Диагностика спленомегалии
При необходимости подтверждения спленомегалии в случаях сомнительного результата после предварительного обследования ультразвуковое исследование является методом выбора в связи с его высокой точностью и низкой ценой. КТ и МРТ способны обеспечить более детальное изображение органа.
МРТ особенно эффективно при определении портального тромбоза или тромбоза селезеночной вены. Радиоизотопное исследование является высокоточным методом диагностики, способным идентифицировать дополнительные детали селезеночной ткани, но метод очень дорогой и непростой для выполнения.
Специфические причины спленомегалии, выявленные при клиническом осмотре, должны быть подтверждены соответствующими обследованиями. При отсутствии видимой причины спленомегалии в первую очередь необходимо исключить наличие инфекции, так как при этом необходимо раннее начало лечения в отличие от других причин спленомегалии.
Обследование должно быть наиболее полным в зонах высокого географического распространения инфекции в случае, когда у больного имеются клинические признаки инфекции. Необходимо получить данные общего анализа и посевов крови, исследования костного мозга.
Если пациент не чувствует себя больным, отсутствуют симптомы болезни, за исключением симптомов, обусловленных спленомегалией, и не было риска инфекционного поражения, нет необходимости в применении широкого спектра исследований, кроме выполнения общего анализа крови, мазка периферической крови, тестов функции печени, КТ органов брюшной полости и УЗИ селезенки. При подозрении на лимфому показано выполнение флоуцитометрии периферической крови.
Специфические отклонения в анализе периферической крови могут указать на причину поражения (например, лимфоцитоз — на хронический лимфолейкоз, лейкоцитоз с наличием незрелых форм — на другие виды лейкозов). Повышенное содержание базофилов, эозинофилов, ядро-содержащих эритроцитов или эритроцитов в форме «падающей капли» предполагает наличие миелопролиферативного заболевания.
Цитопения указывает на гиперспленизм. Сфероцитоз предполагает наличие гиперспленизма или наследственного сфероцитоза. Функциональные печеночные тесты будут иметь отклонения при застойной спленомегалии с циррозом; изолированное повышение сывороточной щелочной фосфатазы указывает на возможную инфильтрацию печени в результате миелопролиферативного, лимфопролиферативного заболевания или милиарного туберкулеза.
Некоторые другие исследования могут быть полезны даже у больных с отсутствием симптомов заболеваний. Электрофорез сывороточных протеинов идентифицирует моноклональную гаммапатию или снижение уровня иммуноглобулинов, возможных при наличии лимфопролиферативных заболеваний или амилоидозе; диффузная гипергаммаглобулинемия предполагает наличие хронической инфекции (например, малярия, индийский висцеральный лейшманиоз, бруцеллез, туберкулез), цирроза с застойной спленомегалией или заболевания соединительной ткани.
Повышение уровня мочевой кислоты сыворотки крови предполагает наличие миелопролиферативного или лимфопролиферативного заболевания. Повышение уровня щелочной фосфатазы лейкоцитов указывает на миелопролиферативное заболевание, тогда как при снижении ее уровня возможно наличие хронического миелолейкоза.
Если обследование не выявило никаких отклонений, кроме спленомегалии, больного необходимо обследовать снова в интервале от 6 до 12 месяцев или при появлении новых симптомов.
Спленомегалия увеличивает селезеночную механическую фильтрацию и деструкцию эритроцитов, а также часто лейкоцитов и тромбоцитов. Проявляется компенсаторная гиперплазия костного мозга тех клеточных линий, уровень которых снижен в циркуляции.
40], [41], [42], [43], [44], [45], [46], [47], [48]
Перекрыть дыхание и спасти. светлая сторона гипоксии
Что такое гипоксия?
Это состояние, которое появляется при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в процессе биологического окисления. Как патологический процесс может отмечаться при многих заболеваниях.
Когда развивается гипоксия?
Гипоксия возникает как при уменьшении содержания кислорода во вдыхаемом воздухе, так и при изменениях дыхательной системы, переноса кислорода от легких до органов, внутриклеточного его использования. Рассмотрим некоторые из таких ситуаций.
