Фенибут, Милдронат, Вазобрал, Кавинтон для улучшения мозгового кровообращения при ВСД: отзывы о ноотропах при ВСД

Фенибут, Милдронат, Вазобрал, Кавинтон для улучшения мозгового кровообращения при ВСД: отзывы о ноотропах при ВСД Кислород

Что первично для организма: o2 или co2?

Помните известный парадокс: что было раньше – курица или яйцо? Он не разрешим, если не привлекать во внимание процесс эволюции и образование новых видов. Но если привлечь, то у яйца оказывается некоторый приоритет, он древнее. Так, еще динозавры откладывали яйца, а птицы произошли от одной из ветвей динозавров. Получается, что яйцо древнее птицы и в этом, эволюционном, смысле первично…

В нашем случае проблема выбора — что первично (иными словами, что запускает процессы в человеческом организме): кислород или углекислый газ — решается следующим образом. Раньше первичным считался кислород — ведь он основной источник энергии, дающий толчок всем процессам в организме.

Накопление CO2 в организме в ходе расщепления в клетках жиров и белков дает сигнал мозгу о том, что углекислый газ нужно выводить из клеток — он «садится» на эритроциты и перемещается к альвеолам легких. На освободившиеся места в «поезде» эритроцитов «усаживается» O2 и разносится по организму.

Поэтому современный взгляд на процесс дыхания таков: сначала выдыхается углекислый газ, а потом вдыхается кислород. При этом вместе с углекислым газом выдыхаются и излишки кислорода. Для дыхания необходимы оба газа, попеременно «седлающие» эритроциты.

Среднее соотношение между количеством углекислого газа и кислорода в организме здорового человека примерно 3:1 (6% CO2 и 2% O2).

Взаимодействие «снаружи» и «изнутри». Итак, углекислый газ необходим для жизнедеятельности человека. Важно и поддержание определенного уровня CO2 в организме. А его недостаток и избыток вредны. Слишком высокое накопление CO2 возможно в плохо проветриваемых помещениях: при большом проценте (более 0,08–0,1%) его уровень в организме также растет (последствия этой ситуации обсуждались выше). Нехватка углекислого газа в крови (менее 4%) тоже опасна (см. рис. 4).

В каких случаях может возникнуть такая нехватка? Типичный пример — учащенное дыхание: слишком много CO2 выдыхается и мало остается в организме. При недостатке углекислого газа кислород прочно «прикреплен» к эритроцитам. И даже когда кислорода в крови много, он оказывается связанным и плохо поступает в ткани организма. Если в такой ситуации дышать еще чаще, то это только усугубит ситуацию.

Что делать? Движение, гимнастика, спорт на воздухе или в хорошо проветриваемом помещении — все это увеличивает содержание CO2. Капилляры расширяются и даже образуются новые сети капилляров, кровоток усиливается, кислород лучше отделяется от гемоглобина и поступает в клетки…

Приведем еще один пример важности более редкого дыхания. Стайерам во время бега рекомендуют в случае, когда уже не хватает сил, как можно дольше задержать дыхание для того, чтобы открылось «второе дыхание» и он мог бежать дальше.

Оказание первой помощи. Дыхание «рот в рот». При оказании первой доврачебной помощи человеку в случае исчезновения дыхания одним из действенных методов является искусственное дыхание методом «рот в рот» вместе с непрямым массажем сердца.

В рот пострадавшего через марлю или носовой платок спасатель должен выдыхать воздух с частотой 12–15 раз в минуту. Казалось бы, это бессмысленно. Ведь в начале статьи мы много раз повторяли, каков должен быть состав вдыхаемого воздуха (21% кислорода и 0,4% углекислого газа).

А тут выходит, что пострадавший вынужден принудительно получать воздух «на выдохе» (16% O2 и 4% CO2). Тем не менее, оказывается, что и в выдыхаемом воздухе еще есть остатки кислорода в концентрации, превышающей минимально допустимую (16% > 13–14%).

В этой ситуации имеется некоторая аналогия с поведением спасателя при остановке сердца: он должен повернуть пострадавшего на спину и нанести ему удар ребром руки по грудной клетке. Цель — сотрясение грудной клетки, что должно привести к запуску остановившегося сердца.

Так что роль CO2 при остановке дыхания несколько иная, чем при обычном, спокойном дыхании.

Способы увеличения концентрации выдыхаемого углекислого газа. Человек в повседневной жизни «в автоматическом режиме» делает примерно 15 циклов вдох-выдох в минуту (каждый цикл имеет длительность приблизительно 4 секунды). Обычное отношение длительности вдоха и выдоха 1 : 1,3.

Смысл основных дыхательных гимнастик заключается в повышении содержания в крови углекислого газа за счет задержки, ослабления, замедления или искусственного затруднения дыхания. При этом повышение концентрации CO2 (до определенного предела, около 8%) улучшает усвоение кислорода организмом человека.

Наиболее последовательной из современных методик является система Бутейко — поверхностное дыхание с задержкой. Она направлена на уменьшение потребления кислорода и насыщение организма углекислым газом. По этой системе усилием воли вдох занимает 2 секунды, выдох — 4 секунды, за которым следует 4-х секундная задержка дыхания. Всего цикл длится 10 секунд, укладываясь в 6 циклов в минуту.

В практике йоги правильным считается весьма продолжительный выдох с отношением длительности вдоха и выдоха 1 : 5. Утверждается, что йог в состоянии глубокой медитации может «обходиться» всего двумя-тремя циклами вдох-выдох в минуту. Первая реакция на это — не может быть!

И действительно, в этом что-то есть. Площадь кожи человека, покрытая 5 миллионами волосков, составляет 1,5–2 м2. А суммарная площадь 600 миллионов альвеол в легких — около 100 м2. Грубо получается, что на уровне 1–2% кожа может выполнять дыхательную функцию.

