одной из них цвета полностью совпадают, значит, у вас именно такая конструкция и от нее следует отталкиваться.
Например, ваш лямбда-зонд оснащен четырьмя проводами таких цветов: бежевый, фиолетовый и два коричневых. Такое же сочетание указано в четвертой колонке первой таблицы. Значит, у вас циркониевое устройство с такими же проводами и принципом работы. Далее смотрим первую колонку этой же таблицы и видим, что расположение проводов по схеме следующее: бежевый идет на массу (минус), фиолетовый отвечает за передачу сигнальных данных, а два коричневых нужны для работы нагревателя. Таким образом вы сможете безошибочно определить провода по их оттенкам.
От какого производителя выбрать универсальный лямбда-зонд
Если вы выяснили, что лямбда-зонд на вашем авто требует замены, не торопитесь бежать в ближайший магазин и выбирать новый датчик из тех, что есть в наличии. Обратите внимание, что производители часто заявляют об универсальности выпускаемых ими датчиков и указывают на абсолютную совместимость того или иного устройства с любым транспортным средством. В чем же кроется опасность приобретения такого товара?
Все очень просто – несовместимость датчика с вашим автомобилем может проявиться не сразу, а спустя какой-то период времени. Эти устройства разных автомобилей имеют различную конструкцию. Они отличаются резьбой, наличием предварительного подогрева, предусмотренным количеством проводов, а также разъемами для соединения. Одинаковым является только принцип работы и основной элемент.
Именно поэтому специалисты рекомендуют отдавать предпочтение оригинальным датчикам, которые имеют маркировку, идентичную обозначениям на сломанной лямбде. Сэкономить свои средства можно путем приобретения универсального датчика, разработанного специально для определенной марки авто.
Какой лямбда-зонд лучше выбрать? Предлагаем ознакомиться с небольшим перечнем проверенных производителей, у которых можно купить лямбда-зонд хорошего качества:
- Bosch.
Это крупнейший мировой бренд. Поставки товара измеряются сотнями тысяч единиц, которые производятся в 150 странах мира. Помимо изготовления запчастей, компания осуществляет обслуживание транспортных средств, а также занимается разработкой программного обеспечения. Товары Bosch занимают около четверти вторичного европейского рынка автозапчастей. По прогнозам экспертов компании, сфера влияния расширится в ближайшие годы еще больше за счет обслуживания грузового транспорта и производства высокотехнологичных деталей.
Среди автозапчастей Bosch каждый владелец авто может найти подходящую к своему ТС деталь. Ассортимент представлен большим количеством устройств ходовой, тормозной системы, рулевого управления, электроникой, элементами топливной системы, расходниками, оптикой, мультимедийной техникой, а также элементами охладительной системы. Наибольшей популярностью среди автовладельцев пользуются стартеры, датчики, аккумуляторы, генераторы, бензонасосы и лампы – эти детали считаются лучшими не только в Европе, но и в Америке, и в Азии.
Все оригинальные запчасти Bosch оснащены отличительной наклейкой KeySecure System, прочитать которую можно при помощи телефона со специальным приложением. Еще одна метка – наклейка с голограммой и защитным кодом. Последние цифры кода на ней должны совпадать с последними символами номера запчасти.
- Denso.
Этот бренд входит в число самых известных производителей элементов системы зажигания, топливной системы, электрики, электроники и расходников. Согласно статистике, у 90 % автолюбителей установлен хотя бы один элемент производства этой компании. Предприятие тесно взаимодействует с автоконцернами, а также имеет филиал Denso Aftermarket, успешно функционирующий на вторичном европейском рынке.
Линейка продуктов бренда Denso включает в себя множество различных наименований: топливные системы, электрические компоненты авто, стеклоочистители, элементы системы безопасности и информационной системы, а также систем кондиционирования воздуха и охлаждения, свечи накала и т. д. Именно широкий ассортимент и высокое качество деталей являются факторами, определяющими выбор автолюбителей.
