Водород
Химический элемент водород занимает особое положение в периодической системе Д.И. Менделеева. По числу валентных электронов, способности образовывать в растворах гидратный ион H он сходен с щелочными металлами, и его следует поместить в I группу.
По числу электронов, необходимых для завершения внешней электронной оболочки, значению энергии ионизации, способности проявлять отрицательную степень окисления, малому атомному радиусу водород следует поместить в VII группу периодической системы. Таким образом, размещение водорода в той или иной группе периодической системы в значительной мере условно, но в большинстве случаев его помещают в VII группу.
Электронная формула водорода 1s1. Единственный валентный электрон находится непосредственно в сфере действия атомного ядра. Простота электронной конфигурации водорода отнюдь не означает, что химические свойства этого элемента просты. Напротив, химия водорода во многом отличается от химии других элементов. Водород в своих соединениях способен проявлять степени окисления 1 и –1.
Существует большое количество методов получения водорода. В лаборатории его получают взаимодействием некоторых металлов с кислотами, например:
Водород можно получить электролизом водных растворов серной кислоты или щелочей. При этом происходит процесс выделения водорода на катоде и кислорода на аноде.
В промышленности водород получают главным образом из природных и попутных газов, продуктов газификации топлива и коксового газа.
Простое вещество водород, H2, представляет собой горючий газ без цвета и запаха. Температура кипения –252,8 °C. Водород в 14,5 раза легче воздуха, мало растворим в воде.
Молекула водорода устойчива, обладает большой прочностью. Из-за высокой энергии диссоциации распад молекул H2 на атомы происходит в заметной степени лишь при температуре выше 2000 °C.
Для водорода возможны положительная и отрицательная степени окисления, поэтому в химических реакциях водород может проявлять как окислительные, так и восстановительные свойства. В тех случаях, когда водород выступает в качестве окислителя, он ведёт себя подобно галогенам, образуя аналогичные галогенидам гидриды (гидридами называют группу химических соединений водорода с металлами и менее электроотрицательными, чем он, элементами):
По окислительной активности водород существенно уступает галогенам. Поэтому ионный характер проявляют лишь гидриды щелочных и щёлочноземельных металлов. Ионные, а также комплексные гидриды, например, являются сильными восстановителями. Их широко используют в химических синтезах.
В большинстве реакций водород ведёт себя как восстановитель. При нормальных условиях водород не взаимодействует с кислородом, однако при поджигании реакция протекает со взрывом:
Смесь двух объёмов водорода с одним объёмом кислорода называют гремучим газом. При контролируемом горении происходит выделение большого количества тепла, и температура водородно-кислородного пламени достигает 3000 °С.
Реакция с галогенами протекает в зависимости от природы галогена по-разному:
С фтором такая реакция идёт со взрывом даже при низких температурах. С хлором на свету реакция также протекает со взрывом. С бромом реакция идёт значительно медленнее, а с йодом не доходит до конца даже при высокой температуре. Механизм этих реакций радикальный.
При повышенной температуре водород взаимодействует с элементами VI группы — серой, селеном, теллуром, например:
Очень важной является реакция водорода с азотом. Эта реакция обратима. Для смещения равновесия в сторону образования аммиака используют повышенное давление. В промышленности данный процесс осуществляют при температуре 450—500 °С, давлении 30 МПа, в присутствии различных катализаторов:
Водород восстанавливает многие металлы из оксидов, например:
Данную реакцию используют для получения некоторых чистых металлов.
Огромную роль играют реакции гидрирования органических соединений, которые широко используют как в лабораторной практике, так и в промышленном органическом синтезе.
Сокращение природных источников углеводородного сырья, загрязнение окружающей среды продуктами сгорания топлива повышают интерес к водороду как к экологически чистому топливу. Вероятно, водород будет играть важную роль в энергетике будущего.
В настоящее время водород широко применяют в промышленности для синтеза аммиака, метанола, гидрогенизации твёрдого и жидкого топлива, в органическом синтезе, для сварки и резки металлов и т. д.
Вода H2O, оксид водорода, является важнейшим химическим соединением. При нормальных условиях вода — бесцветная жидкость, без запаха и вкуса. Вода — самое распространённое вещество на поверхности Земли. В человеческом организме содержится 63—68 % воды.