Меньше кислорода в воздухе. Многим известно, что горный воздух более разреженный и содержит меньше кислорода в единице объема. Соответственно, попадая в такие условия, житель равнинных мест начнет испытывать кислородное голодание.
Затруднение поступления кислорода из легких в кровь. Такое возможно, например, при ряде патологий дыхательной системы.
Читайте материал по теме: Дышите легко и чисто! Вся правда о бронхитах
Меньше эритроцитов в крови. В норме попавший в легкие кислород захватывается красными кровяными клетками и, связавшись с гемоглобином, уносится к тканям и органам. Если эритроцитов (и гемоглобина) недостаточно, переносимое количество кислорода уменьшается. Такое случается, например, при анемии.
Застой крови. Один из примеров — сердечная недостаточность. При этом отмечаются застойные явления в системе кровообращения.
Подавление процессов окисления и восстановления в тканях. Что если кислород был доставлен до своей цели, но сама внутриклеточная «фабрика», где он проявляет свои функции, временно не работает? Такая ситуация возможна при некоторых отравлениях.
Когда гипоксия опасна?
В кислороде нуждаются все клетки организма. Какие-то из них могут обходиться без него более длительное время, другие — совсем недолго.
Безусловно опасной является значительная гипоксия, существующая даже непродолжительное время. В этом случае может развиваться потеря сознания и наступить смерть.
Хроническая, длительная гипоксия, вызванная тем или иным патологическим процессом (например, анемией, хронической сердечной недостаточностью, замещением функциональной части легкого соединительной тканью) также оказывает негативное воздействие на организм. В условиях хронической нехватки кислорода могут развиваться дистрофические изменения в органах.
Читайте материал по теме: Как жить с хронической обструктивной болезнью лёгких, не теряя качества жизни?
Здесь есть одно «но». Если кто-то из читателей был в горах, ему может быть знакомо ощущение улучшения настроения, кровь как будто бежит быстрее. Помимо перемены обстановки и влияния горного пейзажа, есть этому и чисто физиологическое объяснение. Разреженный, более бедный кислородом, воздух горной местности побуждает организм «бороться за кислород». Для обеспечения полноценной доставки его к органам организм должен мобилизовать свои внутренние ресурсы. Отмечается учащение дыхания, усиление кровообращения, вследствие чего происходит активизация жизненных сил.
Если кто-то решает подняться еще выше — туда, где живительного газа еще меньше, реакция организма будет совсем иной. После пересечения определенной «грани» в концентрации кислорода и времени пребывания ситуация начинает становиться опасной.
Исходя из изложенного выше, становятся понятными польза и вред, которые может принести гипоксия. А может ли она оказывать лечебное воздействие? Иными словами — применяться при лечении заболеваний?
Не во вред
Над проблемой гипоксии в свое время серьезно работали ученые из Института физиологии АН УССР. Впоследствии их продолжила исследовательская группа профессора А.3. Колчинской.
В процессе работы была разработана компьютерная программа, с помощью которой можно было оценивать работу системы дыхания по целому ряду параметров (сколько вдыхается воздуха, как быстро кислород попадает в кровь, по частоте сердечных сокращений и т.д.).
Одна из изучаемых групп состояла из спортсменов и альпинистов. Другая — из пациентов с разнообразными патологиями: хроническим бронхитом, бронхиальной астмой, анемией, диабетом и др.).
Читайте материал по теме: Мы хотим дышать! Как помочь детям и взрослым с бронхиальной астмой?
На основании проведенного компьютерного анализа было показано: даже недуги, которые особо не соотносятся с системой дыхания, негативно на ней сказываются. Напрашивалось предположение и о противоположной зависимости: ее работа может влиять на состояние всего организма.
Читайте материал по теме: Как работает дыхательная система? Просто о сложном
В результате исследователи решают проверить влияние на организм воздуха со сниженным количеством кислорода. Аппарат назвали гипоксикатором, а саму эту процедуру — гипоксической тренировкой.