Взгляд снаружи

Диапазон концентрации кислорода в воздухе, пригодный для жизни. Диапазон содержания кислорода в воздухе ( p_{text{O}_2}), при котором возможна жизнедеятельность человека в течение длительного времени, ограничен значениями

90–100 мм рт. ст. < ( p_{text{O}_2}) < 400–450 мм рт. ст.

Нижняя граница соответствует началу кислородного голодания, верхняя — началу кислородного отравления. В процентном отношении наступление кислородного голодания у здорового человека наступает уже при содержании O2 в воздухе ( p_{text{O}_2}) / pатм менее 14% (при pатм = 760 мм рт. ст.).

Эти данные соответствуют диапазону жизнедеятельности человека на уровне моря. По мере подъема в горы давление снижается, что наглядно отражают кривые атмосферного давления и парциального давления кислорода (рис. 1).

Видно, что начиная с высот 4,5–5 км давление кислорода становится ниже допустимой нижней границы давления в 90 мм рт. ст. При этом давление воздуха в альвеолах составляет 105–110 мм рт. ст., что также близко к нижней границе. По мере уменьшения давления кислорода до уровня 100 мм рт. ст. замедляются обменные процессы в организме, дыхание и сердцебиение учащаются, ухудшаются зрение и работа мозга…

Оценка времени развития кислородной недостаточности при нахождении в замкнутом объеме. В качестве примера рассмотрим несколько ситуаций с людьми, находящимися в замкнутом объеме: один человек, застрявший в лифте объемом V = 2 м3; два человека в комнате с V = 30 м3; сто человек, застрявшие в остановившемся вагоне метро с V = 250 м3.

В каждом случае найдем, за какое время Δt в замкнутом объеме V в процессе спокойного дыхания людей концентрация кислорода снижается от первоначального уровня 21% до начала кислородной недостаточности, т.е. до 14%. Подчеркнем — спокойного, поскольку при панике это время сильно снижается.

Спокойному дыханию соответствует потребление кислорода на уровне 0,25 литра в минуту. Поскольку 1 литр O2 соответствует 5 ккал энергии, то 0,25 л/мин сообщает организму за сутки 0,25 × 5 × 60 × 24 ккал = 1800 ккал энергии. Так как плотность человеческого организма около 1000 кг/м3, тело массой 70 кг занимает объем 0,07 м3, или 70 литров. Добавив одежду, получим оценку объема, вытесняемого из замкнутого помещения, в 100 литров, или 0,1 кубометра на человека.

Лифт. Свободный объем, занятый воздухом, составляет 1,9 м3. В этом объеме содержится 1,9 × 0,21 м3 = 0,4 м3 = 400 л кислорода. Признаки кислородной недостаточности развиваются, когда полезный объем кислорода уменьшится до 1,9 × 0,14 м3 = 0,27 м3 = 270 л.

Комната. Свободный объем около 30 м3. Начальный объем кислорода 6,3 м3. Минимально допустимый объем кислорода 4,2 м3. Потребление кислорода 0,5 л/мин. Время ( Δt_{text{O}_2}) = 2100 / 0,5 мин = 4200 мин, т.е. почти трое суток (!).

Вагон метро. Свободный объем около 240 м3. Начальный объем кислорода 50 м3. Минимально допустимый объем кислорода 34 м3. Потребление кислорода около 25 л/мин . Время ( Δt_{text{O}_2}) = 16000/25 мин = 640 мин, т.е. около 10 часов.

Во всех указанных случаях (если нет паники) время развития кислородной недостаточности очень велико. Однако, такой вывод находится в противоречии с житейским опытом: в метро и застрявшем лифте бывает душно и даже после сна в комнате с закрытой форточкой наутро ощущается духота.

По всей видимости, имеет место другой, более мощный механизм развития неблагоприятных ощущений в процессе дыхания при нахождении в замкнутом объеме, не связанный с потерей кислорода из воздуха. Оказывается, таким механизмом является накопление углекислого газа.

Концентрация углекислого газа в воздухе, пригодная для жизни. Диапазон допустимого содержания CO2 в воздухе составляет

( 0 < C_{text{CO}_2} = frac{p_{text{CO}_2}}{p_{атм}} < text{0,1%}. )

Отметим, что обычное содержание углекислого газа в воздухе ( C_{text{CO}_2} ) = 0,04%.

Величину принятого ограничения сверху на содержание углекислого газа (( C_{text{CO}_{2:text{max}}} ) = 0,1%) обсудим чуть позже, а сначала проведем оценки для замкнутых объемов лифта, комнаты, вагона метро и школьного класса применительно ко времени накопления концентрации углекислого газа до верхней границы. Примем, что взрослый человек обычно выдыхает углекислого газа в атмосферу ( q_{text{CO}_2}) = 0,25 л/мин.

Лифт. Свободный объем, занятый воздухом, равен 1,9 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет

( Δt_{text{CO}_2} = frac{(C_{text{CO}_{2:text{max}}}:-:C_{text{CO}_2}):·:V}{q_{text{CO}_2}} = frac{(1:·:10^{-3}:-:4:·:10^{-4}):·:text{1,9}:·:10^3 }{text{0,25}}:text{мин} = 5:text{мин}. )

Комната. Свободный объем около 30 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет ( Δt_{text{CO}_2} ) = 6 · 10−4 · 30 · 103 / (2 · 0,25) мин = 36 мин.

Вагон метро. Свободный объем около 240 м3. Изменение уровня содержания CO2 в воздухе от 0,04% до 0,1% займет ( Δt_{text{CO}_2} ) = 6 · 10−4 · 240 · 103 / (100 · 0,3) мин ≈ 6 мин.

