Электронные формулы химических элементов – конфигурации атомов, заряды, формулы

Электронные формулы химических элементов – конфигурации атомов, заряды, формулы Кислород

Водород

Химический элемент водород занимает особое положение в периодической системе Д.И. Менделеева. По числу валентных электронов, способности образовывать в растворах гидратный ион H он сходен с щелочными металлами, и его следует поместить в I группу.

По числу электронов, необходимых для завершения внешней электронной оболочки, значению энергии ионизации, способности проявлять отрицательную степень окисления, малому атомному радиусу водород следует поместить в VII группу периодической системы. Таким образом, размещение водорода в той или иной группе периодической системы в значительной мере условно, но в большинстве случаев его помещают в VII группу.

Электронная формула водорода 1s1. Единственный валентный электрон находится непосредственно в сфере действия атомного ядра. Простота электронной конфигурации водорода отнюдь не означает, что химические свойства этого элемента просты. Напротив, химия водорода во многом отличается от химии других элементов. Водород в своих соединениях способен проявлять степени окисления 1 и –1.

Существует большое количество методов получения водорода. В лаборатории его получают взаимодействием некоторых металлов с кислотами, например:

Водород можно получить электролизом водных растворов серной кислоты или щелочей. При этом происходит процесс выделения водорода на катоде и кислорода на аноде.

В промышленности водород получают главным образом из природных и попутных газов, продуктов газификации топлива и коксового газа.

Простое вещество водород, H2, представляет собой горючий газ без цвета и запаха. Температура кипения –252,8 °C. Водород в 14,5 раза легче воздуха, мало растворим в воде.

Молекула водорода устойчива, обладает большой прочностью. Из-за высокой энергии диссоциации распад молекул H2 на атомы происходит в заметной степени лишь при температуре выше 2000 °C.

Для водорода возможны положительная и отрицательная степени окисления, поэтому в химических реакциях водород может проявлять как окислительные, так и восстановительные свойства. В тех случаях, когда водород выступает в качестве окислителя, он ведёт себя подобно галогенам, образуя аналогичные галогенидам гидриды (гидридами называют группу химических соединений водорода с металлами и менее электроотрицательными, чем он, элементами):

По окислительной активности водород существенно уступает галогенам. Поэтому ионный характер проявляют лишь гидриды щелочных и щёлочноземельных металлов. Ионные, а также комплексные гидриды, например, являются сильными восстановителями. Их широко используют в химических синтезах.

В большинстве реакций водород ведёт себя как восстановитель. При нормальных условиях водород не взаимодействует с кислородом, однако при поджигании реакция протекает со взрывом:

Смесь двух объёмов водорода с одним объёмом кислорода называют гремучим газом. При контролируемом горении происходит выделение большого количества тепла, и температура водородно-кислородного пламени достигает 3000 °С.

Реакция с галогенами протекает в зависимости от природы галогена по-разному:

С фтором такая реакция идёт со взрывом даже при низких температурах. С хлором на свету реакция также протекает со взрывом. С бромом реакция идёт значительно медленнее, а с йодом не доходит до конца даже при высокой температуре. Механизм этих реакций радикальный.

При повышенной температуре водород взаимодействует с элементами VI группы — серой, селеном, теллуром, например:

Очень важной является реакция водорода с азотом. Эта реакция обратима. Для смещения равновесия в сторону образования аммиака используют повышенное давление. В промышленности данный процесс осуществляют при температуре 450—500 °С, давлении 30 МПа, в присутствии различных катализаторов:

Водород восстанавливает многие металлы из оксидов, например:

Данную реакцию используют для получения некоторых чистых металлов.

Огромную роль играют реакции гидрирования органических соединений, которые широко используют как в лабораторной практике, так и в промышленном органическом синтезе.

Сокращение природных источников углеводородного сырья, загрязнение окружающей среды продуктами сгорания топлива повышают интерес к водороду как к экологически чистому топливу. Вероятно, водород будет играть важную роль в энергетике будущего.

В настоящее время водород широко применяют в промышленности для синтеза аммиака, метанола, гидрогенизации твёрдого и жидкого топлива, в органическом синтезе, для сварки и резки металлов и т. д.

