- История открытия
- Нахождение в природе
- Применение кислорода:
- Способы получения галогенов
- Строение электронной оболочки
- Химические свойства
- Химические свойства аммиака
- Химические свойства солей аммония
- Химические свойства фтора
- Химические свойства хлора
- Электронные формулы ионов
- Электронные формулы элементов первых четырех периодов
История открытия
Схема атома кислорода
Официально считается, что кислород был открыт английским химиком Джозефом Пристли1 августа1774 путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).
- 2HgO (t) → 2Hg O2↑.
Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»).
Несколькими годами ранее (в 1771-м) кислород получил шведский химик Карл Шееле.
Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.
Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.
Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.
[Лавуазье провел опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теории флогистона.]
Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.
Нахождение в природе

Накопление O
2
в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка.
1
. (3,85—2,45 млрд лет назад) — O
2
не производился
2
. (2,45—1,85 млрд лет назад) O
2
производился, но поглощался океаном и породами морского дна
3
. (1,85—0,85 млрд лет назад) O
2
выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя
4
. (0,85—0,54 млрд лет назад) все горные породы на суше окислены, начинается накопление O
2
в атмосфере
5
. (0,54 млрд лет назад — по настоящее время) современный период, содержание O
2
в атмосфере стабилизировалось
Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород.
В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад, в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы).
Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими.
С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время.
Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов.
Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере.
Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %.
В 2022 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад.
Применение кислорода:
Таблица химических элементов Д.И. Менделеева
- 1. Водород
- 2. Гелий
- 3. Литий
- 4. Бериллий
- 5. Бор
- 6. Углерод
- 7. Азот
- 8. Кислород
- 9. Фтор
- 10. Неон
- 11. Натрий
- 12. Магний
- 13. Алюминий
- 14. Кремний
- 15. Фосфор
- 16. Сера
- 17. Хлор
- 18. Аргон
- 19. Калий
- 20. Кальций
- 21. Скандий
- 22. Титан
- 23. Ванадий
- 24. Хром
- 25. Марганец
- 26. Железо
- 27. Кобальт
- 28. Никель
- 29. Медь
- 30. Цинк
- 31. Галлий
- 32. Германий
- 33. Мышьяк
- 34. Селен
- 35. Бром
- 36. Криптон
- 37. Рубидий
- 38. Стронций
- 39. Иттрий
- 40. Цирконий
- 41. Ниобий
- 42. Молибден
- 43. Технеций
- 44. Рутений
- 45. Родий
- 46. Палладий
- 47. Серебро
- 48. Кадмий
- 49. Индий
- 50. Олово
- 51. Сурьма
- 52. Теллур
- 53. Йод
- 54. Ксенон
- 55. Цезий
- 56. Барий
- 57. Лантан
- 58. Церий
- 59. Празеодим
- 60. Неодим
- 61. Прометий
- 62. Самарий
- 63. Европий
- 64. Гадолиний
- 65. Тербий
- 66. Диспрозий
- 67. Гольмий
- 68. Эрбий
- 69. Тулий
- 70. Иттербий
- 71. Лютеций
- 72. Гафний
- 73. Тантал
- 74. Вольфрам
- 75. Рений
- 76. Осмий
- 77. Иридий
- 78. Платина
- 79. Золото
- 80. Ртуть
- 81. Таллий
- 82. Свинец
- 83. Висмут
- 84. Полоний
- 85. Астат
- 86. Радон
- 87. Франций
- 88. Радий
- 89. Актиний
- 90. Торий
- 91. Протактиний
- 92. Уран
- 93. Нептуний
- 94. Плутоний
- 95. Америций
- 96. Кюрий
- 97. Берклий
- 98. Калифорний
- 99. Эйнштейний
- 100. Фермий
- 101. Менделеевий
- 102. Нобелий
- 103. Лоуренсий
- 104. Резерфордий
- 105. Дубний
- 106. Сиборгий
- 107. Борий
- 108. Хассий
- 109. Мейтнерий
- 110. Дармштадтий
- 111. Рентгений
- 112. Коперниций
- 113. Нихоний
- 114. Флеровий
- 115. Московий
- 116. Ливерморий
- 117. Теннессин
- 118. Оганесон
Таблица химических элементов Д.И. Менделеева
Способы получения галогенов
1. Получение хлора.
В промышленности хлор получают электролизом расплава или раствора хлорида натрия.
Электролиз расплава хлорида натрия.