Школьный класс. Приведем также оценки для школьного класса объемом около 200 м3, в котором находится 25 учеников. При уровне выдоха CO2 одним школьником 0,12 л/м (половина от взрослого) получим ( Δt_{text{CO}_2} ) = 6 · 10−4 · 200 · 103 / (25 · 0,12) мин ≈ 40 мин.

Это уже ближе к житейским ощущениям и оправдывает присутствие вентиляции на потолке лифтов, необходимость проветривания комнат в домах, в школьных классах после каждого урока, а также наличие системы вентиляции в метро.

Таким образом, именно накопление углекислого газа в замкнутых помещениях в первую очередь действует угнетающе на человека. В чем это проявляется?

В литературе отмечается два типа воздействия: кратковременное (часы) и длительное (регулярно, более нескольких часов в день). Симптомы при кратковременном воздействии при уровне вдыхаемого углекислого газа выше 0,1% — это усталость, головная боль, ухудшение концентрации внимания, плохой сон…

При длительном воздействии при уровне CO2 выше 0,1% появляются проблемы с дыхательной системой (сухой кашель, риниты…), снижение иммунитета, ухудшение работы сердечно-сосудистой системы… При уровне выше 0,2% еще больше ухудшается концентрация внимания, растет количество совершаемых ошибок и т.д. по нарастающей.

Еще одна проблема помещений без вентиляции — возможность расслоения воздуха на фракции. Поскольку углекислый газ в полтора раза тяжелее воздуха, он может опуститься ближе к полу и его концентрация там увеличится. Но процесс этот медленный, и любое движение воздуха перемешивает фракции.

Наконец, использование растений, казалось бы, должно помочь — ведь они выделяют кислород и поглощают углекислый газ. Однако, это происходит только днем, а вечером и ночью (когда свежий воздух особенно нужен) растения выделяют углекислый газ, усугубляя проблему с его накоплением.

Накопление угарного газа в замкнутом помещении. Казалось бы, откуда взяться угарному газу (СО) в замкнутом помещении, если нет рядом дровяной печки или камина с неидеальной вытяжкой? Но в литературе приводятся следующие данные: наряду с углекислым газом человек выдыхает также и угарный газ — в количестве примерно 1,6 мл/ч (при нормальных условиях); предельно допустимая для человека концентрация угарного газа составляет 1 мг/м3.

Этих данных достаточно, чтобы снова провести оценки времени накопления предельной концентрации угарного газа для людей в лифте, комнате, вагоне метро и школьном классе. Для этого перейдем от объема к массе образовывающегося угарного газа, воспользовавшись известным соотношением: один моль любого газа при нормальных условиях занимает объем 22,4 л.

В таблице 2 приведены значения времени накопления CO2 и СО до опасной концентрации, а также времени развития кислородной недостаточности в лифте, комнате, вагоне метро и школьном классе. Для детей принята половинная величина выдыхаемого СО и CO2.

Таблица 2. Сопоставление времени снижения концентрации O2, накопления СО и CO2

Видно, что накопление углекислого газа примерно на порядок опаснее накопления угарного газа и еще на порядок опаснее снижения концентрации кислорода.

Мощность систем вентиляции. Как оценить мощность систем вентиляции qвент, необходимую для поддержания нормального состава воздуха? Если отвлечься от переходных процессов установления и выравнивания потоков воздуха, то конечный результат выглядит очень просто:

( q_{text{вент}} = frac{q_{text{CO}_2}}{(C_{text{CO}_{2:text{max}}}:-:C_{text{CO}_2})}. )

Так, если ( q_{text{CO}_2} ) = 0,25 литра в минуту (в этом случае человек выдыхает 15 литров CO2 в час), то при ( C_{text{CO}_{2:text{max}}} ) = 1 · 10−3 и ( C_{text{CO}_{2}} ) = 4 · 10−4 получим требуемую мощность вентиляции в 420 литров воздуха в минуту или 25 м3 в час.

Если же выдыхается 20 литров CO2 в час, то мощность вентиляции увеличивается до 33 м3 воздуха в час. А если принять для максимально допустимого значения концентрации CO2 в воздухе несколько меньшее значение 0,8 · 10−3, то мощность вырастет уже до 38 м3 воздуха в час (при 15 л CO2 в час) и 50 м3 воздуха в час (при 20 л CO2 в час).

Много это или мало? Как обеспечить такой приток свежего воздуха? Например, если приоткрыть дверь, то через каждый квадратный сантиметр щели при перепаде давлений по обе стороны двери Δp = 10 Па проходит в час один кубометр воздуха. Это означает, что при указанном Δp через сантиметровую щель в двери высотой два метра проходит 200 м3 воздуха за час.

Отметим, что принятый уровень перепада давлений 10 Па довольно мал (это 10−4 от атмосферного) и вполне может быть достигнут. Еще более мощный эффект вентиляции оказывает проветривание при открытии окон и дверей в течение хотя бы нескольких минут.

В качестве примера рассмотрим ситуацию с кислородом и углекислым газом при спасении детей в пещере Таиланда, частично затопленной водой. В 2022 году весь мир следил за спасением футбольной команды из 12 школьников и их тренера, ушедших на экскурсию в пещеру Кхао Луанг и застрявших в ней на 18 дней (23 июня — 10 июля) из-за дождей, затопивших вход в пещеру.

Они укрылись в воздушном кармане, полностью перекрытом водой и удаленном от выхода из пещеры на 5 километров. Задача заключалась в высвобождении ослабевших детей и тренера из пещеры. Ситуация осложнялась наличием узкой щели — на рисунке 2 она обозначена как «опасная точка», через которую предстояло выбираться.

В этой ситуации оказались важны все отмеченные выше особенности поведения кислорода и углекислого газа в замкнутом объеме. Для борьбы с постепенным уменьшением количества кислорода в пещере была организована доставка кислорода с помощью специального трубопровода.