Вода H2O, оксид водорода, является важнейшим химическим соединением. При нормальных условиях вода — бесцветная жидкость, без запаха и вкуса. Вода — самое распространённое вещество на поверхности Земли. В человеческом организме содержится 63—68 % воды.

Вода является стабильным соединением, её разложение на кислород и водород происходит лишь под действием постоянного электрического тока или при температуре около 2000 °C:

Вода непосредственно взаимодействует с металлами, стоящими в ряду стандартных электронных потенциалов до водорода. Продуктами реакции в зависимости от природы металла могут быть соответствующие гидроксиды и оксиды. Скорость реакции в зависимости от природы металла также изменяется в широких пределах.

Вода может вступать в реакцию со многими неметаллами, так, при обычных условиях вода обратимо взаимодействует с хлором:

При повышенной температуре вода взаимодействует с углем с образованием так называемого синтез-газа — смеси оксида углерода (II) и водорода:

При обычных условиях вода реагирует со многими основными и кислотными оксидами с образованием оснований и кислот соответственно:

Реакция идёт до конца, если соответствующее основание или кислота растворимы в воде.

Оксид фосфора (v)

Оксид фосфора (V) –  это кислотный оксид.  В нормальных условиях образует белые кристаллы. В парах состоит из молекул P4О10. Очень гигроскопичен (используется как осушитель газов и жидкостей).

Способы получения. Оксид фосфора (V) получают сжиганием фосфора в избытке кислорода.

4P       5O2    →   2P2O5

Химические свойства.

1. Оксид фосфора (V) – очень гигроскопичное вещество, которое используется для осушения газов. Обладая высоким сродством к воде, оксид фосфора (V) дегидратирует до ангидридов неорганические и органические кислоты.

Например, оксид фосфора (V) дегидратирует серную, азотную и уксусную кислоты:

P2O5     H2SO4   → 2HPO3     SO3

P2O5     2HNO3  →  2HPO3    N2O5

P2O5      2CH3COOH   →   2HPO3     (CH3CO)2O

2. Фосфорный ангидрид  является типичным кислотным оксидом, взаимодействует с водой с образованием фосфорных кислот:

P2O5      3H2O   →  2H3PO4 

В зависимости от количества воды и от других условий образуются мета-фосфорная, орто-фосфорная или пиро-фосфорная кислота:

P2O5      2H2O   →  2H4P2O7 

P2O5    H2O   →  HPO3

Видеоопыт взаимодействия оксида фосфора с водой можно посмотреть здесь. 

3.Как кислотный оксид, оксид фосфора (V) взаимодействует с основными оксидами и основаниями.

Например, оксид фосфора (V) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

P2O5      6NaOH   →   2Na3PO4     3H2O

P2O5      2NaOH      H2O   →  2NaH2PO4 

P2O5      4NaOH    →  2Na2HPO4     H2O

Еще пример: оксид фосфора взаимодействует с оксидом бария (при сплавлении):

P2O5      3BaO    →   Ba3(PO4)2

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 Na2SO4  →   BaSO4↓  2NaCl

Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe  подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

2CuSO4  →   2CuO      SO2      O2     (SO3)

2Al2(SO4)3    →  2Al2O3      6SO2      3O2

2ZnSO4  →   2ZnO      SO2      O2

2Cr2(SO4)3   →    2Cr2O3      6SO2      3O2

При разложении сульфата железа (II) в FeSO4 Fe (II)  окисляется до Fe (III)

4FeSO4    →  2Fe2O3      4SO2      O2  

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления 6 сульфаты проявляют окислительныесвойстваи могут взаимодействовать с восстановителями.

Например, сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:

CaSO4   4C   →   CaS     4CO

4.Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова соль

CaSO4 ∙ 2H2O − гипс

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Способы получения

1. Серную кислоту в промышленностипроизводят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

АппаратНазначение и уравненяи реакций
Печь для обжига4FeS2 11O2 → 2Fe2O3 8SO2 Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800оС

Циклон Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат 2SO2 O2 ↔ 2SO3 Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  •  температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500оС. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  •  давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

nSO3 H2SO4  →  H2SO4·nSO3

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Про кислород:  Состав воздуха в процентах в атмосфере и на Земле (химия, 8 класс)

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Тренировочные задания

1. Водород при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и железом2) серой и хромом3) оксидом углерода (II) и соляной кислотой4) азотом и натрием

2. Верны ли следующие утверждения о водороде?

