Дыхание растений и животных. Биология 5-6 класс. Пасечник

Дыхание растений и животных. Биология 5-6 класс. Пасечник Кислород
Содержание
  1. На марсе, другой планете земной группы, метан тоже обнаружен, правда в очень маленьких количествах, и, более того, он неравномерно распределен в атмосфере — то есть его либо что-то поглощает, либо что-то выделяет. может быть, бактерии. или, что вероятнее, происходит это в результате окисления подземными водами всё тех же горных пород.
  2. Сланцевая революция — это особая технология добычи нефти, когда горную породу — коллектор — разрывают огромным давлением поданной по скважине воды (так называемый гидроразрыв), и по новообразованным трещинам начинает сочиться будущее топливо.
  3. Бесконтрольный рост популяции приводил к экологической катастрофе: железо заканчивалось, бактерии травились собственным же ядовитым для них кислородом.
  4. В этом главная проблема большинства «смелых» и «прорывных» геологических теорий: они могут давать простой, быстрый и чёткий ответ на конкретный вопрос, но вот откуда взять все исходные ингредиенты, остаётся загадкой.
  5. Вся правда о деревьях. оказывается, они дышат!
  6. Дыхание растений
  7. И всё же есть ли хоть какие-то рабочие гипотезы, альтернативные биогенной теории происхождения нефти и газа? да, есть.
  8. Каким организмам не нужен кислород?

На марсе, другой планете земной группы, метан тоже обнаружен, правда в очень маленьких количествах, и, более того, он неравномерно распределен в атмосфере — то есть его либо что-то поглощает, либо что-то выделяет. может быть, бактерии. или, что вероятнее, происходит это в результате окисления подземными водами всё тех же горных пород.

Ещё интереснее в этом отношении Титан, спутник Сатурна. Его метановая атмосфера не содержит примесей инертных газов, которые должны были остаться со времен образования планет Солнечной системы (и которые присутствуют в газовой оболочке того же Сатурна).

Есть несколько гипотез, позволяющих объяснить происхождение такой атмосферы, и жизнь (к радости сторонников теории абиогенных углеводородов) не входит в список наиболее вероятных «виновников». Хотя в «воздухе» Титана совсем недавно и обнаружили более сложные вещества, это ещё не доказательство наличия там живых организмов.

Однако живые организмы не только порождают углеводороды, похороненные в толщах пород, но и возвращают их в биосферу. Мы судим о кислороде с позиций дышащего им существа, когда, например, говорим о сероводородном заражении Чёрного моря, и человек, к слову, тоже приложил к нему руку.

Нам удалось очень далеко уйти от своих древних предков, для которых кислород был губителен, но их потомки и последователи живут сейчас на дне этого водоема. Мы, люди, говорим (правда, обычно слишком тихо), что имеем право на комфортную для нас среду обитания, называя её «здоровой экологией».

Солнечный свет как внешний источник энергии позволяет разделять вещества (точнее, исходные неорганические углекислый газ и воду) на восстановительную органику и окислительный кислород. Существа, их использующие, — консументы — нуждаются в том, чтобы обоих ресурсов было достаточно.

Количество таких организмов прямо ограничено объемами пищи — ситуация, известная в математике как задача «хищник-жертва». Чем больше еды — тем больше хищников, чем меньше питания — тем меньше питающихся. Система с обратной связью. Хищник получает еду, а продуценты, бактерии, потом водоросли и высшие растения, — защиту от перенаселения.

Сланцевая революция — это особая технология добычи нефти, когда горную породу — коллектор — разрывают огромным давлением поданной по скважине воды (так называемый гидроразрыв), и по новообразованным трещинам начинает сочиться будущее топливо.

Эти технологии, кстати, вошли в число запрещённых для поставок в Россию. Политика защищает рынок. Себестоимость сланцевой нефти выше традиционной, «самотёчной». Так работает экономика: дорогие технологии дешевеют, хотя сам продукт прибавляет в цене.

Кроме того, существуют способы ускорения природного процесса преобразования керогена в топливо путём нагрева или с помощью химических реакций. Вместо долгого ожидания, пока породы сами дозреют под воздействием тепла земных недр, чтобы образовалась нефть, люди «допекают» её — примерно так же, как когда-то последователи языческих верований допекали детей.