В расплаве хлорид натрия диссоциирует на ионы:
NaCl → Na Cl−
На катоде восстанавливаются ионы натрия:
K(–): Na 1e → Na0
На аноде окисляются ионы хлора:
A( ): 2Cl− ̶ 2e → Cl20
Ионное уравнение электролиза расплава хлорида натрия:
2Na 2Cl− → 2Na º Cl2º
Суммарное уравнение электролиза расплава хлорида натрия:
2NaCl → 2Na Cl2
Электролиз раствора хлорида натрия.
В растворе хлорид натрия диссоциирует на ионы:
NaCl → Na Cl−
На катоде восстанавливаются молекулы воды:
K(–): 2H2O 2e → H2° 2OH−
На аноде окисляются ионы хлора:
A( ): 2Cl− ̶ 2e → Cl20
Ионное уравнение электролиза раствора хлорида натрия:
2H2O 2Cl− → H2°↑ 2OH− Cl2°↑
Суммарное уравнение электролиза раствора хлорида натрия:
2NaCl 2H2O → H2↑ 2NaOH Cl2↑
В лаборатории хлор получают взаимодействием концентрированной соляной кислоты с сильными окислителями.
Например, взаимодействием соляной кислоты с оксидом марганца (IV)
MnO2 4HCl → MnCl2 Cl2↑ 2H2O
Или перманганатом калия:
2KMnO4 16HCl → 2MnCl2 2KCl 5Cl2↑ 8H2O
Бертолетова соль также окисляет соляную кислоту:
KClO3 6HCl → KCl 3Cl2↑ 3H2O
Бихромат калия окисляет соляную кислоту:
K2Cr2O7 14HCl → 2CrCl3 2KCl 3Cl2↑ 7H2O
2. Получение фтора.
Фтор получают электролизом расплава гидрофторида калия.
2KHF2 → 2K H2 2F2
3. Получение брома.
Бром можно получить окислением ионов Br– сильными окислителями.
Например, бромоводород окисляется хлором:
2HBr Cl2 → Br2 2HCl
Соединения марганца также окисляют бромид-ионы.
Например, оксид марганца (IV):
MnO2 4HBr → MnBr2 Br2 2H2O
4.Получение йода.
Йод получают окислением ионов I– сильными окислителями.
Например, хлор окисляет йодид калия:
2KI Cl2 → I2 2KCl
Соединения марганца также окисляют йодид-ионы.
Например, оксид марганца (IV) в кислой среде окисляет йодид калия:
2KI MnO2 2H2SO4 → I2 K2SO4 MnSO4 2H2O
Строение электронной оболочки
Согласно квантовой модели строение атома Нильса Бора, электроны в атоме могут двигаться только по определенным (стационарным) орбитам, удаленным от ядра на определенное расстояние и характеризующиеся определенной энергией.
Электронные уровни можно обозначать цифрами — 1, 2, 3, …, n. Номер слоя увеличивается мере удаления его от ядра. Номер уровня соответствует главному квантовому числу n.
В одном слое электроны могут двигаться по разным траекториям. Траекторию орбиты характеризует электронный подуровень. Тип подуровня характеризует орбитальное квантовое число l = 0,1, 2, 3 …, либо соответствующие буквы — s, p, d, g и др.
В рамках одного подуровня (электронных орбиталей одного типа) возможны варианты расположения орбиталей в пространстве. Чем сложнее геометрия орбиталей данного подуровня, тем больше вариантов их расположения в пространстве. Общее число орбиталей подуровня данного типа l можно определить по формуле: 2l 1. На каждой орбитали может находиться не более двух электронов.
Тип орбитали | s | p | d | f | g |
Значение орбитального квантового числа l | 0 | 1 | 2 | 3 | 4 |
Число атомных орбиталей данного типа 2l 1 | 1 | 3 | 5 | 7 | 9 |
Максимальное количество электронов на орбиталях данного типа | 2 | 6 | 10 | 14 | 18 |
Получаем сводную таблицу:
Заполнение электронами энергетических орбиталей происходит согласно некоторым основным правилам. Давайте остановимся на них подробно.
Принцип Паули (запрет Паули): на одной атомной орбитали могут находиться не более двух электронов с противоположными спинами (спин — это квантовомеханическая характеристика движения электрона).
Правило Хунда.На атомных орбиталях с одинаковой энергией электроны располагаются по одному с параллельными спинами. Т.е. орбитали одного подуровня заполняются так: сначала на каждую орбиталь распределяется по одному электрону.
Таким образом, сумма спиновых квантовых чисел таких электронов на одном энергетическом подуровне (оболочке) будет максимальной.
Например, заполнение 2р-орбитали тремя электронами будет происходить так: , а не так:
, а не так:
Принцип минимума энергии. Электроны заполняют сначала орбитали с наименьшей энергией. Энергия атомной орбитали эквивалентна сумме главного и орбитального квантовых чисел: n l. Если сумма одинаковая, то заполняется первой та орбиталь, у которой меньше главное квантовое число n.