А. Перекись водорода можно получить сжиганием водорода в избытке кислорода.Б. Реакция между водородом и серой идёт без катализатора.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

3. Кислород при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом2) фосфором и цинком3) оксидом кремния (IV) и хлором4) хлоридом калия и серой

4. Верны ли следующие утверждения о кислороде?

А. Кислород не реагирует с хлором.Б. Реакция кислорода с серой даёт SO2.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

5. Фтор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом2) аргоном и азотной кислотой3) оксидом углерода (IV) и неоном4) водой и натрием

6. Верны ли следующие утверждения о фторе?

А. Реакция избытка фтора с фосфором приводит к PF5.Б. Фтор реагирует с водой.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

7. Хлор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и железом2) фосфором и серной кислотой3) оксидом кремния (IV) и неоном4) бромидом калия и серой

8. Верны ли следующие утверждения о хлоре?

А. Пары хлора легче воздуха.Б. В заимодействие хлора с кислородом приводит к оксиду хлора (V).

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

9. Бром при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) фосфором и железом2) фосфором и серной кислотой3) оксидом кремния (IV) и хлором4) бромидом калия и серой

10. Верны ли следующие утверждения о броме?

А. Бром не вступает в реакцию с водородом.Б. Бром вытесняет хлор из хлоридов.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

11. Йод при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом2) фосфором и кальцием3) оксидом кремния (IV) и хлором4) хлоридом калия и серой

12. Верны ли следующие утверждения о йоде?

А. Раствор йода обладает бактерицидными свойствами.Б. Йод реагирует с хлоридом кальция.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

13. Сера при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) натрием и железом2) фосфором и оксидом цинком3) оксидом кремния (IV) и хлором4) хлоридом калия и бромидом натрия

14. Верны ли следующие утверждения о сере?

А. При сплавлении серы и кальция образуется CaS.Б. При реакции серы с кислородом образуется SO2.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

15. Азот при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) литием и хлоридом кальция2) хлором и оксидом кальция3) оксидом кремния (IV) и хлором4) литием и кальцием

16. Верны ли следующие утверждения об азоте?

А. В промышленности реакцию азота и водорода осуществляют под высоким давлением в присутствии катализатора.Б. При взаимодействии азота и натрия образуется Na3N.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

17. Фосфор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) натрием и сульфидом кальция2) хлором и кислородом3) оксидом углерода (IV) и серой4) серой и оксидом цинка

18. Верны ли следующие утверждения о фосфоре?

А. Реакция фосфора с хлором идёт только в присутствии катализатора.Б. При реакции фосфора с избытком серы образуются только P2S3.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

19. Углерод при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кальцием и сульфатом бария2) хлором и неоном3) оксидом фосфора (V) и серой4) серой и гидроксидом цинка

20. Верны ли следующие утверждения об углероде?

А. При взаимодействии углерода с натрием образуется карбид состава Na2C2.Б. Углерод реагирует с оксидом кальция с образованием CaC2.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

21. Кремний при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и гидроксидом натрия2) хлором и неоном3) оксидом фосфора (V) и серой4) серой и гидроксидом цинка

22. Верны ли следующие утверждения о кремнии?

А. При взаимодействии кремния с углеродом образуется карбид состава SiC.Б. Кремний реагирует с магнием с образованием Mg2Si.

1) верно только А2) верно только Б3) верны оба суждения4) оба суждения неверны

23. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) H2 Ca →Б) H2 Na2SO4 →В) H2 CuO →

ПРОДУКТЫ РЕАКЦИИ1) Na2SO3 H2O2) Cu(OH)23) Cu H2O4) CaH25) Na2S H2O

24. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) H2 Fe3O4 →Б) H2 N2 →В) H2 Na →

ПРОДУКТЫ РЕАКЦИИ1) Fe(OH)22) NH33) N2H44) Fe H2O 5) NaH

25. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) O2 Li →Б) O2 Fe(OH)2 H2O →В) O2 (изб.) P →

ПРОДУКТЫ РЕАКЦИИ1) Li2O2) Li2O23) P2O54) Fe(OH)35) P2O3

26. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) O2 S →Б) O2 Cr(OH)2 H2O →В) O2 (изб.) C →