Вода является стабильным соединением, её разложение на кислород и водород происходит лишь под действием постоянного электрического тока или при температуре около 2000 °C:
Вода непосредственно взаимодействует с металлами, стоящими в ряду стандартных электронных потенциалов до водорода. Продуктами реакции в зависимости от природы металла могут быть соответствующие гидроксиды и оксиды. Скорость реакции в зависимости от природы металла также изменяется в широких пределах.
Вода может вступать в реакцию со многими неметаллами, так, при обычных условиях вода обратимо взаимодействует с хлором:
При повышенной температуре вода взаимодействует с углем с образованием так называемого синтез-газа — смеси оксида углерода (II) и водорода:
При обычных условиях вода реагирует со многими основными и кислотными оксидами с образованием оснований и кислот соответственно:
Реакция идёт до конца, если соответствующее основание или кислота растворимы в воде.
Оксид фосфора (v)
Оксид фосфора (V) – это кислотный оксид. В нормальных условиях образует белые кристаллы. В парах состоит из молекул P4О10. Очень гигроскопичен (используется как осушитель газов и жидкостей).
Способы получения. Оксид фосфора (V) получают сжиганием фосфора в избытке кислорода.
4P 5O2 → 2P2O5
Химические свойства.
1. Оксид фосфора (V) – очень гигроскопичное вещество, которое используется для осушения газов. Обладая высоким сродством к воде, оксид фосфора (V) дегидратирует до ангидридов неорганические и органические кислоты.
Например, оксид фосфора (V) дегидратирует серную, азотную и уксусную кислоты:
P2O5 H2SO4 → 2HPO3 SO3
P2O5 2HNO3 → 2HPO3 N2O5
P2O5 2CH3COOH → 2HPO3 (CH3CO)2O
2. Фосфорный ангидрид является типичным кислотным оксидом, взаимодействует с водой с образованием фосфорных кислот:
P2O5 3H2O → 2H3PO4
В зависимости от количества воды и от других условий образуются мета-фосфорная, орто-фосфорная или пиро-фосфорная кислота:
P2O5 2H2O → 2H4P2O7
P2O5 H2O → HPO3
Видеоопыт взаимодействия оксида фосфора с водой можно посмотреть здесь.
3.Как кислотный оксид, оксид фосфора (V) взаимодействует с основными оксидами и основаниями.
Например, оксид фосфора (V) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:
P2O5 6NaOH → 2Na3PO4 3H2O
P2O5 2NaOH H2O → 2NaH2PO4
P2O5 4NaOH → 2Na2HPO4 H2O
Еще пример: оксид фосфора взаимодействует с оксидом бария (при сплавлении):
P2O5 3BaO → Ba3(PO4)2
Соли серной кислоты – сульфаты
Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.
1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:
BaCl2 Na2SO4 → BaSO4↓ 2NaCl
Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.
2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;
2CuSO4 → 2CuO SO2 O2 (SO3)
2Al2(SO4)3 → 2Al2O3 6SO2 3O2
2ZnSO4 → 2ZnO SO2 O2
2Cr2(SO4)3 → 2Cr2O3 6SO2 3O2
При разложении сульфата железа (II) в FeSO4 Fe (II) окисляется до Fe (III)
4FeSO4 → 2Fe2O3 4SO2 O2
Сульфаты самых тяжелых металлов разлагаются до металла.
3. За счет серы со степенью окисления 6 сульфаты проявляют окислительныесвойстваи могут взаимодействовать с восстановителями.
Например, сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:
CaSO4 4C → CaS 4CO
4.Многие средние сульфаты образуют устойчивые кристаллогидраты:
Na2SO4 ∙ 10H2O − глауберова соль
CaSO4 ∙ 2H2O − гипс
CuSO4 ∙ 5H2O − медный купорос
FeSO4 ∙ 7H2O − железный купорос
ZnSO4 ∙ 7H2O − цинковый купорос
Способы получения
1. Серную кислоту в промышленностипроизводят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.
Основные стадии получения серной кислоты :
- Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
- Очистка полученного газа от примесей.
- Окисление сернистого газа в серный ангидрид.
- Взаимодействие серного ангидрида с водой.
Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):
| Аппарат | Назначение и уравненяи реакций |
| Печь для обжига | 4FeS2 11O2 → 2Fe2O3 8SO2 Q Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС |
| Циклон | Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз. |
| Электрофильтр | Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра). |
| Сушильная башня | Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота. |
| Теплообменник | Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата. |
| Контактный аппарат | 2SO2 O2 ↔ 2SO3 Q В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):
Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню. |
| Поглотительная башня | Получение H2SO4 протекает в поглотительной башне. Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3. nSO3 H2SO4 → H2SO4·nSO3 Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю. |
Общие научные принципы химического производства:
- Непрерывность.
- Противоток
- Катализ
- Увеличение площади соприкосновения реагирующих веществ.
- Теплообмен
- Рациональное использование сырья
Тренировочные задания
1. Водород при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) кислородом и железом2) серой и хромом3) оксидом углерода (II) и соляной кислотой4) азотом и натрием
2. Верны ли следующие утверждения о водороде?
А. Перекись водорода можно получить сжиганием водорода в избытке кислорода.Б. Реакция между водородом и серой идёт без катализатора.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
3. Кислород при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) гелием и железом2) фосфором и цинком3) оксидом кремния (IV) и хлором4) хлоридом калия и серой
4. Верны ли следующие утверждения о кислороде?
А. Кислород не реагирует с хлором.Б. Реакция кислорода с серой даёт SO2.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
5. Фтор при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) гелием и железом2) аргоном и азотной кислотой3) оксидом углерода (IV) и неоном4) водой и натрием
6. Верны ли следующие утверждения о фторе?
А. Реакция избытка фтора с фосфором приводит к PF5.Б. Фтор реагирует с водой.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
7. Хлор при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) кислородом и железом2) фосфором и серной кислотой3) оксидом кремния (IV) и неоном4) бромидом калия и серой
8. Верны ли следующие утверждения о хлоре?
А. Пары хлора легче воздуха.Б. В заимодействие хлора с кислородом приводит к оксиду хлора (V).
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
9. Бром при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) фосфором и железом2) фосфором и серной кислотой3) оксидом кремния (IV) и хлором4) бромидом калия и серой
10. Верны ли следующие утверждения о броме?
А. Бром не вступает в реакцию с водородом.Б. Бром вытесняет хлор из хлоридов.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
11. Йод при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) гелием и железом2) фосфором и кальцием3) оксидом кремния (IV) и хлором4) хлоридом калия и серой
12. Верны ли следующие утверждения о йоде?
А. Раствор йода обладает бактерицидными свойствами.Б. Йод реагирует с хлоридом кальция.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
13. Сера при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) натрием и железом2) фосфором и оксидом цинком3) оксидом кремния (IV) и хлором4) хлоридом калия и бромидом натрия
14. Верны ли следующие утверждения о сере?
А. При сплавлении серы и кальция образуется CaS.Б. При реакции серы с кислородом образуется SO2.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
15. Азот при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) литием и хлоридом кальция2) хлором и оксидом кальция3) оксидом кремния (IV) и хлором4) литием и кальцием
16. Верны ли следующие утверждения об азоте?
А. В промышленности реакцию азота и водорода осуществляют под высоким давлением в присутствии катализатора.Б. При взаимодействии азота и натрия образуется Na3N.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
17. Фосфор при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) натрием и сульфидом кальция2) хлором и кислородом3) оксидом углерода (IV) и серой4) серой и оксидом цинка
18. Верны ли следующие утверждения о фосфоре?
А. Реакция фосфора с хлором идёт только в присутствии катализатора.Б. При реакции фосфора с избытком серы образуются только P2S3.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
19. Углерод при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) кальцием и сульфатом бария2) хлором и неоном3) оксидом фосфора (V) и серой4) серой и гидроксидом цинка
20. Верны ли следующие утверждения об углероде?
А. При взаимодействии углерода с натрием образуется карбид состава Na2C2.Б. Углерод реагирует с оксидом кальция с образованием CaC2.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
21. Кремний при соответствующих условиях вступает в реакцию с каждым из двух веществ:
1) кислородом и гидроксидом натрия2) хлором и неоном3) оксидом фосфора (V) и серой4) серой и гидроксидом цинка
22. Верны ли следующие утверждения о кремнии?
А. При взаимодействии кремния с углеродом образуется карбид состава SiC.Б. Кремний реагирует с магнием с образованием Mg2Si.