АО | 1s | 2s | 2p | 3s | 3p | 3d | 4s | 4p | 4d | 4f | 5s | 5p | 5d | 5f | 5g |
n | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 |
l | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | 0 | 1 | 2 | 3 | 4 |
n l | 1 | 2 | 3 | 3 | 4 | 5 | 4 | 5 | 6 | 7 | 5 | 6 | 7 | 8 | 9 |
Таким образом,энергетический ряд орбиталей выглядит так:
1s < 2s < 2 p < 3s < 3p < 4s < 3d < 4p <
5s < 4d < 5p < 6s < 4f~5d < 6p < 7s <5f~6d …
Электронную структуру атома можно представлять в разных формах — энергетическая диаграмма, электронная формула и др. Разберем основные.
Энергетическая диаграмма атома — это схематическое изображение орбиталей с учетом их энергии. Диаграмма показывает расположение электронов на энергетических уровнях и подуровнях. Заполнение орбиталей происходит согласно квантовым принципам.
Например,энергетическая диаграмма для атома углерода:
Электронная формула — это запись распределения электронов по орбиталям атома или иона. Сначала указывается номер уровня, затем тип орбитали. Верхний индекс справа от буквы показывает число электронов на орбитали. Орбитали указываются в порядке заполнения. Запись 1s2 означает, что на 1 уровне s-подуровне расположено 2 электрона.
Например, электронная формула углерода выглядит так: 1s22s22p2.
Для краткости записи, вместо энергетических орбиталей, полностью заполненных электронами, иногда используют символ ближайшего благородного газа (элемента VIIIА группы), имеющего соответствующую электронную конфигурацию.
Например, электронную формулу азотаможно записать так: 1s22s22p3 или так: [He]2s22p3.
1s2 = [He]
1s22s22p6 = [Ne]
1s22s22p63s23p6 = [Ar] и так далее.
Химические свойства
Азотная кислота – это сильная кислота. За счет азота со степенью окисления 5 азотная кислота проявляет сильные окислительные свойства.
1. Азотная кислота практически полностью диссоциируетв водном растворе.
HNO3 → H NO3–
2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.
Например, азотная кислота взаимодействует с оксидом меди (II):
CuO 2HNO3 → Cu(NO3)2 H2O
Еще пример: азотная кислота реагирует с гидроксидом натрия:
HNO3 NaOH → NaNO3 H2O
3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).
Например, азотная кислота взаимодействует с карбонатом натрия:
2HNO3 Na2CO3 → 2NaNO3 H2O CO2
4. Азотная кислота частично разлагается при кипении или под действием света:
4HNO3 → 4NO2 O2 2H2O
5.Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот 5.
металл HNO3 → нитрат металла вода газ (или соль аммония)
С алюминием, хромом и железомна холодуконцентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления 4:
Fe 6HNO3(конц.) → Fe(NO3)3 3NO2 3H2O
Al 6HNO3(конц.) → Al(NO3)3 3NO2 3H2O
Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):
HNO3 3HCl Au → AuCl3 NO 2H2O
Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:
4HNO3(конц.) Cu → Cu(NO3)2 2NO2 2H2O
С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):
10HNO3 4Ca → 4Ca(NO3)2 2N2O 5H2O
Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).
8HNO3 (разб.) 3Cu → 3Cu(NO3)2 2NO 4H2O
С активными металлами (щелочными и щелочноземельными), а также оловоми железом разбавленная азотная кислота реагирует с образованием молекулярного азота:
12HNO3(разб) 10Na → 10NaNO3 N2 6H2O
При взаимодействии кальцияи магнияс азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):
10HNO3 4Ca → 4Ca(NO3)2 2N2O 5H2O
Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:
10HNO3 4Zn → 4Zn(NO3)2 NH4NO3 3H2O
Таблица. Взаимодействие азотной кислоты с металлами.
Азотная кислота | ||||
Концентрированная | Разбавленная | |||
с Fe, Al, Cr | с неактивными металлами и металлами средней активности (после Al) | с щелочными и щелочноземельными металлами | с неактивными металлами и металлами средней активности (после Al) | с металлами до Al в ряду активности, Sn, Fe |
пассивация при низкой Т | образуется NO2 | образуется N2O | образуется NO | образуется N2 |
6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).
Например, азотная кислота окисляет серу, фосфор, углерод, йод:
6HNO3 S → H2SO4 6NO2 2H2O
Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.
5HNO3 P → H3PO4 5NO2 H2O
5HNO3 3P 2H2O → 3H3PO4 5NO
Видеоопытвзаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.