Для того чтобы отличить оригинальную деталь Denso от подделки, следует обратить внимание на наличие особых металлических наплавов, а также оценить качество сварки и резьбы. Электроды поддельных свечей будут отличаться от электродов оригинального продукта тем, что имеют несколько больший размер. Еще один признак подделки – матовый наконечник. Не стоит также игнорировать буквенные и цифровые обозначения: на оригинальных деталях надписи не сотрутся даже очень твердым предметом.
- NGK.
Это довольно известный производитель свечей зажигания, лямбда-зондов и свечей накала. Подразделение NGK в Европе занимается торговлей и налаживанием взаимодействия с ведущими автоконцернами. Установлено, что около 85 % автопроизводителей используют запчасти NGK в процессе сборки авто.
Комплектующие компании стали использовать в Европе относительно недавно. Предприятие поставляет на рынок самые разные запчасти, но наибольшей популярностью пользуются свечи. Все, кто сталкивался с продукцией бренда, отмечают постоянно высокое качество изделий. NGK занимает стабильно высокое положение на рынке автомобильных комплектующих. Около 50 % выпускаемых в мире авто в первичной комплектации имеют свечи этой фирмы.
Оригинальная продукция NGK имеет характерные особенности, благодаря которым высококачественную деталь можно отличить от подделки (качество полиграфии, высокая стоимость, правильное расположение и геометрия бокового и центрального электрода, качественная накатная резьба, наличие кода на грани, плотная посадка уплотнительного кольца и т. д.).
- Profit.
Это бренд чешской компании, которая производит бюджетные запчасти для различных транспортных средств. В отличие от вышеперечисленных фирм, Profit производит комплектующие менее высокого качества, что, разумеется, отражается на мнении автовладельцев.
Ассортимент продукции Profit состоит из следующих наименований: амортизаторы, элементы тормозной системы, шаровые опоры, стойки стабилизаторов, кузовные детали, фильтры, насосы, детали рулевого механизма, подшипники, детали трансмиссии, крепежные элементы, запчасти системы зажигания и т. д. Стоит отметить, что запчасти этой компании нередко собирают отрицательные отзывы пользователей. Наиболее популярными и качественными деталями считаются тормоза, амортизаторы и салонные фильтры.
В целом качество запчастей Profit соответствует их небольшой стоимости, поэтому комплектующие от чешского бренда могут подойти, скорее, в качестве временной замены вышедшей из строя детали. Если вы хотите установить надежный датчик, который будет исправно работать на протяжении долгого времени, лучше выбрать более качественный вариант.
Портал «кузов» — все про ремонт и сервис автомобилей!
В предыдущих статьях мы с вами рассмотрели назначение, принципы работы и способы проверки «скачковых» датчиков кислорода (лямбда-зондов). Так же были рассмотрены те возможности в поиске дефектов (диагностике) топливной системы автомобиля, которые открывает правильный анализ показаний этих датчиков. Но все автомобилестроители в мире постепенно отказываются от них и переходят на так называемые «широкополосные» лямбда-зонды. Почему так происходит? И чем плохи датчики, которые верой и правдой служили на протяжении многих лет? Что бы ответить на данный вопрос, нам необходимо вернуться в прошлое и посмотреть, как развивалась борьба за экологию.
До 60-х годов прошлого века об экологии никто не думал. Автомобилей было мало, загрязнением атмосферы от них можно было пренебречь. Все сильно изменилось во время автомобильного бума в начале 60-х. Первым от «чуда современной цивилизации» под названием «автомобиль» пострадал американский штат Калифорния. Не очень удачное географическое положение и крайне неблагоприятная «Роза Ветров». Он очень плохо продувается и людям от выхлопных газов просто стало нечем дышать. И был принят ряд законодательных актов, заставляющих автопроизводителей повышать качество выпускаемых автомобилей по экологическим параметрам. До недавнего времени это был громадный рынок сбыта автомобилей. На нем торговали все мировые производители. А законы рынка очень жестоки – хочешь торговать на моем рынке, выполняй мои условия. Таким образом, требования законодательства Калифорнии незаметно распространились на весь мир. Отдельно хочется отметить рынок Европы. Тут «Роза Ветров» более благоприятная, и экологические требования к автомобилям более мягкие. И стандарты по экологии сразу разделились на «американские» – более жесткие, и «европейские» – чуть более мягкие. На данное время автомобильные рынки Старого и Нового Света практически заполнены. По расчетам аналитиков, свободные ниши имеются пока только в России и Китае. Поэтому к рынкам этих стран приковано пристальное внимание всех автопроизводителей мира. До недавнего времени экологии на этих рынках уделялось крайне незначительное внимание. Но вступление России в ВТО потребовало ужесточения экологических норм для выпускаемых в ней автомобилей. Как же выполнить все более ужесточающиеся международные экологические требования?