1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны
23. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) H2 Ca →Б) H2 Na2SO4 →В) H2 CuO →
ПРОДУКТЫ РЕАКЦИИ1) Na2SO3 H2O2) Cu(OH)23) Cu H2O4) CaH25) Na2S H2O
24. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) H2 Fe3O4 →Б) H2 N2 →В) H2 Na →
ПРОДУКТЫ РЕАКЦИИ1) Fe(OH)22) NH33) N2H44) Fe H2O 5) NaH
25. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) O2 Li →Б) O2 Fe(OH)2 H2O →В) O2 (изб.) P →
ПРОДУКТЫ РЕАКЦИИ1) Li2O2) Li2O23) P2O54) Fe(OH)35) P2O3
26. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) O2 S →Б) O2 Cr(OH)2 H2O →В) O2 (изб.) C →
ПРОДУКТЫ РЕАКЦИИ1) CO2) CO23) SO34) SO25) Cr(OH)3
27. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Cl2 Fe →Б) Cl2 Cr →В) Cl2 (изб.) P →
ПРОДУКТЫ РЕАКЦИИ1) PCl32) FeCl23) FeCl34) CrCl35) PCl5
28. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Cl2 NaOH (охл.) →Б) Cl2 NaOH (нагр.) →В) Cl2 NaBr →
ПРОДУКТЫ РЕАКЦИИ1) NaClO3 NaCl H2O2) NaCl NaClO H2O3) NaClO3 NaCl4) NaCl Br25) NaClBr
29. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Br2 NaI →Б) Br2 NaOH (нагр.) →В) Br2 NaOH (охл.) →
ПРОДУКТЫ РЕАКЦИИ1) NaClI2) NaBrO NaBr3) NaBrO3 NaBr H2O4) NaBrO NaBr H2O5) NaBr I2
30. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Br2 NaOH (нагр.) →Б) Br2 I2 →В) Br2 SO2 H2O →
ПРОДУКТЫ РЕАКЦИИ1) NaBr NaBrO3 H2O2) NaBr NaBrO H2O3) I Br4) H2SO4 HBr5) HBr SO3
31. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) I2 SO2 H2O →Б) I2 H2S →В) I2 HNO3 (конц.) →
ПРОДУКТЫ РЕАКЦИИ1) HIO3 NO2 H2O2) HI S3) HIO NO H2O4) HIO NO25) HI H2SO4
32. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) I2 HNO3 (конц.) →Б) I2 NaOH (нагрев.) →В) I2 Br2 →
ПРОДУКТЫ РЕАКЦИИ1) NaI NaIO H2O2) HIO3 NO2 H2O3) IBr4) HIO NO H2O5) NaI NaIO3 H2O
33. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) S Na →Б) S HI →В) S NaOH →
ПРОДУКТЫ РЕАКЦИИ1) Na2SO3 H2O2) Na2S3) H2S I24) Na2S Na2SO3 H2O5) Na2S H2O
34. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) S Cl2 (недост.) →Б) S HNO3 (конц.) →В) S O2 →
ПРОДУКТЫ РЕАКЦИИ1) H2SO4 NO2 H2O2) SCl63) SO34) SO25) SCl2
35. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) N2 O2 →Б) N2 Na →В) N2 Ca →
ПРОДУКТЫ РЕАКЦИИ1) Ca3N22) NO23) N2O54) NO5) Na3N
36. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) N2 Li →Б) N2 Al →В) N2 H2 →
ПРОДУКТЫ РЕАКЦИИ1) NH32) Li3N3) N2H24) LiN35) AlN
37. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) P H2 →Б) P Cl2 (изб.) →В) P H2SO4 (конц.) →
ПРОДУКТЫ РЕАКЦИИ1) PCl32) H3PO4 SO2 H2O3) H2S PH3 H2O4) PH35) PCl5
38. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) P Br2 (недост.) →Б) P LiВ) P HNO3 (конц.) →
ПРОДУКТЫ РЕАКЦИИ1) H3PO4 NO2 H2O2) Li3P3) H3PO4 NH4NO34) PBr55) PBr3
39. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) C H2SO4 (конц.) →Б) C Ca →В) C Na2SO4 →
ПРОДУКТЫ РЕАКЦИИ1) CO2 SO2 H2O2) Na2SO3 CO3) CaC24) CaC5) Na2S CO2
40. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) C H2O →Б) C HNO3 →В) C S →
ПРОДУКТЫ РЕАКЦИИ1) CO2 NO2 H2O2) CO2 NH4NO33) CO H24) CO2 H25) CS2
41. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Si O2 →Б) Si S →В) S i Mg →
ПРОДУКТЫ РЕАКЦИИ1) SiS22) Mg2S3) MgS4) SiO25) SiS
42. Установите соответствие между реагирующими веществами и продуктами реакций.
РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Si Cl2 →Б) Si C →В) Si NaOH →
ПРОДУКТЫ РЕАКЦИИ1) SiC2) SiCl23) Na2SiO3 H24) Na2SiO3 H2O5) SiCl4
43. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
44. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
45. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
46. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
47. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
48. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
49. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.
50. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
51. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
52. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
53. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
54. Дана схема превращений:
Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.
Углерод
Химический элемент углерод расположен во 2-м периоде, главной подгруппе IV группы периодической системы Д.И. Менделеева, его электронная формула 1s22s22p2, наиболее характерные степени окисления –4, 2, 4.
Для углерода известны стабильные аллотропные модификации (графит, алмаз, аллотропия строения), в виде которых он встречается в природе, а также полученные лабораторным путём карбин и фуллерены.
Алмаз — кристаллическое вещество с атомной координационной кубической решёткой. Каждый атом углерода в алмазе находится в состоянии sp3-гибридизации и образует равноценные прочные связи с четырьмя соседними атомами углерода. Это обуславливает исключительную твёрдость алмаза и отсутствие в обычных условиях электропроводности.
В графите атомы углерода находятся в состоянии sp2-гибридизации. Атомы углерода объединены в бесконечные слои из шестичленных колец, стабилизированные ω-связью, делокализованные в пределах всего слоя. Этим объясняется металлический блеск и электрическая проводимость графита.
Углеродные слои объединены в кристаллическую решётку в основном за счёт межмолекулярных сил. Прочность химических связей в плоскости макромолекулы значительно больше, чем между слоями, поэтому графит довольно мягок, легко расслаивается и химически несколько активнее алмаза.
В состав древесного угля, сажи и кокса входят очень мелкие кристаллы графита с очень большой поверхностью, которые называют аморфным углеродом.
В карбине атом углерода находится в состоянии sp-гибридизации. Его кристаллическая решётка построена из прямолинейных цепочек двух видов:
Карбин представляет собой порошок чёрного цвета с плотностью 1,9—2,0 г/см3, является полупроводником.
Аллотропные модификации углерода могут переходить друг в друга при определённых условиях. Так, при нагревании без доступа воздуха при температуре 1750 °С алмаз переходит в графит.
В нормальных условиях углерод весьма инертен, однако при высоких температурах он вступает в реакции с различными веществами, причём самой реакционноспособной формой является аморфный углерод, менее активен графит, а самый инертный — алмаз.
Реакции, характерные для углерода:
Углерод устойчив к действию кислот и щелочей. Только горячие концентрированные азотная и серная кислоты могут окислить его до оксида углерода (IV):
Углерод восстанавливает многие металлы из их оксидов. При этом в зависимости от природы металла образуются либо чистые металлы (оксиды железа, кадмия, меди, свинца), либо соответствующие карбиды (оксиды кальция, ванадия, тантала), например:
Углерод образует два оксида: CO и CO2.
Оксид углерода (II) CO (угарный газ) представляет собой бесцветный газ без запаха, плохо растворимый в воде. Это соединение является сильным восстановителем. Он горит на воздухе с выделением большого количества теплоты, благодаря чему CO является хорошим газообразным топливом.
Оксид углерода (II) восстанавливает многие металлы из их оксидов:
Оксид углерода (II) является несолеобразующим оксидом, с водой и щелочами он не реагирует.
Оксид углерода (IV) CO2 (углекислый газ) представляет собой бесцветный, без запаха, негорючий газ, малорастворимый в воде. В технике его обычно получают термическим разложением CaCO3, а в лабораторной практике — действием на CaCO3 соляной кислоты:
Оксид углерода (IV) является кислотным оксидом. Его характерные химические свойства:
Оксиду углерода (IV) соответствует очень слабая двухосновная угольная кислота H2CO3, которая не существует в чистом виде. Она образует два ряда солей: средние — карбонаты, например карбонат кальция CaCO3, и кислые — гидрокарбонаты, например Ca(HCO3)2 — гидрокарбонат кальция.