ПРОДУКТЫ РЕАКЦИИ1) CO2) CO23) SO34) SO25) Cr(OH)3

27. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Cl2 Fe →Б) Cl2 Cr →В) Cl2 (изб.) P →

ПРОДУКТЫ РЕАКЦИИ1) PCl32) FeCl23) FeCl34) CrCl35) PCl5

28. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Cl2 NaOH (охл.) →Б) Cl2 NaOH (нагр.) →В) Cl2 NaBr →

ПРОДУКТЫ РЕАКЦИИ1) NaClO3 NaCl H2O2) NaCl NaClO H2O3) NaClO3 NaCl4) NaCl Br25) NaClBr

29. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Br2 NaI →Б) Br2 NaOH (нагр.) →В) Br2 NaOH (охл.) →

ПРОДУКТЫ РЕАКЦИИ1) NaClI2) NaBrO NaBr3) NaBrO3 NaBr H2O4) NaBrO NaBr H2O5) NaBr I2

30. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Br2 NaOH (нагр.) →Б) Br2 I2 →В) Br2 SO2 H2O →

ПРОДУКТЫ РЕАКЦИИ1) NaBr NaBrO3 H2O2) NaBr NaBrO H2O3) I Br4) H2SO4 HBr5) HBr SO3

31. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) I2 SO2 H2O →Б) I2 H2S →В) I2 HNO3 (конц.) →

ПРОДУКТЫ РЕАКЦИИ1) HIO3 NO2 H2O2) HI S3) HIO NO H2O4) HIO NO25) HI H2SO4

32. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) I2 HNO3 (конц.) →Б) I2 NaOH (нагрев.) →В) I2 Br2 →

ПРОДУКТЫ РЕАКЦИИ1) NaI NaIO H2O2) HIO3 NO2 H2O3) IBr4) HIO NO H2O5) NaI NaIO3 H2O

33. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) S Na →Б) S HI →В) S NaOH →

ПРОДУКТЫ РЕАКЦИИ1) Na2SO3 H2O2) Na2S3) H2S I24) Na2S Na2SO3 H2O5) Na2S H2O

34. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) S Cl2 (недост.) →Б) S HNO3 (конц.) →В) S O2 →

ПРОДУКТЫ РЕАКЦИИ1) H2SO4 NO2 H2O2) SCl63) SO34) SO25) SCl2

35. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) N2 O2 →Б) N2 Na →В) N2 Ca →

ПРОДУКТЫ РЕАКЦИИ1) Ca3N22) NO23) N2O54) NO5) Na3N

36. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) N2 Li →Б) N2 Al →В) N2 H2 →

ПРОДУКТЫ РЕАКЦИИ1) NH32) Li3N3) N2H24) LiN35) AlN

37. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) P H2 →Б) P Cl2 (изб.) →В) P H2SO4 (конц.) →

ПРОДУКТЫ РЕАКЦИИ1) PCl32) H3PO4 SO2 H2O3) H2S PH3 H2O4) PH35) PCl5

38. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) P Br2 (недост.) →Б) P LiВ) P HNO3 (конц.) →

ПРОДУКТЫ РЕАКЦИИ1) H3PO4 NO2 H2O2) Li3P3) H3PO4 NH4NO34) PBr55) PBr3

39. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) C H2SO4 (конц.) →Б) C Ca →В) C Na2SO4 →

Про кислород:  Лямбда-Зонды Хёндэ Старекс Н1 II

ПРОДУКТЫ РЕАКЦИИ1) CO2 SO2 H2O2) Na2SO3 CO3) CaC24) CaC5) Na2S CO2

40. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) C H2O →Б) C HNO3 →В) C S →

ПРОДУКТЫ РЕАКЦИИ1) CO2 NO2 H2O2) CO2 NH4NO33) CO H24) CO2 H25) CS2

41. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Si O2 →Б) Si S →В) S i Mg →

ПРОДУКТЫ РЕАКЦИИ1) SiS22) Mg2S3) MgS4) SiO25) SiS

42. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВАА) Si Cl2 →Б) Si C →В) Si NaOH →

ПРОДУКТЫ РЕАКЦИИ1) SiC2) SiCl23) Na2SiO3 H24) Na2SiO3 H2O5) SiCl4

43. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

44. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

45. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

46. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

47. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

48. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

49. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

50. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

51. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

52. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

53. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

54. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

Углерод

Химический элемент углерод расположен во 2-м периоде, главной подгруппе IV группы периодической системы Д.И. Менделеева, его электронная формула 1s22s22p2, наиболее характерные степени окисления –4, 2, 4.