Гидроразрыв пласта тоже представляет собой попытку в некотором смысле поторопить природу: вместо ожидания землетрясений и горообразования, когда все породы сминаются и трескаются, люди делают это прямо сейчас. Мы научились в собственных интересах ускорять геологические процессы.

Несколько выбиваются из этой картины месторождения нефти в породах кристаллического фундамента. Такие есть в Китае, Венесуэле и других странах. Где-то там, глубоко-глубоко, находятся трещиноватые граниты и аналогичные им по составу породы — гнейсы, напитанные нефтью.

Однако, если посмотреть на геологическое строение местности, выясняется, что такие образования приурочены к отдельным поднятиям. Органическое вещество, как и любой осадок, скапливалось между этими выступами, горами. Например, из-за особо плотной покрышки углеводородам оказалось проще утечь в стороны и собраться в трещиноватых кристаллических породах.

Гипотезы же абиогенного (неорганического) происхождения, получившие было новую жизнь с открытием этих месторождений, не имеют предсказательной силы. Например, в Татарстане не смогли найти промышленно значимых проявлений нефти в породах кристаллического фундамента.

И когда в Швеции бурили поисковые скважины вблизи озера Сильян (основываясь на прогнозе уже упоминавшегося астрофизика Голда), месторождений так и не открыли, а обнаруженное ископаемое общим объемом около 100 литров не отличалось от других нефтей.

Бесконтрольный рост популяции приводил к экологической катастрофе: железо заканчивалось, бактерии травились собственным же ядовитым для них кислородом.

Останки оседали на дно, а в воде снова начинало накапливаться железо из магматических пород, в то время как популяция бактерий и водорослей восстанавливалась из уцелевших «оазисов». Так полосчатые осадки формировали богатые и бедные железом прослои. В результате этого древнейшего процесса образовались используемые сейчас людьми крупнейшие месторождения Кривого Рога, Курской магнитной аномалии и многие другие.

В какой-то момент железо в водах океана закончилось. Началась одна из самых глобальных экологических катастроф — кислородная. Помимо того что этот газ был ядовит для большинства живших тогда организмов, он ещё и прозрачен для солнечных лучей. Возникла проблема, обратная современной: если сейчас планета изнывает от выбросов парниковых газов и глобального потепления, то тогда произошло резкое похолодание. Земля перестала удерживать тепло и покрылась льдами на миллионы лет.

Самое интересное, что жизнь почти успела предотвратить эту катастрофу: совсем недавно учёные, работающие под руководством Курта Конхаузера, проанализировали состав пород и высказали предположение, что 2,5 млрд лет назад (примерно тогда же, когда начиналось оледенение) уже, возможно, появились бактерии, которые умели использовать кислород. Но было слишком поздно.

Растения поглощают углекислый газ и выделяют кислород. А откуда берётся CO2? В школьных учебниках говорится о круговороте углерода — но с чего всё началось? Была ли курица, было ли яйцо?

Ответ, как ни странно, есть. Во Вселенной больше всего водорода, меньше гелия, и в целом, опуская некоторые детали возникновения атомов в недрах звёзд, количества химических элементов убывают пропорционально их весам. Если звезда завершает свою жизнь вспышкой новой или сверхновой, то эти атомы «выплёскиваются» в космос, и из них могут образовываться планеты.

Соответственно, лёгкого углерода в них должно быть очень много — и это, действительно, так, достаточно взглянуть на газовые гиганты. Одна проблема: его соединения крайне летучие, то есть при небольшом повышении температуры они рассеиваются. Потому газовые гиганты находятся за так называемой снеговой линией Солнечной системы.

Земля же захватила тот углерод, который был рассеян в метеоритном веществе. В ходе глобальной переплавки нашей планеты (на стадии «магматического океана») углерод в виде двуокиси и других соединений выделялся из магмы, сформировав первичную атмосферу. И по сей день углекислота в качестве одного из основных компонентов входит в состав вулканических газов.