Однако проблема состояла в том, что непрерывно держать испытуемого на аппарате невозможно.
Для достижения стойких результатов лечебный сеанс разбивался на серии. В течение нескольких минут человек дышал с помощью прибора, затем — обычным воздухом, чередуя эти фазы несколько раз.
В итоге происходила постепенная тренировка органов дыхания, кровообращения, кроветворения и митохондрий.
Логично предположить, что подход к каждому пациенту должен был быть индивидуальным. Необходимо было определять то количество кислорода во вдыхаемом воздухе, при котором заработают механизмы приспособления к гипоксии. По этой причине до начала лечения выполнялась гипоксическая проба, чтобы определить, как реагирует организм на обедненный кислородом воздух.
Какими оказались результаты применения интервальной гипоксической тренировки (ИГТ)?
Различную степень эффективности метод показал при лечении разных форм бронхиальной астмы. Было также установлено, что продолжительное вдыхание гипоксической смеси приводило к спазму бронхов, тогда как кратковременная ингаляция вызывала их расширение.
Увеличение просвета бронхов благотворно сказывалось и на течении хронических легочных патологий.
Приспособление к гипоксии в процессе лечения приводило к увеличению содержания гемоглобина в крови и ликвидации анемии, возникшей вследствие кровопотери. Действенность метода была в этих случаях особенно высокой.
Положительный эффект оказывал метод на течение ишемической болезни сердца. Уменьшалось число болевых приступов, внеочередных сокращений сердца, эпизодов ишемии, увеличивалась работоспособность.
Читайте материал по теме: Ишемическая болезнь сердца: диагностика и лечение
Интересным оказалось влияние гипоксической тренировки на гипотиреоз (состояние, развивающееся из-за уменьшения в крови гормонов щитовидной железы). При легкой степени этой патологии после курса ИГТ было возможно отменить гормональное лечение, а при средней и тяжелой — уменьшить дозировку принимаемых препаратов.
С целью профилактики и лечения использовалась ИГТ и в период беременности у женщин с высоким риском развития позднего токсикоза, а также у беременных с претоксикозом. Положительный эффект был отмечен у пациенток с хроническими сальпингоофоритами (воспалительным процессом придатков матки (маточных труб и яичников)).
Позитивные изменения отмечались при лечении близорукости. У части больных зрение восстанавливалось полностью, у некоторых наступало значительное улучшение.
Метод доказал свою результативность и при применении у практически здоровых людей — в частности у спортсменов.
Вместо эпилога
Судя по представленным результатам, гипоксическая дыхательная тренировка показала себя как эффективный (в разной степени) метод лечения ряда различных патологий. Начальные показатели переносимости такой тренировки напрямую зависят от особенностей организма конкретного пациента. Вместе с тем в некотором проценте случаев — в частности, при одной из разновидностей бронхиальной астмы — отмечалось ухудшение.
Поэтому определение показаний и противопоказаний, разработка индивидуальной схемы лечения и проведение самого курса осуществляет только врач с соответствующей подготовкой.
Текст: Энвер Алиев
Другие статьи по теме:
Как избавиться от лающего кашля? Говорим о ларингите
Что поможет от кашля: барсучий жир или горчица в носках?
Уильям Гарвей против Клавдия Галена: как устроена система кровообращения человека?
Экскурс в физиологию
Бесперебойную подачу веществ, необходимых для нервных клеток мозга, и очищение от отходов осуществляет система мозгового кровообращения, где артериальная кровь несет мозгу кислород и питание, а венозная — выносит токсины и продукты метаболизма.
Сосуды головного мозга имеют своеобразную, совершенную структуру, которая идеально регулирует кровоток, обеспечивая его стабильность. Они устроены таким образом, что при увеличенном поступлении крови в крупные сосуды, сильный пульсовой толчок крови, идущий от сердца, ослабляется за счет многочисленных изгибов (сифонов) сосудов по ходу сосудистого русла, которые способствуют перепаду давления и сглаживанию пульсирующего кровотока.