Напомню, что такое вредные выбросы. Это не сгоревшее топливо. При полном сгорании углеводородов всего топлива образуется только СО2 (углекислый газ) и Н2О (вода). Если топливо сгорает не полностью, в выхлопе образуются продукты неполного сгорания. Пресловутые СО и СН. Ну а если топливо полностью не сгорает, что происходит с крутящим моментом? Правильно – он падает! Что происходит с расходом топлива (если вы просто выливаете его в выхлопную трубу)? Правильно – он растет! И вот здесь полностью пересеклись интересы экологов, производителей автомобилей и нас – специалистов автосервисов. Исправный автомобиль имеет прекрасную динамику, низкий расход топлива и еще атмосферу не загрязняет! От чего зависит крутящий момент, расход топлива и вредные выбросы? Основное требование – система управления двигателем должна поддерживать стехиометрический состав смеси. По современным стандартам отклонение не должно превышать 2%. Для контроля над этим параметром как раз и служат датчики кислорода в выхлопе.
Широкое начало применения лямбда-зондов в автомобилестроении получило еще в конце70-х годов прошлого столетия. Появление «скачковых» датчиков кислорода позволило на тот момент решить эту задачу. Но для выполнения норм ЕВРО-4 и ЕВРО-5 точность этих датчиков перестала удовлетворять производителей. Их недостатком явилось то, что состав смеси они определяют только по наличию кислорода в выхлопе. Нет кислорода – либо стехиометрия, либо богатая смесь. Есть кислород – бедная смесь. Работают по принципу «Да – Нет». Системе лямбда регулирования постоянно приходиться чуть добавлять и убавлять топливо для того чтобы понять, находится ли система в зоне стехиометрии. Это приводит к некоторой задержке реакции системы при возникновении неизбежных отклонений и имеет определенную погрешность при измерении их величин. Для увеличения точности потребовались датчики, которые могут определить избыток или нехватку кислорода в процентах. Так появились широкополосные датчики кислорода. При возникновении малейшего отклонения от правильного состава смеси моментально дают блоку управления двигателя указание внести поправки и указывают их величину с достаточно большой точностью. На данный момент занимают лидирующее положение в автомобилестроении.
Для рассмотрения принципов работы широкополосных датчиков кислорода обратимся к ставшему уже классическим описанию, данному фирмой BOSCH в конце прошлого столетия и вошедшему практически во все учебные пособия и публикации в СМИ и в Интернете. К сожалению, данное описание не дает понимания алгоритмов их работы и (судя по вопросам на форумах) не всегда понятно специалистам автосервисов. Попробуем исправить эту ситуацию.
Условно систему лямбда-регулирования с широполосным датчиком кислорода можно разделить на 4 зоны (см. рис.1).Зона А – ионный насос, зона В – «скачковый» лямбда-зонд (элемент Нернста), зона С – разъем и проводка, зона D – блок управления двигателем (ЭБУ) 4.
Выхлопные газы 1 из выхлопной трубы 2 через канал поступают в диффузионную щель 6. Здесь они подвергаются каталитическому дожиганию (как в обычном катализаторе) и в ней (в зависимости от первоначального состава смеси в двигателе) образуется либо избыток, либо недостаток кислорода. Поскольку толщина щели невелика – около 50 мкм, процесс происходит очень быстро. Но для протекания реакции каталитического дожигания нужна температура (в зависимости от конструкции – от 200 до 300 градусов Цельсия). Учитывая тот факт, что температура отработавших газов (ОГ) на холостом ходу может и не достигать указанных значений, необходимым элементом является нагреватель3. Непрогретый лямбда-зонд не работоспособен.