В этом главная проблема большинства «смелых» и «прорывных» геологических теорий: они могут давать простой, быстрый и чёткий ответ на конкретный вопрос, но вот откуда взять все исходные ингредиенты, остаётся загадкой.

Примерно то же самое происходит, когда открываешь книгу «100 рецептов вкусных блюд из того, что нашлось в холодильнике» — и первый же из них начинается так: «Возьмите филе дракона, экстракт цветка папоротника и потушите на противне из мифрила». Любая теория должна, прежде всего, согласовываться с данными, в том числе и новейшими.

Потому достаточно быстро гипотеза органического происхождения нефти стала главной в науке. В очень близком к современному виде её сформулировал немецкий палеоботаник Потонье, а интенсивно развивал Губкин — крупнейший учёный, чье имя ныне носит Университет нефти и газа в Москве.

Именно они предположили, что нефть происходит из сапропелей — мелководных отложений с большим количеством органики. Сейчас эту гипотезу подтверждают и результаты тонких химических измерений: данные изотопных анализов, а также наличие остатков сугубо биогенных веществ, например хлорофилла — самого главного участника фотосинтеза.

Во второй половине XX века появились новые предположения, связанные с изучением космоса, — например, что все углеводороды произошли из первичного вещества Земли. Так считал американский астрофизик Томас Голд. Не отрицая того, что эта гипотеза применима в отношении протоатмосферы планеты, надо вспомнить, что случилось с железом.

Оно окислилось и утонуло. С древнейшими углеводородами произойдёт примерно то же: они будут реагировать с кислородом. Состав вулканических газов, в который входят в основном углекислота и вода (а не водород и его простейшее соединение с углеродом — метан), лишь доказывает, что углеводороды не могли сохраниться с тех времён.

Вся правда о деревьях. оказывается, они дышат!

Почитал я тут очередной пост про разоблачение деревьев. Всё как всегда — некоторые люди до сих пор не понимают, что леса вовсе не являются легкими планеты. А в комментариях вылез такой бред, что стало ясно: взрослые люди в России, в стране, которая гордится своими вузами, ничего не знают о растениях. Как так, объясните мне? Откуда столько ереси в головах у людей? Как можно отучится в школе, сдать экзамены, получить высшее образование, и не знать элементарных вещей про растения?! Придется мне всё разъяснить про то, чем дышат деревья. Для начала разберемся: деревья — это растения! Если вы не знали, что и трава, и деревья — это растения, то сначала прочтите обсуждение в Большом Вопросе. А здесь мы разберемся, чем и когда растения дышат.

Дыхание растений и животных. Биология 5-6 класс. Пасечник

Оказывается, взрослые люди считают, что дерево может жить  и без фотосинтеза, и без дыхания. Мол, в городе никакого фотосинтеза не происходит, потому что там пыльно. Подобные заблуждения показывают, как сильно люди недопонимают биологию. А ведь всё это рассказывается в школе, и ребенок уже к пятому классу должен про дыхание и фотосинтез! Особенно смешно, когда народ начинает спорить про космические технологии и зеленую энергетику, и при этом не может ответить на элементарные вопросы о том, чем дышат растения.

Вот вам ликбез по растениям, запомните это раз и навсегда, распечатайте, повесьте на холодильник, и больше никогда даже не заикайтесь про то, что в городе деревья не фотосинтезируют, и что кислород они поглощают только ночью.

Растения — это такие зеленые объекты живой природы, у них есть корни, листья, стебли, цветы, и т.д. И да, деревья — это растения!

Дыхание растений и животных. Биология 5-6 класс. Пасечник

У всех растений параллельно происходят два процесса газообмена:

1. Дыхание. Да, все растения дышат! Вообще все! И даже зимой! Дыхание — это неотъемлемый процесс живых существ, можно даже сказать, что именно дыхание отличает живое от неживого.
2. Фотосинтез. Это процесс создания глюкозы из углекислого газа. Проще говоря, фотосинтез — это питание.