Было решено, что накопление углекислого газа в пещере представляет существенно большую опасность, чем нехватка кислорода. Закачкой кислорода по трубопроводу в верхнюю часть пещеры вытесняли углекислый газ. Учитывалось также расслоение воздуха на фракции — CO2 скапливался в нижней части пещеры. Вот почему дети и тренер скрылись в верхней ее части.

Поиски ребят и подготовительные работы заняли почти две недели. За это время известный изобретатель и организатор исследований Илон Маск (космические корабли, электрокары) успел из запчастей к ракете изготовить миниатюрную подводную лодку на одного человека и доставить ее в Таиланд. Но из-за узкой щели от ее использования отказались.

Ситуация с каждым днем становилась все более сложной. Необходимо было постоянное присутствие людей, занятых на откачке воды из пещеры (иначе пещера полностью заполнилась бы водой) и установке труб для подачи кислорода. Более десятка аквалангистов доставляли в пещеру воду, еду и кислородные баллоны.

Там постоянно присутствовали врачи и те, кто готовили спасательную операцию. При дыхании этих взрослых спасателей состав воздуха ухудшался еще стремительнее. Наступил момент, когда из-за накопления углекислого газа дальше ждать было нельзя. Множество кислородных баллонов было расставлено по всему маршруту из пещеры к выходу (каждый баллон рассчитан на работу только в течение часа).

Тысяча спасателей снаружи, включая сто дайверов, начали операцию. В первый день 13 дайверов спасли четырех подростков. Во второй день 18 дайверов (и 70 аквалангистов сопровождения) спасли еще четверых. Наконец, в третий день были спасены оставшиеся четверо детей и их тренер, а также 4 человека, остававшиеся в пещере. Молодцы!

Гора защитила превращение фтора в кислород от космической радиации

Физики из коллаборации JUNA провели измерение параметров ядерной реакции, в результате которой фтор захватывает протон и превращается в кислород с испусканием альфа-частицы и гамма-кванта. Особенностью их работы стала высокая степень изоляции эксперимента от космического излучения благодаря большой глубине, на которой располагается лаборатория. Это позволило увеличить точность и диапазон энергий протекания реакции, что в будущем поможет построению корректных астрофизических моделей. Исследование опубликовано в Physical Review Letters.

Химический состав вещества, из которого состоим мы и наша планета, обязан своим богатством множеству ядерных реакций, происходящих в звездах. У нас нет возможности измерять звездный нуклеосинтез напрямую, но мы можем строить модели исходя из данных о наблюдении за звездами. С другой стороны, для построения моделей нуклеосинтеза нам нужно знать детали отдельных ядерных реакций, большинство из которых физики изучают в лабораториях.

Однако не все реакции доступны для изучения. К их числу относится реакция, в которой ядро фтора 19F и протон превращаются в кислород 16O, альфа-частицу и гамма-квант. Знание о характеристиках этой реакции позволит понять жизненный цикл ядра фтора, чьи сигналы почти не проявляют себя в спектрах, приходящих от звезд. Проблема заключается в том, что лабораторное исследование этой реакции усложняет космическая радиация.

Решением этой проблемы оказался перенос лабораторий под землю. В 2022 году в Китайской подземной лаборатории Цзиньпин был запущен проект JUNA (Jinping Underground Nuclear Astrophysics), призванный исследовать ряд важных астрофизических реакций в условиях низкого фона космических лучей. Лаборатория расположена в недрах горы Цзиньпин на глубине 2400 метров, что позволило уменьшить потоки мюонов и нейтронов, проходящих через нее, на 6 и 4 порядков, соответственно, по сравнению с поверхностью Земли.

Теперь, спустя шесть лет после начала работы, физики коллаборации JUNA представили результаты измерения и обработки эксперимента по превращению фтора в кислород при бомбардировке его пучками протонов с различной энергией. Изоляция от космического излучения позволила им измерить параметры реакции для более широкого энергетического диапазона и с меньшими погрешностями, чем в предыдущих измерениях.

Скорость ядерной реакции в звездах пропорциональна концентрации исходных компонент, их относительной скорости и эффективного сечения. Последняя величина пропорциональна вероятности преодоления кулоновского барьера, умноженной на астрофизический S-фактор, который описывает детали реакции и не всегда известен. Эффективное ядерное сечение растет с ростом скорости и энергии частиц, однако вероятность встретить быстрые частицы уменьшается согласно распределению Максвелла. Перемножение этих двух факторов определяет диапазон энергий, наиболее важных для построения моделей звездного нуклеосинтеза, который носит название «окно Гамова».

Для измерения S-фактора авторы облучали две разные фторовые мишени протонами, разгоняемыми на ускорителе лаборатории вплоть до энергий, равных 400 килоэлектронвольтам. Испускаемое в результате реакции гамма-излучение собиралось с помощью массива Bi4Ge3O12-детекторов, покрывавший полный телесный угол вокруг мишени. В спектре излучения, помимо продуктов реакции, присутствовали также следы реакций с ядрами других элементов, загрязняющих сигнал. В частности, при энергиях протонов ниже 88 килоэлектронвольт, что соответствует относительной энергии 72,4 килоэлектронвольта, сигнал превращения фтора заглушался квантами, испущенными при превращении дейтерия в 3He. Это значение физики обозначили в качестве нижнего предела их эксперимента.

Ученые обработали график зависимости выхода гамма-квантов от энергии протонов с помощью пакета geant4. В результате аппроксимации, они извлекли из эксперимента астрофизический S-фактор для всего окна Гамова с неопределенностями, не превышающими нескольких процентов. Физики показали, что для неизмеренного ранее диапазона S-фактор принимает большее значение, нежели его предсказывали на основе экстраполяции в предыдущих работах.