Карбонаты переходят в гидрокарбонаты под действием избытка углекислого газа в водной среде:
Гидрокарбонат кальция превращается в карбонат под действием гидроксида кальция:
Гидрокарбонаты и карбонаты разлагаются при нагревании:
Химические свойства
Серная кислота – это сильная двухосновная кислота.
1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:
H2SO4 ⇄ H HSO4–
По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:
HSO4– ⇄ H SO42–
2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.
Например, серная кислота взаимодействует с оксидом магния:
H2SO4 MgO → MgSO4 H2O
Еще пример: при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:
H2SO4 КОН → KHSО4 H2O
H2SO4 2КОН → К2SО4 2H2O
Серная кислота взаимодействует с амфотерным гидроксидом алюминия:
3H2SO4 2Al(OH)3 → Al2(SO4)3 6H2O
3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).
Например, серная кислота взаимодействует с гидрокарбонатом натрия:
Н2SO4 2NaHCO3 → Na2SO4 CO2 H2O
Или с силикатом натрия:
H2SO4 Na2SiO3 → Na2SO4 H2SiO3
Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:
NaNO3(тв.) H2SO4 → NaHSO4 HNO3
Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например, хлорида натрия:
NaCl(тв.) H2SO4 → NaHSO4 HCl
4. Также серная кислота вступает в обменные реакции с солями.
Например, серная кислота взаимодействует с хлоридом бария:
H2SO4 BaCl2 → BaSO4 2HCl
5.Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.
Например, серная кислота реагирует с железом. При этом образуется сульфат железа (II):
H2SO4(разб.) Fe → FeSO4 H2
Серная кислота взаимодействует с аммиакомс образованием солей аммония:
H2SO4 NH3 → NH4HSO4
Концентрированнаясерная кислота является сильным окислителем. При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы S, или сероводорода Н2S.
Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.
6H2SO4(конц.) 2Fe → Fe2(SO4)3 3SO2 6H2O
6H2SO4(конц.) 2Al → Al2(SO4)3 3SO2 6H2O
При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:
2H2SO4(конц.) Cu → CuSO4 SO2 ↑ 2H2O
2H2SO4(конц.) Hg → HgSO4 SO2 ↑ 2H2O
2H2SO4(конц.) 2Ag → Ag2SO4 SO2↑ 2H2O
При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:
3Mg 4H2SO4 → 3MgSO4 S 4H2O
При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:
5H2SO4(конц.) 4Zn → 4ZnSO4 H2S↑ 4H2O
6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:
BaCl2 Na2SO4 → BaSO4↓ 2NaCl
Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.
7.Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.
Например, концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):
5H2SO4(конц.) 2P → 2H3PO4 5SO2↑ 2H2O
2H2SO4(конц.) С → СО2↑ 2SO2↑ 2H2O
2H2SO4(конц.) S → 3SO2 ↑ 2H2O
Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:
3H2SO4(конц.) 2KBr → Br2↓ SO2↑ 2KHSO4 2H2O
5H2SO4(конц.) 8KI → 4I2↓ H2S↑ K2SO4 4H2O
H2SO4(конц.) 3H2S → 4S↓ 4H2O
Химические свойства кислорода
Кислород — сильный окислитель, уступающий по химической активности только фтору.
Вступает во
взаимодействия со всеми элементами, кроме инертных газов (Не, Ne и Аг). Со
многими простыми веществами реагирует непосредственно при обычных условиях или
при нагревании или в присутствии катализаторов (кроме Au, Pt, Hal2, благородные газы).
Большинство реакций с участием О2 экзотермичны, часто часто сопровождаются горением, иногда — взрывом.