Для углерода известны стабильные аллотропные модификации (графит, алмаз, аллотропия строения), в виде которых он встречается в природе, а также полученные лабораторным путём карбин и фуллерены.

Алмаз — кристаллическое вещество с атомной координационной кубической решёткой. Каждый атом углерода в алмазе находится в состоянии sp3-гибридизации и образует равноценные прочные связи с четырьмя соседними атомами углерода. Это обуславливает исключительную твёрдость алмаза и отсутствие в обычных условиях электропроводности.

В графите атомы углерода находятся в состоянии sp2-гибридизации. Атомы углерода объединены в бесконечные слои из шестичленных колец, стабилизированные ω-связью, делокализованные в пределах всего слоя. Этим объясняется металлический блеск и электрическая проводимость графита.

Углеродные слои объединены в кристаллическую решётку в основном за счёт межмолекулярных сил. Прочность химических связей в плоскости макромолекулы значительно больше, чем между слоями, поэтому графит довольно мягок, легко расслаивается и химически несколько активнее алмаза.

В состав древесного угля, сажи и кокса входят очень мелкие кристаллы графита с очень большой поверхностью, которые называют аморфным углеродом.

В карбине атом углерода находится в состоянии sp-гибридизации. Его кристаллическая решётка построена из прямолинейных цепочек двух видов:

Карбин представляет собой порошок чёрного цвета с плотностью 1,9—2,0 г/см3, является полупроводником.

Аллотропные модификации углерода могут переходить друг в друга при определённых условиях. Так, при нагревании без доступа воздуха при температуре 1750 °С алмаз переходит в графит.

В нормальных условиях углерод весьма инертен, однако при высоких температурах он вступает в реакции с различными веществами, причём самой реакционноспособной формой является аморфный углерод, менее активен графит, а самый инертный — алмаз.

Реакции, характерные для углерода:

Углерод устойчив к действию кислот и щелочей. Только горячие концентрированные азотная и серная кислоты могут окислить его до оксида углерода (IV):

Углерод восстанавливает многие металлы из их оксидов. При этом в зависимости от природы металла образуются либо чистые металлы (оксиды железа, кадмия, меди, свинца), либо соответствующие карбиды (оксиды кальция, ванадия, тантала), например:

Углерод образует два оксида: CO и CO2.

Оксид углерода (II) CO (угарный газ) представляет собой бесцветный газ без запаха, плохо растворимый в воде. Это соединение является сильным восстановителем. Он горит на воздухе с выделением большого количества теплоты, благодаря чему CO является хорошим газообразным топливом.

Оксид углерода (II) восстанавливает многие металлы из их оксидов:

Оксид углерода (II) является несолеобразующим оксидом, с водой и щелочами он не реагирует.

Оксид углерода (IV) CO2 (углекислый газ) представляет собой бесцветный, без запаха, негорючий газ, малорастворимый в воде. В технике его обычно получают термическим разложением CaCO3, а в лабораторной практике — действием на CaCO3 соляной кислоты:

Оксид углерода (IV) является кислотным оксидом. Его характерные химические свойства:

Оксиду углерода (IV) соответствует очень слабая двухосновная угольная кислота H2CO3, которая не существует в чистом виде. Она образует два ряда солей: средние — карбонаты, например карбонат кальция CaCO3, и кислые — гидрокарбонаты, например Ca(HCO3)2 — гидрокарбонат кальция.

Карбонаты переходят в гидрокарбонаты под действием избытка углекислого газа в водной среде:

Гидрокарбонат кальция превращается в карбонат под действием гидроксида кальция:

Гидрокарбонаты и карбонаты разлагаются при нагревании:

Химические свойства

Серная кислота – это сильная двухосновная кислота.

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

H2SO4  ⇄  H HSO4–

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4–  ⇄  H SO42–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами. 