Зная поведение S-фактора, исследователи смогли оценить зависимость скорости реакции от температуры среды, в которой она протекает. Новые данные существенно уменьшают погрешности в этой зависимости, расширив диапазон температур вниз до значения 0,05 гигакельвин, что покрывает условия, протекающие в слабых сверхновых. Эксперимент JUNA показал, что создание лаборатории на большой глубине действительно способно улучшить точность исследования ядерных реакций.

Протонные пучки играют огромную роль в экспериментах по ядерной физике и физике элементарных частиц. Ранее мы уже писали, как с их помощью уточнили барионную плотность Вселенной и измерили асимметрию антикварков.

Марат Хамадеев

Инфракрасное излучение

Отправляясь от видимого света в длинноволновую сторону спектра, мы попадаем в диапазон инфракрасного излучения. Ближнее ИК-излучение физически ничем не отличается от видимого света, за исключением того, что не воспринимается сетчаткой глаза. Его можно регистрировать теми же приборами, в частности, телескопами, что и видимый свет.

Человек также ощущает инфракрасное излучение кожей — как тепло. Именно благодаря инфракрасному излучению нам тепло сидеть у костра. Большую часть энергии горения уносит вверх восходящий поток воздуха, на котором мы кипятим воду в котелке, а инфракрасное (и видимое) излучение испускается в стороны молекулами газов, продуктов сгорания и раскаленными частицами угля.

С ростом длины волны атмосфера теряет прозрачность для инфракрасного излучения. Это связано с так называемыми колебательно-вращательными полосами поглощения молекул атмосферных газов. Будучи квантовыми объектами, молекулы не могут вращаться или колебаться произвольным образом, как грузы на пружинке.

У каждой молекулы есть свой набор энергий (и, соответственно, частот излучения), которые они могут запасать в форме колебательных и вращательных движений. Однако даже у не самых сложных молекул воздуха набор этих частот столь обширен, что фактически атмосфера поглощает всё излучение в некоторых участках инфракрасного спектра — это так называемые инфракрасные полосы поглощения.

Они перемежаются небольшими участками, в которых космическое ИК-излучение достигает поверхности Земли — это так называемые окна прозрачности, которых насчитывается около десятка. Их существование представлено на плакате разрозненными голубыми стрелками в инфракрасном диапазоне.

Интересно отметить, что поглощение ИК-излучения почти полностью происходит в нижних слоях атмосферы из-за повышения плотности воздуха у поверхности Земли. Это позволяет вести наблюдения почти во всем инфракрасном диапазоне с аэростатов и высотных самолетов, которые поднимаются в стратосферу.

Деление инфракрасного излучения на поддиапазоны также весьма условно. Граница между ближним и средним инфракрасным излучением проводится примерно в районе абсолютной температуры 300 К, которая характерна для предметов на земной поверхности. Поэтому все они, включая приборы, являются мощными источниками инфракрасного излучения.

Чтобы в таких условиях выделить излучение космического источника, аппаратуру приходится охлаждать до температур, близких к абсолютному нулю, и выносить за пределы атмосферы, которая сама интенсивно светит в среднем ИК-диапазоне — именно за счет этого излучения Земля рассеивает в космос энергию, постоянно поступающую от Солнца.

Дальний инфракрасный диапазон — один из наиболее сложных, как для генерации, так и для регистрации излучения. В последнее время благодаря разработке особых материалов и сверхбыстродействующей электроники с ним научились достаточно эффективно работать.

В технике его часто называют терагерцевым излучением. Сейчас активно идет разработка бесконтактных сканеров для определения химического состава объектов на основе генераторов терагерцевого излучения. Они смогут выявлять пластиковую взрывчатку и наркотики на контрольных пунктах в аэропортах.

В астрономии этот диапазон чаще называют субмиллиметровым излучением. Он интересен тем, что в нем (а также в соседнем с ним микроволновом диапазоне) наблюдается реликтовое излучение Вселенной. До уровня моря субмиллиметровое излучение не доходит, но поглощается оно в основном в самых нижних слоях атмосферы.

Микроволны и радиоволны

К инфракрасному диапазону примыкает радиоизлучение, которое охватывает весь длинноволновый край электромагнитного спектра. Энергия квантов в радиодиапазоне очень мала. Ее обычно не хватает для существенных изменений в структуре атомов и молекул, но хватает, чтобы взаимодействовать с вращательными уровнями молекул, например, воды.

При высокой интенсивности микроволнового излучения этот ток может вызывать значительный нагрев вещества. Это свойство используется для разогрева продуктов, содержащих воду, в микроволновых печах. Микроволновое излучение также называют сверхвысокочастотным (СВЧ) излучением.

Оно является самым коротковолновым поддиапазоном радиоизлучения с длиной волны от 1 мм до 30 см. СВЧ-излучение проникает в толщу продуктов на глубину до нескольких сантиметров, что обеспечивает прогрев по всему объему, а не только с поверхности, как в случае обработки инфракрасным излучением на гриле.

Чем больше длина радиоволны, тем меньшую энергию она несет и тем труднее ее зарегистрировать. Для приема антенну, в которой под действием радиоволны возникают электрические колебания, подключают к электрическому контуру. При попадании в резонанс с его собственной частотой колебания усиливаются и их можно зарегистрировать.

Большая часть микроволнового излучения (начиная с длины волны 3–5 мм) проходит через атмосферу. То же можно сказать про ультракороткие волны (УКВ), на которых вещают местные телевизионные и радиостанции (в т. ч. FM-станции) и ведется космическая радиосвязь.