4HNO3 C → CO2 4NO2 2H2O
Видеоопытвзаимодействия угля с безводной азотной кислотой можно посмотреть здесь.
10HNO3 I2 → 2HIO3 10NO2 4H2O
7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др.
Например, азотная кислота окисляет оксид серы (IV):
2HNO3 SO2 → H2SO4 2NO2
Еще пример: азотная кислота окисляет йодоводород:
6HNO3 HI → HIO3 6NO2 3H2O
Азотная кислота окисляет углерод до углекислого газа, т.к. угольная кислота неустойчива.
3С 4HNO3 → 3СО2 4NO 2H2O
Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты.
Например, сероводород окисляется азотной кислотой без нагревания до молекулярной серы:
2HNO3 H2S → S 2NO2 2H2O
При нагревании до серной кислоты:
2HNO3 H2S → H2SO4 2NO2 2H2O
8HNO3 CuS → CuSO4 8NO2 4H2O
Соединения железа (II) азотная кислота окисляет до соединений железа (III):
4HNO3 FeS → Fe(NO3)3 NO S 2H2O
8. Азотная кислота окрашивает белкив оранжево-желтый цвет («ксантопротеиновая реакция»).
Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.
Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.
Химические свойства аммиака
1.В водном растворе аммиак проявляет основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H ), он превращается в ион аммония. Реакция может протекать и в водном растворе, и в газовой фазе:
:NH3 H2O ⇄ NH4 OH–
Таким образом, среда водного раствора аммиака – щелочная. Однако аммиак – слабое основание. При 20 градусах один объем воды поглощает до 700 объемов аммиака.
Видеоопытрастворения аммиака в воде можно посмотреть здесь.
2. Как основание, аммиак взаимодействует с кислотами в растворе и в газовой фазе с образованием солей аммония.
Например, аммиак реагирует с серной кислотой с образованием либо кислой соли – гидросульфата аммония (при избытке кислоты), либо средней соли – сульфата аммония (при избытке аммиака):
NH3 H2SO4 → NH4HSO4
2NH3 H2SO4 → (NH4)2SO4
Еще один пример: аммиак взаимодействует с водным раствором углекислого газа с образованием карбонатов или гидрокарбонатов аммония:
NH3 H2O CO2 → NH4HCO3
2NH3 H2O CO2 → (NH4)2CO3
Видеоопытвзаимодействия аммиака с концентрированными кислотами – азотной, серной и и соляной можно посмотреть здесь.
В газовой фазе аммиак реагирует с летучим хлороводородом. При этом образуется густой белый дым – это выделяется хлорид аммония.
NH3 HCl → NH4Cl
Видеоопытвзаимодействия аммиака с хлороводородом в газовой фазе (дым без огня) можно посмотреть здесь.
3. В качестве основания, водный раствор аммиака реагирует с растворами солей тяжелых металлов, образуя нерастворимые гидроксиды.
Например, водный раствор аммиака реагирует с сульфатом железа (II) с образованием сульфата аммония и гидроксида железа (II):
FeSO4 2NH3 2H2O → Fe(OH)2 (NH4)2SO4
4. Соли и гидроксиды меди, никеля, серебра растворяются в избытке аммиака, образуя комплексные соединения – амминокомплексы.
Например, хлорид меди (II) реагирует с избытком аммиака с образованием хлорида тетрамминомеди (II):
4NH3 CuCl2 → [Cu(NH3)4]Cl2
Гидроксид меди (II) растворяется в избытке аммиака:
4NH3 Cu(OH)2 → [Cu(NH3)4](OH)2
5.Аммиак горит на воздухе, образуя азот и воду:
4NH3 3O2 → 2N2 6H2O
Если реакцию проводить в присутствии катализатора (Pt), то азот окисляется до NO:
4NH3 5O2 → 4NO 6H2O
6. За счет атомов водорода в степени окисления 1 аммиак может выступать в роли окислителя, например в реакциях с щелочными, щелочноземельными металлами, магнием и алюминием. С металлами реагирует только жидкий аммиак.
Например, жидкий аммиак реагирует с натрием с образованием амида натрия:
2NH3 2Na → 2NaNH2 H2
Также возможно образование Na2NH, Na3N.
При взаимодействии аммиака с алюминием образуется нитрид алюминия:
2NH3 2Al → 2AlN 3H2
7. За счет азота в степени окисления -3 аммиак проявляет восстановительные свойства. Может взаимодействовать с сильными окислителями — хлором, бромом, пероксидом водорода, пероксидами и оксидами некоторых металлов. При этом азот окисляется, как правило, до простого вещества.