Например, серная кислота взаимодействует с оксидом магния:

H2SO4      MgO   →   MgSO4      H2O

Еще пример: при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

H2SO4       КОН     →     KHSО4     H2O

H2SO4       2КОН      →     К2SО4     2H2O

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3H2SO4         2Al(OH)3    →   Al2(SO4)3        6H2O

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.).  Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например, серная кислота взаимодействует с гидрокарбонатом натрия:

Н2SO4      2NaHCO3   →   Na2SO4      CO2    H2O

Или с силикатом натрия:

H2SO4       Na2SiO3    →  Na2SO4     H2SiO3

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

NaNO3(тв.)      H2SO4   →   NaHSO4      HNO3

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например, хлорида натрия:

NaCl(тв.)      H2SO4   →   NaHSO4      HCl

4. Также серная кислота вступает в обменные реакции с солями.

Например, серная кислота взаимодействует с хлоридом бария:

H2SO4  BaCl2  →  BaSO4      2HCl

5.Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например, серная кислота реагирует с железом. При этом образуется сульфат железа (II):

H2SO4(разб.)       Fe   →  FeSO4       H2

Серная кислота взаимодействует с аммиакомс образованием солей аммония:

H2SO4     NH3    →    NH4HSO4

Концентрированнаясерная кислота является сильным окислителем. При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы  S, или сероводорода Н2S.

Железо Fe, алюминий  Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

6H2SO4(конц.)       2Fe   →   Fe2(SO4)3      3SO2     6H2O

6H2SO4(конц.)        2Al   →   Al2(SO4)3      3SO2     6H2O

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

2H2SO4(конц.)      Cu     →  CuSO4       SO2 ↑    2H2O

2H2SO4(конц.)      Hg     →  HgSO4       SO2 ↑    2H2O

2H2SO4(конц.)      2Ag     →  Ag2SO4       SO2↑    2H2O

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

3Mg     4H2SO4   →   3MgSO4      S    4H2O

При взаимодействии с щелочными металлами и цинком  концентрированная серная кислота восстанавливается до сероводорода:

5H2SO4(конц.)     4Zn     →    4ZnSO4      H2S↑     4H2O

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 Na2SO4  →   BaSO4↓  2NaCl

Видеоопытвзаимодействия хлорида бария и сульфата натрия в растворе  (качественная реакция на сульфат-ион) можно посмотреть здесь.

7.Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например, концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

5H2SO4(конц.)       2P   →   2H3PO4      5SO2↑     2H2O

2H2SO4(конц.)       С   →   СО2↑       2SO2↑     2H2O

2H2SO4(конц.)       S   →   3SO2 ↑     2H2O

Про кислород:  Кислородный концентратор для домашнего пользования: лечим сложные болезни, не выходя из квартиры

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

3H2SO4(конц.)      2KBr   →  Br2↓      SO2↑      2KHSO4      2H2O

5H2SO4(конц.)      8KI     →  4I2↓       H2S↑      K2SO4     4H2O

H2SO4(конц.)      3H2S →  4S↓    4H2O

Химические свойства кислорода

Кислород — сильный окислитель, уступающий по химической активности только фтору.

Вступает во
взаимодействия со всеми элементами, кроме инертных газов (Не, Ne и Аг). Со
многими простыми веществами реагирует непосредственно при обычных условиях или
при нагревании или в присутствии катализаторов (кроме Au, Pt, Hal2, благородные газы).

Большинство реакций с участием О2 экзотермичны, часто часто сопровождаются горением, иногда — взрывом.

Взаимодействие с простыми веществами

С металлами

  • Кислород взаимодействует с металлами, с образованием оксидов металлов:

Me О2 = МеxOy оксиды

4Li О2 = 2Li2O оксид лития

2Na О2 = Na2О2 пероксид натрия

К О2 = КО2 супероксид калия

  • С железом образуется смесь оксидов:

3Fe 2O2 =
Fe3O4 (Fe2O3*FeO)

  • С марганцем образуется диоксид марганца:

Mn O2 = MnO2

С неметаллами

При
взаимодействии с неметаллами (кроме фтора и инертных газов) образуются оксиды,
со степенью окисления кислорода – 2:

Si O2 = SiO2 (t=400-5000С)

С О2(изб) = СО2; С О2(нед) =
СО

N2 О2 = 2NO — Q

S О2 = SО2;