Подробнее: что такое дыхание. Коротко: дыхание — это процесс усвоения кислорода. Растения делают это через листья, а мы — через легкие. Но суть одна и та же: мы захватываем из воздуха молекулы кислорода, чтобы с их помощью получать из глюкозы энергию. Под воздействием кислорода вещество распадается, при этом выделяется огромное количество энергии, и как побочный продукт — углекислый газ, который мы выдыхаем. Вот почему мы дышим чаще при физических нагрузках: нам надо больше энергии, больше окисления глюкозы, больше кислорода.

Все живые организмы, в том числе деревья, дышат. И микробы тоже, да. Деревья, как и человек, дышат кислородом. Это значит, что деревья, трава, фикус в вашей комнате — все они поглощают кислород и выдыхают углекислый газ. Постоянно, и днем, и ночью, и зиммой, и летом. Точно так же, как и вы. Все деревья на планете Земля дышат кислородом, как и человек, и точно так же выдыхают углекислый газ, как и человек.

Растения, как и человек, дышат постоянно и непрерывно. Даже у семян есть дыхание, хотя и минимальное. Даже зимой, укрывшись снегом, вредная ёлка продолжает поглощать кислород и выпускать углекислый газ, хоть и в мизерных количествах. Потому что дыахние растениям необходимо так же, как и человеку.

На заметку: нельзя держать крупные растения в спальне. Если вентиляция в комнате плохая, то растение устроит вам дефицит кислорода.

ФОТОСИНТЕЗ

Фотосинтез — это процесс, который происходит отдельно от дыхания, не имеет к нему отношения, и нужен для питания растения. Дерево получает энергию из глюкозы. Но где эту глюкозу взять? Человек берет глюкозу из еды. А растения глюкозу производят. Фотосинтез — это процесс создания глюкозы из углекислого газа, под воздействием солнечного света.

Растение забирает из воздуха углекислый газ, и под действием солнечной энергии «забирает» из СО2 углерод. Из углерода растение делает глюкозу, а кислород «выбрасывает» в воздух, — это своего рода отходы фотосинтеза. Без фотосинтеза растение жить не может, точно так же, как человек не может жить без еды. Без света фотосинтез не происходит, то есть ночью растение не производит кислород.

Еще раз: фотосинтез — это процесс питания растения. Без фотосинтеза растение жить не может, так же как и человек не может жить без еды. Но мы же не едим постоянно. Так и растение: фотосинтез идет периодами. Ночью, без света, фотосинтеза нет. Зимой конечно тоже нет. Домашние растения, даже если остаются зимой зелеными, всё равно почти прекращают фотосинтезировать и практически спят. Дышат, но не едят, как медведи в берлоге. Это значит, что зимой растение поглощает кислород,но не производит его.

Есть понятие кислородный баланс растения — это соотношение поглощения и производства кислорода. Проще говоря, разница между тем, как активно растение дышит и фотосинтезирует. Кислородный баланс зависит от вида, возраста растений, периода жизни.

Уровень фотосинтеза зависит от возраста растения, освещенности, питания и загрязненности. Молодое растение, в период активного роста, создает очень много глюкозы, а значит — поглощает много углекислого газа, и создает много кислорода. Кислородный баланс у молодых растений положительный, то есть юное дерево за год производит больше кислорода, чем потребляет. Взрослые деревья и комнатные растения имеют примерно нулевой кислородный баланс, то есть фотосинтез у них происходит плохо, и они производят кислорода примерно столько же, сколько и поглощают. В зимний период фотосинтез и вовсе прекращается полностью или почти полностью, и растение не производит кислород, зато дышит, то есть только забирает кислород из воздуха.

Российская тайга имеет примерно нулевой годовой кислородный баланс. Много взрослых деревьев, долгий зимний период, много хвойных растений, — всё это приводит к тому, что северные российские леса производят очень мало кислорода, зато постоянно дышат. Тропические леса в этом плане интереснее: они очеь зеленые, активно растут, и производят гораздо больше кислорода. Их кислородный баланс положительный, но тоже не очень высокий. На самом деле водоросли проихводят больше кислорода, чем леса.

ИТОГО

У растений происходят два параллельных процесса: дыхание и фотосинтез. Эти процессы не связаны между собой, они происходят при разных условиях и с разными целями. Дыхание — это поглощение кислорода и выделение углекислого газа, постоянно и непрерывно. Фотосинтез — это поглощение углекислого газа и создание кислорода, происходит только при солнечном свете, и только в зеленых листьях.