Более длинные радиоволны отражаются от ионосферы Земли. Это не позволяет наблюдать космические радиоисточники на более длинных волнах, но зато обеспечивает возможность глобальной коротковолновой радиосвязи. Радиоволны в диапазоне от 10 до 100 метров могут огибать всю Землю, многократно отражаясь от ионосферы и поверхности Земли.

Средние и длинные волны также отражаются от ионосферы, но сильнее затухают с расстоянием. Для того чтобы сигнал можно было поймать на расстоянии более тысячи километров, требуются очень мощные передатчики. Сверхдлинные радиоволны, с длиной в сотни и тысячи километров, огибают Землю уже не благодаря ионосфере, а за счет волновых эффектов, которые также позволяют им проникать на некоторую глубину под поверхность океана.

Это свойство используется для экстренной связи с боевыми подводными лодками в погруженном состоянии. Другие радиоволны не проходят через морскую воду, которая из-за растворенных в ней солей представляет из себя хороший проводник и поглощает или отражает радиоизлучение.

Никакого теоретического предела для длины радиоволн неизвестно. На практике экспериментально удалось создать и зарегистрировать радиоволну с длиной волны 38 тыс. км (частота 8 Гц).

Далее: Что изображено на плакате

Нейротропные средства

Нейротропы выполняют следующие функции:

  • подавляют агрегацию тромбоцитов;
  • повышают восприимчивость к глюкозе;
  • стабилизируют клеточные мембраны;
  • способствуют доставке кислорода и питательных веществ в мозг;
  • оптимизируют кортикальные связи (процессы, которые протекают в полушариях или в коре головного мозга).

    Препараты для расширения сосудов головного мозга напрямую не воздействуют на сосудистые структуры, но способствуют улучшению процессов метаболизма и микроциркуляции.

    Ноотропные препараты

    Медикаментозные средства направлены на улучшение и стимуляцию процессов в головном мозге. Показания к использованию – быстрое восстановление после инсульта и повышение уровня бодрствования. Выбирать ноотропные препараты нужно, руководствуясь результатами проведенной диагностики.

    При приеме антагонистов кальция здоровым человеком происходит подстегивание когнитивных процессов, что улучшает процесс запоминания информации, позволяет продуктивнее и быстрее думать, а также легче переносить стрессовые ситуации. Но с данными препаратами нужно быть осторожным, т. к. они повышают вязкость крови, что приводит к гипоксии клеток.

    Миотропные средства

    Самые лучшие препараты для сосудов – спазмолитические. Они снижают тонус мышечной стенки сосудов и расширяют просвет артерий внутренних органов. Данное действие приводит к улучшению кровотока.

    Антиагреганты и антикоагулянты

    Антиагреганты на подавление объединения эритроцитов и тромбоцитов. Склеивание и соединение (агрегация) приводят к сгущению крови, что чревато образованием тромбов и бляшек. Антиагреганты оставляют тромбоциты и эритроциты отдельными кровяными телами, препятствуя их соединению. Также обладают противогипертензивным эффектом.
    Антикоагулянты замедляют рост тромбина в крови и протромбина в печени. Данные ферменты способствуют свертываемости крови. Чем меньшее количество вырабатывается, тем жиже кровь. Средства антикоагулянтного действия отличаются степенью всасывания, механизмом действия и длительностью выведения из организма.

    Венотоники

    Венопротекторные и венотонизирующие препараты оказывают комплексное воздействие:

  • уменьшают отечность тканей;
  • ускоряют процессы метаболизма;
  • улучшают циркуляцию крови;
  • тонизируют сосуды.
  • Венотоники широко используются для профилактики сердечных и сосудистых заболеваний. При комплексном лечении используются в качестве вспомогательных средств.

    Ноотропные препараты

    Медикаментозные средства направлены на улучшение и стимуляцию процессов в головном мозге. Показания к использованию – быстрое восстановление после инсульта и повышение уровня бодрствования. Выбирать ноотропные препараты нужно, руководствуясь результатами проведенной диагностики.
    При приеме антагонистов кальция здоровым человеком происходит подстегивание когнитивных процессов, что улучшает процесс запоминания информации, позволяет продуктивнее и быстрее думать, а также легче переносить стрессовые ситуации. Но с данными препаратами нужно быть осторожным, т. к. они повышают вязкость крови, что приводит к гипоксии клеток.

    Ноотропные препараты для лечения всд

    Главной задачей ноотропных средств является активация элементов, с помощью которых связываются между собой нервные клетки – нейромедиаторы. Ноотропные препараты содержат вещества, которые активизируют процесс биосинтеза рибонуклеиновой кислоты и белковых соединений в центральной нервной системе.

    При ВСД в течение многих лет используют пирацетам и его производные (этирацетам, изацетам, оксирацетам). К ноотропным препаратам нового поколения относятся:

    • фезам;
    • ноопепт;
    • милдронат;
    • фенотропил;
    • нобен;
    • цераксон;
    • пантокальцин;
    • пантогам;
    • кортексин.

    Ноотропный препарат «Фезам» при ВСД счёт комбинации циннаризина и пирацетама препарат оказывает антигипоксическое, сосудорасширяющее действие, улучшает кровообращение головного мозга, функции слухового и зрительного анализаторов. Основным компонентом фенибута является аминофенилмасляная кислота.

    Это соединение, производное фенилэтиламина и гамма-аминомасляной кислоты (ГАМК), играет важную роль в активности нейронов головного мозга – нормализует обмен веществ в нервных тканях и передачу сигналов между нейронами. Фенибут играет важную роль в укреплении кортико-субкортикальных связей.

    Это повышает эффективность взаимодействия между различными отделами коры головного мозга, нарушенное у пациентов, страдающих ВСД. После приёма препарата улучшается память, увеличивается скорость и объём запоминаемой информации, повышается эмоциональная устойчивость.