Например, аммиак окисляется хлором до молекулярного азота:
2NH3 3Cl2 → N2 6HCl
Пероксид водорода также окисляет аммиак до азота:
2NH3 3H2O2 → N2 6H2O
Оксиды металлов, которые в электрохимическом ряду напряжений металлов расположены справа — сильные окислители. Поэтому они также окисляют аммиак до азота.
Например, оксид меди (II) окисляет аммиак:
2NH3 3CuO → 3Cu N2 3H2O
Химические свойства солей аммония
1. Все соли аммония – сильные электролиты, почти полностью диссоциируют на ионы в водных растворах:
NH4Cl ⇄ NH4 Cl–
2.Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями, если в продуктах образуется газ, осадок или образуется слабый электролит.
Например, карбонат аммония реагирует с соляной кислотой. При этом выделяется углекислый газ:
(NH4)2CO3 2НCl → 2NH4Cl Н2O CO2
Соли аммония реагируют с щелочами с образованием аммиака.
Например, хлорид аммония реагирует с гидроксидом калия:
NH4Cl KOH → KCl NH3 H2O
Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.
3. Соли аммония подвергаются гидролизу по катиону, т.к. гидроксид аммония — слабое основание:
NH4Cl Н2O ↔ NH3 ∙ H2O HCl
NH4 HOH ↔ NH3 ∙ H2O H
4. При нагревании соли аммония разлагаются. При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:
NH4Cl → NH3 HCl
NH4HCO3 → NH3 CO2 H2O
(NH4)2SO4 → NH4HSO4 NH3
NH4HS → NH3 H2S
Если соль содержит анион-окислитель, то разложение сопровождается изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:
NH4NO2 → N2 2H2O
190 – 245° C:
NH4NO3 → N2O 2H2O
При температуре 250 – 300°C:
2NH4NO3 → 2NO 4H2O
При температуре выше 300°C:
2NH4NO3 → 2N2 O2 4H2O
Разложение бихромата аммония («вулканчик»).Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):
(NH4)2Cr2O7 → Cr2O3 N2 4H2O
Окислитель – хром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду.
Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив.
Видеоопытразложения дихромата аммония можно посмотреть здесь.
Химические свойства фтора
Фтор является самым сильным окислителем из всех простых веществ. Непосредственно он не взаимодействует только с N2, Не, Ne, Аr, а при нормальных условиях также и с O2.
Взаимодействие с
простыми веществами
Скислородом
Реакция протекает при электрическом разряде (2100-2400 В, 25-30 мА), температуре от -196°C до -183°C и давлении 12 мм рт.ст. с образованием дифторида трикислорода (триоксодифторид, фторид озона) или фторида кислорода:
3O2 2F2 → 2O3F2
O2 2F2 → 2OF2
С галогенами (Cl, Br, I)
Фтор вступает в
реакции с другими галогенами:
Hal2 F2 = HalFx
Например, Cl2 F2 → 2ClF
С водородом
Взаимодействует с водородом со взрывом даже в темноте:
H2 F2 = 2HF
С серой
Реакция с
серой протекает легко даже при сильном охлажлении:
S 3F2 = SF6
С углеродом
Реакция окисления порошкообразного
углерода сопровождается самовоспламенением последнего:
C 2F2→ CF4
С азотом
При нагревании фтор реагирует и с азотом:
N2 3F2 → 2NF
С фосфором
Фтор взаимодействует с P энергично (со взрывом) на свету и в темноте, даже при охлаждении жидким N2:
2Р 5F2 = 2PF5
С кремнием
Взаимодействует
с кремнием с образованием фторида кремния
Si 2F2→ SiF4
Cинертными газами
Окисляет
ксенон, образуя фторид ксенона:
Xe 3F2 = XeF6
С металлами
При взаимодействии с металлами
образуются фториды:
Ме F2 = Me xF-1x
K F2 = KF
- Mg, Zn, Sn, Al, Ag, Cu и др. загораются на свету при слабом нагревании:
Mg F2 = MgF2
- с малоактивными металлами – Au, Pt реагирует при нагревании до 300-400°С
2Au 3F2=2AuF3.
Взаимодействие со сложными веществами
С водой
Фтор активно разлагает воду с образованием таких соединений, как фториды кислорода OF2, O2F2; пероксид водорода Н2O2; кислород, озон, фтороводород:
2F2 Н2O = OF2 2HF
2F2 2Н2О = O2 4HF
С кислотами
- Взаимодействует с безводной азотной кислотой при комнатной температуре с образованием диоксида-гипофторита азота и фтороводорода:
F2 HNO3 → NO2FO HF
или
F2 HNO3 → FONO2 HF
- С серной кислотой образует гексафторид серы, фтороводород и кислород:
H2SO4 4F2 = 2HF SF6 2O2
Сщелочами и аммиаком
Фтор окисляет щелочи:
2F2 2NaOH = OF2 2NaF H2O
Реагирует с газообразным аммиаком:
2NH3(г)
3F2(г) = 6HF(г) N2(г),
2NH3(г)
6F2(г) = 6HF(г) 2NF3(г)
С солями
Не взаимодействует
Взаимодействие
фтора с водными растворами солей невозможны, т.к. он ступает в реакцию с водой.