Если вы считаете, что дерево днем поглощает СО2, а ночью его производит — вы идиот. Дерево и ночью, и днем поглощает кислород и производит углекислый газ. И зимой, и летом, и при свете, и в темноте: дерево дышит постоянно и непрерывно, только с разной интенсивностью.

Фотосинтез — источник энергии для растения, способ питания. Если не происходит процесс фотосинтеза, растение просто умирает. Поэтому только неучи считают, что в городе деревья не фотосинтезируют. Если бы в городе деревья не занимались фотосинтезом, они бы просто погибли от голода. Растение может пережить какой-то период без фотосинтеза, за счет своих запасов. Точно так же, как человек может немного поголодать. Но жить без фотосинтеза вообще растение неспособно.

Конечно, пыль на листьях значительно уменьшает газообмен, пыльные растения хуже дышат и хуже фотосинтезируют. Но упс: именно для этого растения в городе и нужны, для сбора пыли. Дожди смывают пыль с листьев на землю. Кстати, в жаркую погоду некоторые деревья в городе чахнут именно потому, что пяль на листьях копится, и растение не может нормально дышать, буквально задыхается.

Интересный факт:

есть растение, которые не умеет в фотосинтез. Это кактусы без хлорофилла. Их вывели искусственно, ради развлечения. Эти кактусы называются гимнокалициум, и они могут жить, только паразитируя на других. На картинке ниже такая химера: желтая «верхушка» — это гимнокалициум, который приживили на ствол другого кактуса. То есть нижний кактус — это донор, он зеленый, в нем происходит фотосинтез, за счет которого и питается верхушка-паразит. В природе такое растение жить не может.

Дыхание растений и животных. Биология 5-6 класс. Пасечник

Но если деревья не являются источниками кислорода, почему в лесу легче дышится? Во-первых, в лесу есть трава и кусты, которые фотосинтезируют больше, чем дышат. Во-вторых, растения задерживает на себе пыль и другие загрязнения воздуха, то есть в лесу воздух чище. В-третьих, растения увлажняют воздух и насыщают его разными полезными веществами. Например, если гулять по болоту во время цветения багульника, можно вылечиться от насморка. Проверено на себе.

Дальше. В последние годы очень популярен миф, что-де когда дерево умирает, оно весь углекислый газ выпускает обратно в атмосферу. Это отчасти верно, но из-за того, что мало кто понимает, как это происходит, появляется всякий дикий бред про «надо завернуть мертвое дерево в пленку». Что происходит на самом деле? Сама древесина и состоит из углерода, который растение взяло из углекислого газа. Вы химию в шкоел учили? Органика — это соединения углерода! С2Н5ОН — неужели не знаете? Так вот, древесина — это органика. Дерево «сделано» из того, что раньше было углекислым газом. А значит, пока древесина целая, — то и углерод находится в этой древесине. Доски, стулья, деревянные стены, — это всё «сделано» из углерода, и этот углерод никуда не девается из древесины.

Но при разложении мертвая древесина в лесу становится пищей для всяких микроорганизмов и насекомых. И вы не поверите, но все эти микроорганизмы тоже дышат! То есть происходит так: древесина становится пищей для бактерий. Бактерии активно размножаются благодаря этой пище, и много дышат, то есть поглощают много кислорода. Конечно, выделяя при этом углекислый газ. То есть не само по себе мертвое дерево начинает как-то выпускать углекислый газ! Оно просто становится органикой, пищей для других организмов, которые дышат. Но если дерево не гниет в земле, а например пошло на производство мебели — оно не становится пищей для бактерий, никто не дышит, древесина не разлагается, углерод не высвобождается. Вывод: деревянная мебель полезна для экологии!