    «Ноопепт» восстанавливает память и способствует усилению когнитивных способностей, нормализует деятельность вегетативной нервной системы. Препарат улучшает настроение, поднимает жизненный тонус, снимает стресс и состояние тревожности.

    Милдронат при ВСД (отзывы о препарате хорошие) применяется в виде таблеток для приёма внутрь и уколов. Он оказывает следующее действие:

    • повышает работоспособность;
    • уменьшает симптомы психического и физического перенапряжения;
    • активирует гуморальный и тканевой иммунитет;
    • оказывает кардиопротекторное действие.

    Фенотропил действует на большинство нейромедиаторных систем головного мозга. При ВСД оказывает следующее действие:

    • активирует интегративную деятельность головного мозга;
    • способствует консолидации памяти;
    • улучшает умственную деятельность и концентрацию внимания;
    • облегчает процессы обучения;
    • ускоряет передачу информации между полушариями головного мозга;
    • повышает устойчивость тканей мозга к токсическим воздействиям и гипоксии;
    • регулирует процессы активации и торможения центральной нервной системы;
    • улучшает настроение;
    • обладает противосудорожным действием и анксиолитической активностью.

    Нобен улучшает обменные процессы в головном мозге. Обладает антиоксидантным действием, психостимулирующим эффектом и нейропротекторными свойствами. С первых дней приёма препарата нобен при ВСД проявляется антиастеническое, психостимулирующее и антидепрессивное действие.

    Цераксон благодаря наличию в составе препарата основного действующего вещества цитиколина обладает многими эффектами:

    • способствует восстановлению повреждённых мембран клеток;
    • тормозит действие фосфолипаз, препятствуя избыточному образованию свободных радикалов;
    • предотвращает гибель клеток головного мозга.

    Пантокальцин относится к ноотропным и психостимулирующим препаратам. При ВСД оказывает нейрометаболическое, нейропротекторное и нейротрофическое действие. Улучшает память, уменьшает безынициативность и затруднения, которые возникают при выполнении повседневных действий.

    Действие пантогама при ВСД связано с наличием в его структуре гамма-аминомасляной кислоты. Препарат оказывает ноотропное и противосудорожное действие. Обладает следующими эффектами:

    • повышает устойчивость мозга к воздействию токсических веществ и гипоксии;
    • стимулирует анаболические процессы в нейронах;
    • уменьшает моторную возбудимость;
    • сочетает умеренное седативное действие с мягким стимулирующим эффектом;
    • активирует физическую и умственную работоспособность.

    Неврологи для лечения вегетососудистой дистонии назначают пациентам кортексин. При ВСД препарат улучшает высшие функции головного мозга, память и процессы обучения, концентрацию внимания, устойчивость к стрессовым воздействиям. Защищает нейроны от поражения различными эндогенными нейротоксическими факторами, уменьшает токсические эффекты психотропных веществ.

    Солнечная механика

    Слоистую структуру Солнца нередко сравнивают с луковицей. Эта аналогия не слишком удачна, поскольку сами слои пронизаны мощными вертикальными потоками вещества и энергии. Но в первом приближении она приемлема. Солнце светит за счет термоядерной энергии, которая генерируется в его ядре.

    Температура там достигает 15 млн градусов Цельсия, плотность — 160 г/см3, давление — 3,4×1011 атм. В этих адских условиях осуществляется несколько цепочек термоядерных реакций, составляющих протон-протонный цикл (p-p-цикл). Этим именем он обязан начальной реакции, где два протона, столкнувшись, порождают ядро дейтерия, позитрон и электронное нейтрино.

    В ходе этих превращений (а их довольно много) сгорает водород и рождаются различные изотопы таких элементов Периодической системы, как гелий, бериллий, литий и бор. Три последних элемента вступают в ядерные реакции либо распадаются, а гелий остается — вернее, остается его основной изотоп гелий-4.

    В результате оказывается, что четыре протона дают начало одному ядру гелия, двум позитронам и двум нейтрино. Позитроны немедленно аннигилируют с электронами, а нейтрино покидают Солнце, практически не реагируя с его веществом. Каждая реакция p-p-цикла высвобождает 26,73 мегаэлектронвольта в форме кинетической энергии рожденных частиц и гамма-излучения.

    Если бы протосолнечное облако состояло исключительно из элементов, возникших в ходе Большого взрыва (водорода и гелия-4 с очень малой примесью дейтерия, гелия-3 и лития-7), то этими реакциями все бы и закончилось. Однако композиция протосолнечного вещества была намного богаче, неоспоримым доказательством чему служит хотя бы наличие железа в солнечной атмосфере.

    Этот элемент, как и его ближайшие соседи в менделеевской таблице, рождается только в недрах гораздо более массивных светил, где температуры достигают миллиардов градусов. Солнце к ним не относится. Если железо там все-таки имеется, то лишь потому, что первичное облако уже было загрязнено и этим металлом, и еще многими другими элементами.

    Это обстоятельство не сильно меняет вышеприведенную схему внутрисолнечного термоядерного синтеза, но все-таки привносит в нее кое-какие поправки. Дело в том, что при 15 млн градусов водород может превратиться в гелий и в углеродно-азотно-кислородном цикле (CNO-цикл).

    В его начале протон сталкивается с ядром углерода-12 и  порождает ядро азота-13 и квант гамма-излучения. Азот распадается на ядро углерода-13, позитрон и нейтрино. Ядро тяжелого углерода опять-таки сталкивается с протоном, из чего происходят азот-14 плюс гамма-квант.

    Азот заглатывает третий протон с выделением гамма-кванта и кислорода-15, который трансформируется в азот-15, позитрон и нейтрино. Ядро азота захватывает последний, четвертый протон и раскалывается на ядра углерода-12 и гелия-4. Суммарный баланс такой же, как и в первом цикле: четыре протона в начале, альфа-частица (она же ядро гелия-4), пара позитронов и пара нейтрино в конце.