С оксидами
Реагирует с оксидом кремния, который загорается в атмосфере F2:
2F2 SiO2 = SiF4 O2
Химические свойства хлора
Хлор — очень сильный окислитель. Окисляет металлы, неметаллы и сложные вещества, с образованием в устойчивые хлорид-ионы:
Cl20 2e— = 2Cl—
Взаимодействие с простыми веществами
Скислородом
Непосредственно не взаимодействует
С галогенами
Хлор взаимодействует с другими галогенами – более активные галогены окисляют менее активные. В зависимости от условий могут получиться различные соединения:
F2 Cl2 = 2ClF
3F2 Cl2 =
2ClF3
Br2 Cl2 =
2BrCl
Br2 5Cl2
6H2O = 2HBrO3 10HCl
I2 Cl2 =
2ICl
I2 3Cl2 =
2ICl3
I2
5Cl2 6H2O = 2HIO3 10HCl
С водородом
Реакция с водородом при обычных условиях не протекает. Однако, при нагревании, УФ — освещении или электрическом разряде реакция протекает со взрывом:
Cl2 Н2 =2НСl
С серой
Cl2 2S (расплав) = S2Cl2
С азотом
Непосредственно не взаимодействует
С фосфором
ЗCl2 2Р = 2РCl3 (или РCl5 — в избытке Cl2)
С углеродом
Непосредственно не взаимодействует
С кремнием
2Cl2 Si = SiCl4 (при нагревании)
С металлами
- Активные металлы самовоспламеняются и горят в атмосфере сухого газообразного хлора:
Cl2
2Na = 2NaCl
3Cl2 2Fe = 2FeCl3
- Окисление малоактивных металлов происходит легче влажным хлором или его водными растворами:
Cl2 Сu = CuCl2
3Cl2 2Аu = 2AuCl3
Взаимодействие со сложными веществами
Окислительно-восстановительные реакции
Окисляет сложные вещества:
ЗСl2 2NH3 = N2 6HCl
Cl2 H2S = S 2HCl
Cl2 H2O Na2SO3 → 2HCl Na2SO4
Cl2 3H2O2 → 2HCl 2H2O O2
2Cl2 2H2O → 4HCl O2 (на свету или кипячении)
Cl2 2HI = I2 2HCl
С водой
При растворении хлора в воде вступает в реакцию диспропорционирования (самоокисления-самовосстановления), с образованием хлорноватистой кислоты:
Cl2 Н2O = HCl НClO
С водными растворами щелочей
При взаимодействии с щелочамихлор диспропорционирует с образованием солей,
состав которых зависит от условий проведения реакции:
- с холоднымраствором щелочи образуются хлорид и гипохлорит:
Сl2 2NaOH (хол.) → NaCl NaClO H2O
- с горячимраствором щелочи образуются хлорид и хлорат:
3Cl2 6NaOH (гор.) → 5NaCl NaClO3 3H2O
- Хлор также растворяется в холодном растворе гидроксида кальция:
2Сl2 2Са(OH)2(хол.) → СaCl2 Сa(ClO)2 2H2O
Эти реакции
имеют важное практическое значение, приводят к получению гипохлоритов — КClO3 и Са(ClO)2; хлората калия
(бертолетова соль) — КClO3
С солями
Более активные галогены вытесняют менее активные галогены из солей и галогеноводородов:
Cl2 2KBr = Br2 2KCl
Cl2 2KI = I2 2KCl
С органическими соединениями
- замещение атомов водорода в молекулах органических соединений:
- присоединение молекул Cl2 по месту разрыва кратных углерод-углеродных связей
H2C = CH2 Cl2 → Cl — H2C — CH2 — Cl 1,2-дихлорэтан
HC ≡ CH 2Cl2 → Cl2HC — CHCl2 1,1,2,2-тетрахлорэтан
Электронные формулы ионов
Атомы могут отдавать и принимать электроны. Отдавая или принимая электроны, они превращаются в ионы.
Ионы— это заряженные частицы. Избыточный заряд обозначается индексом в правом верхнем углу.