Ну и вроде последнее: откуда тогда у нас кислород, если деревья дышат столько же, сколько фотосинтезируют?! Тут вам сейчас начнут со всех сторона задвигать умные речи. Мол, на самом деле кислород производят не леса, а водоросли, и вообще на самом деле весь кислород образовался еще на заре времен, при формировании планеты, а сейчас он только «круговоротится». Не верьте никому. Точных знаний про источники кислорода нет. Да, водоросли производят больше кислорода, чем деревья. Но водоросли тоже дышат! А еще считается, что кислород постоянно «стравливается» из атмосферы в космос. И никто не знает толком, откуда у нас берется столько кислорода, чтобы всем хватало. Население планеты растет, потребление кислорода растет, а меньше его не становится! И если честно, никто из ученых не знает, как наша планета на протяжении разных эпох умудряется сохранять баланс кислорода и углекислого газа. Но доподлинно известно: если кислорода в атмосфере будет больше, чем сейчас, то возрастет опасность пожаров.

Зачем тогда нужны деревья? Они нужны не для кислорода, а для создания «скелета» природы. Своими корнями дерево закрепляет почву, не дает ей размываться. Деревья могут укреплять даже склоны гор! Корни помогают воздухообмену и становятся домом для множества почвенных организмов. Кроме того, они делают почву проницаемой и впитывают воду, то есть регулируют водообмен. Нет деревьев — привет чередованиям засух и наводнений. Лесные массивы охлаждают воздух и успокаивают ветра. Во многих городах России ураганные ветра начались именно после вырубки лесов вокруг этих городов.

Само дерево — это и дом, и еда для разных живых существ, от насекомых до мелких животных. Лесные массивы создают условия для жизни множества растений, на всех ярусов — от травы до растений, которые паразитируют на деревьях. То есть дерево — это своего рода основа живой природы. Это костяк, за который цепляется другая жизнь. Ну а в городе, повторюсь, деревья очищают воздух, поглощая вредные вещества и задерживая на своих листьях пыль.

Дыхание растений

Все живые организмы дышат. В процессе дыхания осуществляется распад более сложных органических веществ на более простые и неорганические. Смысл дыхания в том, что в результате происходит выделение и запасание энергии, которая необходима для различных процессов жизнедеятельности.

Подавляющее число организмов для окисления органических веществ используют кислород, который берут из воздуха. Одним из конечных продуктов дыхания является углекислый газ, который должен выводиться из организма в окружающую среду.

Таким образом, растения, также как и животные, дышат. А для этого они поглощают из воздуха кислород и выделяют в воздух углекислый газ. Однако у растений, в отличие от животных, есть процесс фотосинтеза, при котором газообмен обратный: растение поглощает из воздуха углекислый газ, а выделяет в него кислород. Поэтому заметить, что растения все-таки дышат можно лишь в темное время суток, когда фотосинтеза нет, либо протекает его темновая стадия.

При активном процессе фотосинтеза выделяется куда больше кислорода, чем его поглощается для дыхания. Поэтому суммарно в светлое время суток растение выделяет кислород и поглощает углекислый газ. Хотя при этом поглощение кислорода и выделение углекислого газа также происходят, т. е. осуществляется процесс дыхания.

В темное время суток растения выделяют углекислый газ и поглощают кислород, т. е. газообмен осуществляется только для процесса дыхания.

У большинства сложно-устроенных животных для процесса дыхания существует специальная дыхательная система. Благодаря ей кровь насыщается кислородом и разносит его по клетками организма. Такие животные не дышат всей поверхностью тела, или такой способ является вспомогательным. Растения же поглощают кислород всей поверхностью тела, особенно листьями. У них нет специальной дыхательной системы, есть лишь межклетники облегчающие газообмен. Другими словами, клетки растений поглощают кислород прямо из воздуха.

И всё же есть ли хоть какие-то рабочие гипотезы, альтернативные биогенной теории происхождения нефти и газа? да, есть.

В минимальных количествах метан и более сложные углеводороды могут образовываться при окислении водой горных пород морского дна — в ходе так называемого процесса Фишера — Тропша. Реакция требует высоких температур и потому в основном протекает в районах повышенного магматизма — вблизи срединно-океанических хребтов, которые легко найти на карте рельефа морского дна, — а также в других зонах с активными геологическими процессами, где океаническая кора погружается на достаточную для прогрева глубину.