4Р 5О2 = 2Р2О5

Окисление сложных веществ

Горение сульфидов

4FeS2  11O2 = 2Fe2O3  8SO2

Горение водородных соединений

4HI О2 = 2I2 2Н2O

2H2S 3O2 = 2SO2 
2H2O

CH4 
2O2 = CO2  2H2O

Окисление
оксидов

Кислород окисляет
входящие в оксид элементы до более высокой степени окисления:

4FeO О2 = 2Fe2О3

2SО2 О2 = 2SО3

4NО2 О2 2H2O = 4HNО3

Окисление гидроксидов и солей

Окисление гидроксидов и солей в водных растворах происходит, если исходное вещество неустойчиво на воздухе:

2HNO2  O2 = 2HNO3

4Fe(OH)2  O2  2H2O
= 4Fe(OH)3

Окисление аммиака

В отсутствие катализатора при окислении аммиака кислородом образуется азот, а в присутствии катализатора — оксида азота(II):

4NH3 3О2 =2N2 6Н2O

4NH3 5О2 = 4NO 6Н2O

Окисление
фосфина

На
воздухе самопроизвольно воспламеняется:

2PH3 4О2 = P2О5 3Н2O

Окисление
силана

На воздухе он самовоспламеняется (часто
со взрывом) с образованием SiO2 и H2O:

SiH4 2О2 = SiО2 2Н2O

Окисление органических веществ

CxHy О2 = CО2 Н2O

Продукты
окисления различных элементов, входящих в молекулы органических соединений:

С → CO2

Н → Н2O

Hal → Hal2

N → N2

P → P2O5

S → SO2

Например:

2C2H5 4О2 = 4CО2 5Н2O

C2H5Сl 3О2 = 2CО2 2Н2O HCl

2C2H5NH2 8,5О2 = 4CО2 7Н2O N2

Кроме горения возможны также реакции неполного окисления:

СН3-СН2-СН2-СН3  3O2 → 2СН3-СOOH 2H2O

  • окисление первичных спиртов до альдегидов, вторичных – до кетонов:
  • окисление альдегидов до кислот:

Химические свойства сероводорода

1.В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например, сероводород реагирует с гидроксидом натрия:

H2S    2NaOH  →   Na2S    2H2OH2S    NaOH → NaНS    H2O

2.Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

2H2S      O2    →   2S        2H2O

В избытке кислорода:

2H2S      3O2  →   2SO2     2H2O           

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S    Br2   →  2HBr     S↓

H2S    Cl2   →  2HCl     S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H2S     4Cl2      4H2O →  H2SO4    8HCl

Например, азотная кислота окисляет сероводород до молекулярной серы:

H2S    2HNO3(конц.)  →  S    2NO2    2H2O

При кипячении сера окисляется до серной кислоты:

H2S     8HNO3(конц.)  →  H2SO4    8NO2      4H2O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например, оксид серы (IV) окисляет сероводород:

2H2S    SO2  →  3S     2H2O

Соединения железа (III) также окисляют сероводород:

H2S    2FeCl3  →  2FeCl2    S    2HCl

Бихроматы, хроматы и прочие окислители также  окисляют сероводород до молекулярной серы:

3H2S      K2Cr2O7       4H2SO4    →   3S       Cr2(SO4)3      K2SO4      7H2O

2H2S      4Ag    O2  →  2Ag2S    2H2O

Серная кислота окисляет сероводород либо до молекулярной серы:

H2S      H2SO4(конц.)  →  S      SO2      2H2O

Либо до оксида серы (IV):

H2S      3H2SO4(конц.)  →  4SO2     4H2O

4.Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H2S     Pb(NO3)2   →  PbS     2HNO3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопытвзаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Химические свойства сульфидов

1. Растворимые сульфиды гидролизуютсяпо аниону, среда водных растворов сульфидов щелочная:

K2S   H2O  ⇄  KHS    KOHS2–   H2O  ⇄  HS–   OH–

2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах.

Например, сульфид кальция растворяется в соляной кислоте:

CaS    2HCl →  CaCl2    H2S

А сульфид никеля, например, не растворяется:

NiS     HСl   ≠

3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте. При этом сера окисляется либо до простого вещества, либо до сульфата.