Если атом отдаётэлектроны, то общий заряд образовавшейся частицы будет положительный(вспомним, что число протонов в атоме равно числу электронов, а при отдаче электронов число протонов будет больше числа электронов).
11Na 1s22s22p63s1 -1е = 11Na 1s22s22p63s0
Если атом принимаетэлектроны, то приобретает отрицательныйзаряд. Отрицательно заряженные частицы — это анионы. Например, анион хлора образуется так:
17Cl 1s22s22p63s23p5 1e = 17Cl— 1s22s22p63s23p6
Таким образом, электронные формулы ионов можно получить добавив или отняв электроны у атома. Обратите внимание, при образовании катионов электроны уходят с внешнего энергетического уровня. При образовании анионов электроны приходят на внешний энергетический уровень.
Попробуйте составить самостоятельно электронный формулы ионов. Не забывайте проверять себя по ключам!
18. Ион Са2
19. Ион S2-
20. Ион Ni2
В некоторых случаях совершенно разные атомы образуют ионы с одинаковой электронной конфигурацией. Частицы с одинаковой электронной конфигурацией и одинаковым числом электронов называют изоэлектронными частицами.
Например, ионы Na и F—.
Электронная формула катиона натрия: Na 1s22s22p6, всего 10 электронов.
Электронная формула аниона фтора: F— 1s22s22p6, всего 10 электронов.
Таким образом, ионы Na и F— — изоэлектронные. Также они изоэлектронны атому неона.
Тренажер по теме «Строение атома» — 10 вопросов, при каждом прохождении новые.
Ответы на вопросы:
1. У изотопов одного химического элемента массовое число всегда разное, т.к. массовое число складывается из числа протонов и нейтронов. А у изотопов различается число нейтронов.
2. У изотопов одного элемента число протонов всегда одинаковое, т.к. число протонов характеризует химический элемент.
3. Массовое число изотопа брома-81 равно 81. Атомный номер = заряд ядра брома = число протонов в ядре = 35. Вычитаем из массового числа число протонов, получаем 81-35=46 нейтронов.
4. Массовое число изотопа хлораравно 37. Атомный номер, заряд ядра и число протонов в ядре равно 17. Получаем число нейтронов = 37-17 =20.
5. Электронная формула азота:
7N 1s22s22p3 1s 2s
2s
2p
6. Электронная формула кислорода:
8О 1s22s22p4 1s 2s
2s
2p
7. Электронная формула фтора:
8. Электронная формула магния:
12Mg 1s22s22p63s2 1s 2s
2s
2p
3s
3s
9. Электронная формула алюминия:
13Al 1s22s22p63s23p1 1s 2s
2s
2p
3s
3s
3p
10. Электронная формула кремния:
14Si 1s22s22p63s23p2 1s 2s
2s
2p
3s
3s
3p
11. Электронная формула фосфора:
15P 1s22s22p63s23p3 1s 2s
2s
2p
3s
3s
3p
12. Электронная формула серы:
16S 1s22s22p63s23p4 1s 2s
2s
2p
3s
3s
3p
13. Электронная формула хлора:
14. Электронная формула аргона:
18Ar 1s22s22p63s23p6 1s 2s
2s
2p
3s
3s
3p
15. Электронная формула углеродав возбуждённом состоянии:
6C* 1s22s12p3 1s 2s
2s
2p
16. Электронная формула бериллияв возбуждённом состоянии:
4Be 1s22s12p1 1s 2s
2s
2p
17. Электронная формула кислорода в возбуждённом энергетическом состоянии соответствует формуле кислорода в основном энергетическом состоянии, т.к. нет условий для перехода электрона — отсутствуют вакантные энергетические орбитали.
18. Электронная формула иона кальция Са2 : 20Ca2 1s22s22p63s23p6
19. Электронная формула аниона серы S2-: 16S2- 1s22s22p63s23p6
20. Электронная формула катиона никеля Ni2 : 28Ni2 1s22s22p63s23p63d84s0. Обратите внимание! Атомы отдают электроны всегда сначала с внешнего энергетического уровня. Поэтому никель отдаёт электроны сначала с внешнего 4s-подуровня.