Взаимодействие с простыми веществами
С металлами
- Кислород взаимодействует с металлами, с образованием оксидов металлов:
Me О2 = МеxOy оксиды
4Li О2 = 2Li2O оксид лития
2Na О2 = Na2О2 пероксид натрия
К О2 = КО2 супероксид калия
- С железом образуется смесь оксидов:
3Fe 2O2 =
Fe3O4 (Fe2O3*FeO)
- С марганцем образуется диоксид марганца:
Mn O2 = MnO2
С неметаллами
При
взаимодействии с неметаллами (кроме фтора и инертных газов) образуются оксиды,
со степенью окисления кислорода – 2:
Si O2 = SiO2 (t=400-5000С)
С О2(изб) = СО2; С О2(нед) =
СО
N2 О2 = 2NO — Q
S О2 = SО2;
4Р 5О2 = 2Р2О5
Окисление сложных веществ
Горение сульфидов
4FeS2 11O2 = 2Fe2O3 8SO2
Горение водородных соединений
4HI О2 = 2I2 2Н2O
2H2S 3O2 = 2SO2
2H2O
CH4
2O2 = CO2 2H2O
Окисление
оксидов
Кислород окисляет
входящие в оксид элементы до более высокой степени окисления:
4FeO О2 = 2Fe2О3
2SО2 О2 = 2SО3
4NО2 О2 2H2O = 4HNО3
Окисление гидроксидов и солей
Окисление гидроксидов и солей в водных растворах происходит, если исходное вещество неустойчиво на воздухе:
2HNO2 O2 = 2HNO3
4Fe(OH)2 O2 2H2O
= 4Fe(OH)3
Окисление аммиака
В отсутствие катализатора при окислении аммиака кислородом образуется азот, а в присутствии катализатора — оксида азота(II):
4NH3 3О2 =2N2 6Н2O
4NH3 5О2 = 4NO 6Н2O
Окисление
фосфина
На
воздухе самопроизвольно воспламеняется:
2PH3 4О2 = P2О5 3Н2O
Окисление
силана
На воздухе он самовоспламеняется (часто
со взрывом) с образованием SiO2 и H2O:
SiH4 2О2 = SiО2 2Н2O
Окисление органических веществ
CxHy О2 = CО2 Н2O
Продукты
окисления различных элементов, входящих в молекулы органических соединений:
С → CO2
Н → Н2O
Hal → Hal2
N → N2
P → P2O5
S → SO2
Например:
2C2H5 4О2 = 4CО2 5Н2O
C2H5Сl 3О2 = 2CО2 2Н2O HCl
2C2H5NH2 8,5О2 = 4CО2 7Н2O N2
Кроме горения возможны также реакции неполного окисления:
СН3-СН2-СН2-СН3 3O2 → 2СН3-СOOH 2H2O
- окисление первичных спиртов до альдегидов, вторичных – до кетонов:
- окисление альдегидов до кислот:
Химические свойства сероводорода
1.В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:
Например, сероводород реагирует с гидроксидом натрия:
H2S 2NaOH → Na2S 2H2OH2S NaOH → NaНS H2O
2.Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):
2H2S O2 → 2S 2H2O
В избытке кислорода:
2H2S 3O2 → 2SO2 2H2O
3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.
Например, бром и хлор окисляют сероводород до молекулярной серы:
H2S Br2 → 2HBr S↓
H2S Cl2 → 2HCl S↓
Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:
H2S 4Cl2 4H2O → H2SO4 8HCl
Например, азотная кислота окисляет сероводород до молекулярной серы:
H2S 2HNO3(конц.) → S 2NO2 2H2O
При кипячении сера окисляется до серной кислоты:
H2S 8HNO3(конц.) → H2SO4 8NO2 4H2O
Прочие окислители окисляют сероводород, как правило, до молекулярной серы.
Например, оксид серы (IV) окисляет сероводород:
2H2S SO2 → 3S 2H2O
Соединения железа (III) также окисляют сероводород:
H2S 2FeCl3 → 2FeCl2 S 2HCl
Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:
3H2S K2Cr2O7 4H2SO4 → 3S Cr2(SO4)3 K2SO4 7H2O
2H2S 4Ag O2 → 2Ag2S 2H2O
Серная кислота окисляет сероводород либо до молекулярной серы:
H2S H2SO4(конц.) → S SO2 2H2O
Либо до оксида серы (IV):
H2S 3H2SO4(конц.) → 4SO2 4H2O
4.Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.
Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:
H2S Pb(NO3)2 → PbS 2HNO3
Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.
Видеоопытвзаимодействия сероводорода с нитратом свинца можно посмотреть здесь.
Химические свойства сульфидов
1. Растворимые сульфиды гидролизуютсяпо аниону, среда водных растворов сульфидов щелочная:
K2S H2O ⇄ KHS KOHS2– H2O ⇄ HS– OH–
2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.