Далее в работу вступает элемент Нернста 7 (зона В). Сравнивая состав контрольного воздуха в камере 5 с составом газов в щели 6, он дает информацию ЭБУ о наличии или отсутствии кислорода в ней. Только «да – нет». На основании этих показаний ЭБУ 4 дает команду ионному насосу 8 (зона А):
- Откачать лишний кислород из щели в выхлопные газы. Если избыточный кислород там присутствует. Бедная смесь. Ток положительный.
- Закачать недостающий кислород в щель. Если его там нехватка. Богатая смесь. Ионный насос «отнимает» кислород у продуктов выхлопа и перекачивает его в щель. Ток отрицательный.
- Ничего не делать, если смесь стехиометрическая. Ток нулевой.
Ток ионного насоса прямо пропорционален разности концентраций кислорода на разных его сторонах. Таким образом, по полярности и величине тока этого элемента сразу же определяется состав смеси. Получив указание от ЭБУ, ионный насос пытается привести состав ОГ в щели, соответствующий стехиометрии. По его току ЭБУ понимает, куда и насколько отклонилась смесь, и сразу принимает меры по корректировке времени впрыска в ту или иную сторону. Колебания смеси ему не нужны – ЭБУ сразу видит абсолютные величины отклонений и выводит стехиометрию в идеал.
С началом применения широкополосных лямбда-зондов работа диагностов значительно облегчилась. Такой прибор, как газоанализатор, стал попросту ненужным. Если ЭБУ выводит показания в виде тока, то «нулевой» ток говорит о том, что системе лямбда-регулирования удалось вывести стехиометрию. По показанию коррекции смотрим, какой ценой и в какую сторону ему это удалось (см. рис. 2).
Если ток не нулевой. Это означает, что системе вывести стехиометрию не удалось. Причин тут две:
- Неисправен сам лямбда-зонд. Как показывает практика, код ошибки в этом случае возникает крайне редко. Причина проста – чтобы проверить исправность датчика, ЭБУ обязан включить систему мониторинга. Т.е. принудительно обогатить или обеднить смесь. А это приводит к нарушению экологии! Поэтому мониторинг зонда проводиться нечасто. Например, два автомобиля Опель Вектра, оборудованные системой впрыска BOSCH и принимавшие участие в съемках фильма ОРТ «Левый Автосервис», обнаружили отказ этого датчика только через несколько часов после его возникновения.
- Дефект критичен. Система корректировки по лямбда-зонду уже дошла до пределов своей регулировки, но смесь по прежнему отклоняется от стехиометрии. В этом случае возможен код «Превышение пределов топливной коррекции».
Действия диагноста в этих случаях заключаются:
А. Проверка самого лямбда-зонда.
В. Если зонд исправен, определяем состав смеси. Стандарт OBD2 гласит однозначно: положительный ток – бедная смесь. Отрицательный ток – смесь богатая. График зависимости тока от состава смеси приведен на рис.3. Ну а причины и способы устранения отклонения состава смеси достаточно подробно описаны в Интернете и учебных пособиях. Не будем повторяться.
Так выглядит идеальная картинка. Реалии куда более сложнее. Итак, давайте рассмотрим те «подводные камни», которые нас ждут при анализе показаний широкополосного лямбда-зонда.
Первый «подводный камень» заключается в том, что не все производители придерживаются стандарта. Очень часто ко мне приезжали автомобили, на которых стандарт был нарушен с точностью до наоборот! Положительный ток соответствовал богатой смеси, отрицательный – бедной. Но не стоит сразу винить производителей этих датчиков. Полярность тока зависит только от схемотехники и программного обеспечения ЭБУ.
ПРОВЕРКА: Необходимо в воздухозаборник работающего автомобиля добавить немного горючего вещества (принудительно обогатить смесь). На нашем автотехцентре мы используем обычный очиститель карбюратора. При наличии изменений показаний датчика однозначно говорим о его исправности и определяем, в какой полярности выводятся его показания на экран сканера.
Самый сложный случай, когда при этой проверке реакции широкополосного лямбда-зонда нет. Однозначного ответа – где дефект, дать невозможно. Вернемся опять к Рис.1 .