Тренировочные тесты в формате ЕГЭ по теме «Строение атома» (задание 1 ЕГЭ по химии) ( с ответами)
Электронные формулы элементов первых четырех периодов
Рассмотрим заполнение электронами оболочки элементов первых четырех периодов. У водородазаполняется самый первый энергетический уровень, s-подуровень, на нем расположен 1 электрон:
1H 1s1 1s
У гелия1s-орбиталь полностью заполнена:
2He 1s2 1s
Поскольку первый энергетический уровень вмещает максимально 2 электрона, у литияначинается заполнение второго энергетического уровня, начиная с орбитали с минимальной энергией — 2s. При этом сначала заполняется первый энергетический уровень:
3Li 1s22s1 1s 2s
2s
У бериллия2s-подуровень заполнен:
4Be 1s22s2 1s 2s
2s
Далее, у боразаполняется p-подуровень второго уровня:
5B 1s22s22p1 1s 2s
2s
2p
У следующего элемента, углерода, очередной электрон, согласно правилу Хунда, заполняет вакантную орбиталь, а не заполняет частично занятую:
6C 1s22s22p2 1s 2s
2s
2p
Попробуйте составить электронную и электронно-графическую формулы для следующих элементов, а затем можете проверить себя по ответам конце статьи:
5. Азот
6. Кислород
7. Фтор
У неона завершено заполнение второго энергетического уровня:
10Ne 1s22s22p6 1s 2s
2s
2p
У натрияначинается заполнение третьего энергетического уровня:
11Na 1s22s22p63s1 1s 2s
2s
2p
3s
3s
От натрия до аргона заполнение 3-го уровня происходит в том же порядке, что и заполнение 2-го энергетического уровня. Предлагаю составить электронные формулы элементов от магния до аргонасамостоятельно, проверить по ответам.
8. Магний
9. Алюминий
10. Кремний
11. Фосфор
12. Сера
13. Хлор
14. Аргон
А вот начиная с 19-го элемента, калия, иногда начинается путаница — заполняется не 3d-орбиталь, а 4s. Ранее мы упоминали в этой статье, что заполнение энергетических уровней и подуровней электронами происходит по энергетическому ряду орбиталей, а не по порядку. Рекомендую повторить его еще раз. Таким образом, формула калия:
19K 1s22s22p63s23p64s11s 2s
2s
2p
3s
3s
3p
4s
4s
Для записи дальнейших электронных формул в статье будем использовать сокращенную форму:
19K [Ar]4s1 [Ar] 4s
У кальция4s-подуровень заполнен:
20Ca [Ar]4s2 [Ar] 4s
У элемента 21, скандия, согласно энергетическому ряду орбиталей, начинается заполнение 3d-подуровня:
21Sc [Ar]3d14s2 [Ar] 4s 3d
3d
Дальнейшее заполнение 3d-подуровня происходит согласно квантовым правилам, от титанадо ванадия:
22Ti [Ar]3d24s2 [Ar] 4s 3d
3d
23V [Ar]3d34s2 [Ar] 4s
3d
3d
Однако, у следующего элемента порядок заполнения орбиталей нарушается. Электронная конфигурация хроматакая:
24Cr [Ar]3d54s1 [Ar] 4s 3d
3d
В чём же дело? А дело в том, что при «традиционном» порядке заполнения орбиталей (соответственно, неверном в данном случае —
3d44s2
) ровно одна ячейка в
d
-подуровне оставалась бы незаполненной. Оказалось, что такое заполнение энергетически
менее выгодно
. А
более выгодно
, когда
d
-орбиталь заполнена полностью, хотя бы единичными электронами. Этот лишний электрон переходит с
4s
-подуровня. И небольшие затраты энергии на перескок электрона с
4s
-подуровня с лихвой покрывает энергетический эффект от заполнения всех
3d-
орбиталей. Этот эффект так
и называется
— «провал»
или
«проскок»электрона
. И наблюдается он, когда
d
-орбиталь недозаполнена на 1 электрон (по одному электрону в ячейке или по два).
У следующих элементов «традиционный» порядок заполнения орбиталей снова возвращается. Конфигурация марганца:
25Mn [Ar]3d54s2
Аналогично у кобальтаи никеля. А вот у медимы снова наблюдаем провал (проскок) электрона— электрон опять проскакивает с 4s-подуровня на 3d-подуровень:
29Cu [Ar]3d104s1
На цинке завершается заполнение 3d-подуровня:
30Zn [Ar]3d104s2
У следующих элементов, от галлиядо криптона, происходит заполнение 4p-подуровня по квантовым правилам. Например, электронная формула галлия:
31Ga [Ar]3d104s24p1
Формулы остальных элементов мы приводить не будем, можете составить их самостоятельно.
Некоторые важные понятия:
Внешний энергетический уровень — это энергетический уровень в атоме с максимальным номером, на котором есть электроны.
Например, у меди ([Ar]3d104s1) внешний энергетический уровень — четвёртый.
Валентные электроны — электроны в атоме, которые могут участвовать в образовании химической связи. Например, у хрома ( 24Cr [Ar]3d54s1) валентными являются не только электроны внешнего энергетического уровня (4s1), но и неспаренные электроны на 3d-подуровне, т.к. они могут образовывать химические связи.