Например, сульфид кальция растворяется в соляной кислоте:
CaS 2HCl → CaCl2 H2S
А сульфид никеля, например, не растворяется:
NiS HСl ≠
3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.
Например, сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:
CuS 8HNO3 → CuSO4 8NO2 4H2O
или горячей концентрированной серной кислоте:
CuS 4H2SO4(конц. гор.) → CuSO4 4SO2 4H2O
4.Сульфиды проявляют восстановительныесвойства и окисляются пероксидом водорода, хлором и другими окислителями.
Например, сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):
PbS 4H2O2 → PbSO4 4H2O
Еще пример: сульфид меди (II) окисляется хлором:
СuS Cl2 → CuCl2 S
5.Сульфиды горят(обжиг сульфидов). При этом образуются оксиды металла и серы (IV).
Например, сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):
2CuS 3O2 → 2CuO 2SO2
Аналогично сульфид хрома (III) и сульфид цинка:
2Cr2S3 9O2 → 2Cr2O3 6SO2
2ZnS 3O2 → 2SO2 ZnO
6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественныена ион S2−.
Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:
Na2S Pb(NO3)2 → PbS↓ 2NaNO3
Na2S 2AgNO3 → Ag2S↓ 2NaNO3
Na2S Cu(NO3)2 → CuS↓ 2NaNO3
7.Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).
Например, сульфид алюминия разлагается до гидроксида алюминия и сероводорода:
Al2S3 6H2O → 2Al(OH)3 3H2S
Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.
Например, сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:
3Na2S 2AlCl3 6H2O → 2Al(OH)3 3H2S 6NaCl
Химические свойства фосфора
При нормальных условиях фосфор довольно химически активен.
1. Фосфор проявляет свойства окислителя(с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя(с элементами, расположенными выше и правее). Поэтому фосфор реагирует с металлами и неметаллами.
1.1. При взаимодействии с кислородомвоздуха образу
ются оксиды – ангидриды соответствующих кислот:
4P 3O2 → 2P2O3
4P 5O2 → 2P2O5
Горение белого фосфора:
Горение красного фосфора:
1.2. При взаимодействии фосфора с галогенамиобразуются галогениды с общей формулой PHal3 и PHal5:
2P 3Cl2 → 2PCl3
2P 5Cl2 → 2PCl5
Фосфор реагирует с бромом:
1.3. При взаимодействии фосфора ссеройобразуются сульфиды:
2P 3S → P2S3
2P 5S → P2S5
1.4. При взаимодействии с металламифосфор проявляет свойства окислителя, продукты реакции называют фосфидами.
Например, кальций и магний реагируют с фосфором с образованием фосфидов кальция и магния:
2P 3Ca → Ca3P2
2P 3Mg → Mg3P2
Ещепример: натрий взаимодействует с фосфором с образованием фосфида натрия:
P 3Na → Na3P
1.5. С водородомфосфор непосредственно не взаимодействует.
2.Со сложными веществамифосфор реагирует, проявляя окислительные и восстановительные свойства. Фосфор диспропорционирует при взаимодействии с некоторыми веществами.
2.1.При взаимодействии сокислителямифосфор окисляется до оксида фосфора (V) или до фосфорной кислоты.
Например, азотная кислотаокисляет фосфор до фосфорной кислоты:
5HNO3 P → H3PO4 5NO2↑ H2O
5HNO3 3P 2H2O → 3H3PO4 5NO↑
Серная кислотатакже окисляет фосфор:
2P 5H2SO4 → 2H3PO4 5SO2 2H2O
Соединения хлора,например, бертолетова соль, также окисляют фосфор:
6P 5KClO3 → 3P2O5 5KCl
Реакция красного фосфора с бертолетовой солью. Этот процесс заложен в принципе возгорания спички при трении её о шершавую поверхность коробка.
Некоторые металлы-сильные окислители также окисляют фосфор.Например, оксид серебра (I):
2P 5Ag2O → P2O5 10Ag
2.2.При растворении вщелочахфосфор диспропорционирует до гипофосфита и фосфина.
Например, фосфор реагирует с гидроксидом калия:
4P 3KOH 3H2O → 3KH2PO2 PH3↑ или
P4 3KOH 3H2O → 3KH2PO2 PH3↑
Или с гидроксидом кальция:
8P 3Ca(OH)2 6H2O → 3Ca(H2PO2)2 2PH3↑