За счет сложных механизмов регуляции при повышении общего артериального давления, давление в мозге долгое время остается стабильным. Системы регуляции позволяют перераспределять кровоток из отделов мозга с меньшей нагрузкой на участки с усиленной мозговой деятельностью.
Мозг имеет автономную систему регуляции, что позволяет ему находиться в здоровом функциональном состоянии и контролировать процессы непрерывного приспособления организма к постоянно меняющимся условиям внешней и внутренней среды. В состоянии функционального покоя мозг получает 750 мл крови в минуту, что составляет 15 % от сердечного выброса. У детей активность кровотока на 50–55 % выше, а у пожилых на 20 % ниже, чем у человека в зрелом возрасте.
Следует отметить, что серое вещество мозга (клеточные тела нейронов) обеспечивается кровью более интенсивно, чем белое (проводящие пути), что обусловлено большей активностью клеток. Так при напряженной умственной работе локальный кровоток в коре головного мозга может возрастать в 2–3 раза по сравнению с состоянием покоя.
Мозг имеет самую богатую капиллярную сеть. Нервные клетки не только оплетаются, но и пронизываются капиллярами. Сосуды мозга связаны между собой коллатералями («мостиками»). Артериальное коллатеральное кровообращение головного мозга, важное для поддержания нормального кровотока, играет особенно значительную роль в компенсации нарушений кровообращения при закупорке одной из мозговых артерий.
При высокой интенсивности кровотока в сосудах мозга, давление крови в них поддерживается в относительном постоянстве. Сложная цепь регуляторных механизмов охраняет мозг от падения артериального давления и гипоксии (снижения кислорода). На пути тока крови в мозг встречается множество чувствительных клеток (прессорецепторов, хеморецепторов), способных реагировать на артериальное давление и регулировать ритм сердца и тонус сосудов.
Деятельность сосудодвигательных центров мозга связана не только с нервными и гуморальными механизмами регуляции, но и с системой автономной регуляции, позволяющей, несмотря на значительные колебания общего артериального давления, поддерживать мозговой кровоток на постоянном уровне.
Таким образом, мозговое кровообращение обеспечено сложными регулирующими механизмами, позволяющими поддерживать постоянство поступления необходимых ему веществ.
При избыточном кровоснабжении мозга может произойти его излишняя гидратация (скопление жидкости) с последующим развитием отека и повреждениями жизненно важных центров, не совместимыми с жизнью. Причиной избыточности кровоснабжения может послужить, например, увеличение системного артериального давления до 160–170 мм рт. ст. и выше.
В проблеме нарушения кровоснабжения мозга большое внимания уделяется артериям. Но не менее значимо и венозное кровообращение. По венам осуществляется вывод с кровью отработанных веществ (шлаков) — то есть, очищение мозга. Благодаря этим сосудам поддерживается постоянное внутричерепное давление.
Нарушение венозного оттока ведет к застою крови и накоплению жидкости в мозге, вызывает гидроцефалию со сдавлением мозговых центров, способствует возникновению флебитов и тромбофлебитов.
Есть еще одна особенность вен мозга, которую необходимо учитывать. Стенка венозного сосуда в мозге не имеет клапанного аппарата, в отличие, например, от вен конечностей (клапаны помогают выдерживать нагрузки, продвигая кровь вверх и не давая ей двигаться в обратном направлении).
Поэтому венозная кровь в сосудах мозга свободно пропускается в обе стороны в зависимости от возникшего давления. Это создает опасность быстрого распространения инфекции из пазух носа и глазниц, чему способствуют и атомические особенности строения носа и его придаточных пазух, находящихся в непосредственной близости от мозга.
При кашле венозное давление увеличивается, становится возможным обратный венозный ток, застой, гипоксия мозга. Известны случаи потери сознания во время приступа кашля при наличии хронического заболевания дыхательных путей и у маленьких детей, когда они «заходятся» в кашле при болезни и в плаче с криком до кашля.