Дефект возможен в зонах А и В (сам датчик), зоне С (проводка) либо в самом ЭБУ – зона D. На большинстве сервисов все предлагают замену датчика, как наиболее вероятную причину. Но учитывая его стоимость, есть смысл обратиться к зоне С (проводке и разъему) для более глубокого поиска дефекта.
Pin 1. Ток ионного насоса. Проводиться миллиамперметром на 10 mA и в большинстве случаев этот замер затруднителен.
Pin 2. Масса. Отклонение от «массы» двигателя не более 100 mV. Если «масса» идет с ЭБУ, возможно наличие смещения, заложенного производителем. Необходимо свериться с мануалами.
Pin 3. Сигнал элемента Нернста. При отключенном разъеме должен составлять 450 mV. При подключенном разъеме – напряжение должно находиться в пределах 0…1v. Но некоторые производители могут отклоняться от этого правила. Принудительное обогащение смеси позволяет определить исправность этой цепи.
Pin 4 и 5. Напряжение подогревателя. На современных автомобилях управляется с помощью Широтно-Импульсной Модуляции (ШИМ). Проверка необязательна, ибо в случае ее отказа код ошибки с Р0036 по Р0064 (Heater Control HO2S) пробивается практически моментально.
Второй «подводный камень» заключается в том, что ЭБУ не может понимать ток. Его входные цепи способны оцифровывать только напряжения. И блоки управления начинают выводить на сканер не ток, а падение напряжения на каком то нагрузочном сопротивлении в ЭБУ. В зависимости от схемотехники блока оно в норме может иметь абсолютно разное значение. В потоке данных выводиться не ток, а какое-то абстрактное напряжение. Мануалы на конкретный автомобиль его указывают.
Но способы проверки точно такие же. Принудительное обогащение смеси позволяет определить исправность датчика, а просмотр топливной коррекции позволяет понять, в каком состоянии находиться система топливоподачи автомобиля.
Третий «подводный камень» заключается в том, большинство широкополосных датчиков не взаимозаменяемы друг с другом. Реклама настойчиво предлагает разнообразный выбор. На форумах часто звучат вопросы: «Какой датчик лучше поставить?». Как быть рядовому потребителю? Что выбрать?
Ответ дают сами производители автомобилей.
Ставить нужно только те датчики, которые рекомендовал завод-изготовитель. В противном случае, производитель не состоянии гарантировать правильную работу системы.
Ресурс кислородника и его неисправности
Лямбда-зонд – один из наиболее быстро изнашиваемых датчиков. Это связано с тем, что он постоянно контактирует с отработавшими газами и его ресурс напрямую зависит от качества топлива и исправности двигателя. Например, циркониевый кислородник имеет ресурс порядка 70-130 тысяч километров пробега.
Поскольку работа обоих кислородных датчиков (верхнего и нижнего) контролируется системой бортовой диагностики OBD-II, при выходе из строя любого из них будет зафиксирована соответствующая ошибка, а на панели приборов загорится контрольная лампа неисправности “Check Engine”.

Данный сканер корейского производства отличается от аналогов высоким качеством сборки и возможностью диагностики всех узлов и агрегатов автомобиля, а не только двигателя. Также он способен отслеживать показания всех датчиков (в том числе и кислородного) в режиме реального времени.

При исправной работе кислородного датчика характеристика сигнала представляет собой правильную синусоиду, демонстрирующую частоту переключений не менее 8 раз в течение 10 секунд. Если датчик вышел из строя, то форма сигнала будет отличаться от эталонной, либо его отклик на изменение состава смеси существенно замедлится.
Основные неисправности кислородного датчика:
- износ в процессе эксплуатации (“старение” датчика);
- обрыв электрической цепи нагревательного элемента;
- загрязнение.
Все эти виды проблем могут быть спровоцированы использованием некачественного топлива, перегревом, добавлением различных присадок, попаданием в зону работы датчика масел и чистящих средств.
Признаки неисправности кислородника:
- Индикация сигнальной лампы неисправности на приборной панели.
- Потеря мощности.
- Слабый отклик на педаль газа.
- Неровная работа двигателя на холостых оборотах.