Например, сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:

CuS      8HNO3  →   CuSO4      8NO2     4H2O

или горячей концентрированной серной кислоте:

CuS      4H2SO4(конц. гор.)  →   CuSO4      4SO2        4H2O

4.Сульфиды проявляют восстановительныесвойства и окисляются пероксидом водорода, хлором и другими окислителями.

Например, сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):

PbS 4H2O2    →   PbSO4 4H2O

Еще пример: сульфид меди (II) окисляется хлором:

СuS      Cl2  → CuCl2      S

5.Сульфиды горят(обжиг сульфидов). При этом образуются оксиды металла и серы (IV).

Например, сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):

2CuS      3O2  →   2CuO      2SO2

Аналогично сульфид хрома (III) и сульфид цинка:

2Cr2S3      9O2  →   2Cr2O3      6SO2

2ZnS       3O2  →   2SO2     ZnO

6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественныена ион S2−.

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

Na2S       Pb(NO3)2    →   PbS↓      2NaNO3

Na2S       2AgNO3    →   Ag2S↓      2NaNO3

Na2S       Cu(NO3)2    →   CuS↓      2NaNO3

7.Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).

Например, сульфид алюминия разлагается до гидроксида алюминия и сероводорода:

Al2S3  6H2O → 2Al(OH)3  3H2S

Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

Например, сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:

3Na2S 2AlCl3 6H2O → 2Al(OH)3  3H2S 6NaCl

Химические свойства фосфора

При нормальных условиях фосфор довольно химически активен.

1. Фосфор проявляет свойства окислителя(с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя(с элементами, расположенными выше и правее). Поэтому фосфор реагирует с металлами и неметаллами.

1.1. При взаимодействии с кислородомвоздуха образу

ются оксиды – ангидриды соответствующих кислот:

4P       3O2    →  2P2O3

4P       5O2    →  2P2O5

Горение белого фосфора:

Горение красного фосфора:

1.2. При взаимодействии фосфора с галогенамиобразуются галогениды с общей формулой  PHal3 и PHal5:

2P       3Cl2    →  2PCl3

2P       5Cl2    →  2PCl5

Фосфор реагирует с бромом:

1.3. При взаимодействии фосфора ссеройобразуются сульфиды:

2P       3S   →   P2S3

2P       5S   →   P2S5

1.4. При взаимодействии с металламифосфор проявляет свойства окислителя, продукты реакции называют фосфидами.

Например, кальций и магний реагируют с фосфором с образованием фосфидов кальция и магния:

2P       3Ca   →   Ca3P2

2P       3Mg   →   Mg3P2

Ещепример: натрий взаимодействует с фосфором с образованием фосфида натрия:

P       3Na   →  Na3P

1.5. С водородомфосфор непосредственно не взаимодействует.

2.Со сложными веществамифосфор реагирует, проявляя окислительные и восстановительные свойства. Фосфор диспропорционирует при взаимодействии с некоторыми веществами.

2.1.При взаимодействии сокислителямифосфор окисляется до оксида фосфора (V) или до фосфорной кислоты.

Например, азотная кислотаокисляет фосфор до фосфорной кислоты:

5HNO3          P     →   H3PO4        5NO2↑        H2O

5HNO3          3P         2H2O   →    3H3PO4        5NO↑

Серная кислотатакже окисляет фосфор:

2P        5H2SO4  →  2H3PO4      5SO2 2H2O

Соединения хлора,например, бертолетова соль,  также окисляют фосфор:

6P        5KClO3    →   3P2O5      5KCl

Реакция красного фосфора с бертолетовой солью. Этот процесс заложен в принципе возгорания спички при трении её о шершавую поверхность коробка.

Некоторые металлы-сильные окислители также окисляют фосфор.Например, оксид серебра (I):

2P       5Ag2O   →   P2O5        10Ag

2.2.При растворении вщелочахфосфор диспропорционирует до гипофосфита и фосфина.

Например, фосфор реагирует с гидроксидом калия:

4P       3KOH      3H2O   →   3KH2PO2      PH3↑   или

P4        3KOH       3H2O   →   3KH2PO2       PH3↑

Или с гидроксидом кальция:

8P          3Ca(OH)2         6H2O   →   3Ca(H2PO2)2      2PH3↑  

Оцените статью
Кислород