    Реакции CNO-цикла внутри Солнца идут довольно вяло и обеспечивают лишь полтора процента общего выхода энергии. Однако забывать их не стоит хотя бы потому, что иначе расчетная мощность потока солнечных нейтрино будет заниженной. Загадки нейтринного излучения Солнца очень интересны, но это вполне самостоятельная тема, которая не укладывается в рамки данной статьи.

    Ядро совсем молодого Солнца на 72% состояло из водорода. Модельные расчеты показали, что сейчас на его долю приходится лишь 35% массы центральной зоны ядра и 65% — периферийной. Ничего не поделаешь, выгорает даже ядерное топливо. Впрочем, его хватит еще миллиардов на пять лет.

    Процессы в термоядерной топке Солнца иногда сравнивают со взрывом водородной бомбы, но сходство здесь весьма условно. Десятки килограммов начинки мощных ядерных бомб имеют мощность в мегатонны и десятки мегатонн тротилового эквивалента. А вот солнечное ядро при всей его гигантской массе вырабатывает всего около ста миллиардов мегатонн в секунду.

    Химические свойства

    При нормальных условиях чистый кислород — очень активное вещество, сильный окислитель. В составе воздуха окислительные свойства кислорода не столь явно выражены.

    1. Кислород проявляет свойства окислителя(с большинством химических элементов) и свойства восстановителя(только с более электроотрицательным фтором). В качестве окислителя кислород реагирует и с металлами, и с неметаллами. Большинство реакций сгорания простых веществ в кислороде протекает очень бурно, иногда со взрывом.

    1.1. Кислород реагирует с фтором с образованием фторидов кислорода:

    O2   2F2  →  2OF2

    С хлором и бромом кислород практически не реагирует, взаимодействует только в специфических очень жестких условиях.

    1.2. Кислород реагирует с серой и кремниемс образованием оксидов:

    S O2 → SO2

      Si O2 → SiO2

    1.3.Фосфоргорит в кислороде с образованием оксидов:

    При недостатке кислорода возможно образование оксида фосфора (III):

    4P      3O2  →   2P2O3

    Но чаще фосфор сгорает до оксида фосфора (V):

    4P      5O2  →   2P2O5

    1.4.С азотомкислород реагирует при действии электрического разряда, либо при очень высокой температуре (2000оС), образуя оксид азота (II):

        N2  O2→  2NO

    1.5. В реакциях с щелочноземельными металлами, литием  и алюминием кислород  также проявляет свойства окислителя. При этом образуются оксиды:

    2Ca       O2 → 2CaO

    Однако при горении натрияв кислороде преимущественно образуется пероксид натрия:

        2Na O2→  Na2O2

    А вот калий, рубидий и цезий при сгорании образуют смесь продуктов, преимущественно надпероксид:

        K O2→  KO2

    Переходные металлы окисляются кислород обычно до устойчивых степеней окисления.

    Цинк окисляется до оксида цинка (II):

    2Zn O2→  2ZnO

    Железо, в зависимости от количества кислорода, образуется либо оксид железа (II), либо оксид железа (III), либо железную окалину:

    2Fe O2→  2FeO

    4Fe 3O2→  2Fe2O3

    3Fe 2O2→  Fe3O4

    1.6. При нагревании с избытком кислорода графит горит, образуя оксид углерода (IV):

    C     O2  →  CO2

     при недостатке кислорода образуется угарный газ СО:

    2C     O2  →  2CO

    Алмаз горит при высоких температурах:

    Горение алмаза в жидком кислороде:

    Графит также горит:

    Графит также горит, например, в жидком кислороде:

    Графитовые стержни под напряжением:

    2. Кислород взаимодействует со сложными веществами:

    2.1. Кислород окисляет бинарные соединения металлов и неметаллов: сульфиды, фосфиды, карбиды, гидриды. При этом образуются оксиды:

    4FeS 7O2→  2Fe2O3 4SO2

    Al4C3 6O2→  2Al2O3 3CO2

    Ca3P2 4O2→  3CaO P2O5

    2.2. Кислород окисляет бинарные соединения неметаллов:

    • летучие водородные соединения (сероводород, аммиак, метан, силан гидриды. При этом также образуются оксиды: 

    2H2S 3O2→  2H2O 2SO2

    Аммиакгорит с образованием простого вещества, азота:

    4NH3 3O2→  2N2 6H2O

    Аммиакокисляется на катализаторе (например, губчатое железо) до оксида азота (II):

    4NH3 5O2→  4NO 6H2O

    • прочие бинарные соединения неметаллов — как правило, соединения серы, углерода, фосфора (сероуглерод, сульфид фосфора и др.):

    CS2 3O2→  CO2 2SO2

    • некоторые оксиды элементов в промежуточных степенях окисления (оксид углерода (II), оксид железа (II) и др.):

    2CO O2→  2CO2

    2.3. Кислород окисляет гидроксиды и соли металлов в промежуточных степенях окисления в водных растворах.

    Например, кислород окисляет гидроксид железа (II):

    4Fe(OH)2 O2 2H2O → 4Fe(OH)3

    Кислород окисляет азотистую кислоту:

    2HNO2 O2 → 2HNO3

    2.4. Кислород окисляет большинство органических веществ. При этом возможно жесткое окисление (горение) до углекислого газа, угарного газа или углерода:

    CH4 2O2→  CO2 2H2O

    2CH4 3O2→  2CO 4H2O

    CH4 O2→  C  2H2O

    Также возможно каталитическое окисление многих органических веществ (алкенов, спиртов, альдегидов и др.)

    2CH2=CH2 O2 → 2CH3=CH=O

    Оцените статью
    Кислород
    Добавить комментарий