В Турции, например, зафиксированы отдельные газопроявления с долей неорганического метана около 50 %. Однако общая масса потока этого газа не превышает нескольких десятков — первых сотен тонн в год, в то время как на месторождениях добываются миллионы тонн.

Абиогенные газ и, возможно, более сложные углеводороды на Земле существуют, но их количество ничтожно мало по сравнению с биогенными. Казус в пределах статистической погрешности, лишь подтверждающий и дополняющий современные представления, не более того.

Гораздо интереснее использовать эти данные для изучения других объектов космоса, где по крайней мере нет такого явного биологического следа. Атмосфера любой планеты, существующей миллионы и миллиарды лет, должна стать химически равновесной и однородной, если только нет каких-то процессов, нарушающих это состояние. A химическое неравновесие — главный признак жизни.

Каким организмам не нужен кислород?

Научная догма об исключительной важности для всех организмов кислорода рухнула, когда исследователи нашли у лососевых рыб странного, на первый взгляд, паразита — Henneguya salminicola, которому для дыхания оказался вообще не нужен кислород.

О своем открытии специалисты написали в научном журнале «Proceedings of the National Academy of Sciences». Изучение многоклеточного организма показало, что Henneguya salminicola не имеет митохондриальной ДНК и прекрасно обходится без нее. Невероятная фантастика ведет к рассуждениям о том, что такие живые организмы могут быть на планетах, где атмосфера не имеет кислорода. Уникальность сожителя лососевых рыб в том, что этот паразит учеными относится к классу животных.

Результаты исследования шокируют. Не совсем понятно, каким образом Henneguya salminicola утратил функцию дыхания (и была ли она у него?), но при этом выжил. В ходе эволюции крошечное существо потеряло часть своих генов, но смогло найти среди рыб вид, в котором удачно для себя «прижилось». Предполагается, что лососевый паразит (совершенно безвредный для человека) живет за счет энергии, которую ворует у своего «хозяина».

Цисты Henneguya zschokkei в мышцах рыбы
Цисты Henneguya zschokkei в мышцах рыбы

Справедливости ради надо сказать, что открытие у лососевых рыб паразита, которому не нужен кислород, сенсационно лишь в плане того, что Henneguya salminicola — многоклеточный организм, а не одноклеточный.

Если немного «углубиться» в науку, то выяснится, что не столь давно биологи из Италии нашли на дне Средиземного моря организмы, названные лорицеферами. Считается, что лорицеферы просто невероятным образом сохранились (как древняя кистеперая рыба, считавшаяся вымершей в ходе истории планеты), хотя прежде Земля не имела столь большого количества кислорода и организмы обходились без него. Насыщение планеты этим газом началось после того, как живые организмы эволюционировали и к процессу их газообмена подключились растения.

Особо заметьте, что в далёкой древности живая природа Земли была представлена организмами, которые обходились без кислорода. Свыше двух миллиардов лет назад мутации у цианобактерий как раз и поспособствовали обогащению атмосферы кислородом. Не исключено, что такой процесс идет и на некоторых других планетах.

По сути, ученые находят сейчас уцелевшие в биосфере организмы-экстремалы, широко распространенные в далекой-далекой древности, приспособившиеся к совершенно иным условиям жизни.

Лорицифера Spinoloricus cinziae, обитающая в бескислородной среде. Окрашивание бенгальским розовым. Масштабная линейка 50 мкм
Лорицифера Spinoloricus cinziae, обитающая в бескислородной среде. Окрашивание бенгальским розовым. Масштабная линейка 50 мкм

Примечательно, что лорицифер нашли в глубокой впадине в 200 километрах от остова Крит в сильно соленой воде. Выяснилось, что кислород для этих организмов — яд, убивающий их. По этой причине лорициферы всегда находятся на дне подводной впадины, лишенной кислорода, не нужного им.

Анаэробные организмы живут за счет энергии, добываемой без участия кислорода. К ним относятся микробы и бактерии. То есть простейшие живые организмы. Увидеть их можно только в микроскоп. Так что ученые далеко не сразу поняли, что два с лишним миллиарда лет назад всему живому на Земле не нужен был кислород. Это подтверждают нынешние открытия.

Оцените статью
Кислород
Добавить комментарий