Становиться понятным, почему длительные нарушения со стороны органов дыхания, сопровождающиеся постоянным отеком и кашлем, могут вызывать нарушения мозгового кровообращения. Потому что они не только вызывают гипоксию мозга, но и нарушают венозный отток и, являясь постоянным очагом инфекции, способствуют ее проникновению в мозг.
Наблюдать проявления застойных явлений в мозге (расширенные, наполненные кровью сосуды глазного дна) может, например, врач-окулист. Но это видно и невооруженным глазом: красные, отечные глаза после сна (вследствие приема алкоголя накануне, переедания на ночь, недосыпания) служат симптомом застойных явлений в мозге.
После краткого экскурса в физиологию становится ясным, что причины ухудшения мозгового кровообращения могут быть связаны с нарушениями притока крови в мозг и оттока крови из мозга.
Вместо заключения
В настоящее время разработаны/разрабатываются методы селективного ингибирования HIF-1 и HIF-2; селективного ингибирования различных изоформ пролилгидроксилаз PHDs, за счет чего возможно активировать HIF-1 и HIF-2, причем также селективно; можно ингибировать фермент FIH-1и прочие участники пути регуляции кислород-зависимого пути деградации. При желании и достаточной фантазии можно пробовать воздействовать на кислород-независимые пути.
Все это, несомненно, должно найти и, я уверен, найдет применение в практической медицине. Но это потребует крайней обдуманности, многостадийного контроля и досконального изучения. Чем далеко ходить, лучше приведу пример.
Не так давно, в начале-середине 2000-х годов, наблюдался некоторый бум: для многих типов онкологических заболеваний была показана сверхэкспрессия HIF-1α, что вполне соответствовало понятиям об опухолевой биологии: быстрорастущая опухолевая масса в условиях жесткой гипоксии переходит на гликолитический анаэробный тип метаболизма [23], при этом активно секретируя вокруг себя многочисленные факторы роста сосудов, факторы инвазии и т.д. Что делать? Подавим экспрессию HIF-1α и дело в шляпе! Не тут-то было — реальность оказалась сложнее и запутанней.
Так, например, при применении siRNA против HIF-1α на культуре пигментного эпителия сетчатки и эндотелия сосудов, наблюдалось вполне закономерное снижение секреции таких ангиогенных факторов как VEGF, TGF-β (это очень хорошо), но росла секреция IL-8, мощного хемокина с ярко выраженными ангиогенными свойствами (это очень плохо)
[24]. Позднее, группой профессора Лобода был раскрыт механизм — дело в том, что HIF-1 подавляет экспрессию IL-8, а HIF-2 — активирует. Подавляя HIF-1 в клетках, исследователи добивались реципрокной активации HIF-2 и экспрессии IL-8 [25]. Такая неоднозначная выходила терапия.
Также нужно быть аккуратными с иммунной системой. Системное подавление HIF-1 при аутоиммунных заболеваниях, возможно, и приведет к снижению популяции Th17 и росту числа Treg, что теоретически способно облегчить течение заболевания, но также способно привести к искусственному комбинированному иммунодефициту за счет дисфункции M1-макрофагов, нейтрофилов, Th1, Th2, Th17 и СD8 T лимфоцитов.
Это, конечно, спекуляции, но все же.
- Alexander C.S. (1972). Cobalt-beer cardiomyopathy: a clinical and pathologic study of twenty-eight cases. Am. J. Med. 53 (4), 395–417;
- Gregg L. Semenza, M.D., Ph.D.Сайт The Johns Hopkins Hospital;
- Satkoski A.M., Beukes N.J., Li W., Beard B.L., Johnson C.M. (2022). A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 430, 43–53;
- Scotti J.S., Leung I.K., Ge W., Bentley M.A., Paps J., Kramer H.B. et al. (2022). Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Proc. Natl. Acad. Sci. USA.111 (37), 13331–13336;
- Loenarz C., Coleman M.L., Boleininger A., Schierwater B., Holland P. W., Ratcliffe P.J., Schofield C.J. (2022). The hypoxia‐inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep. 12 (1), 63–70;
- Prabhakar N.R. and Semenza G.L. (2022). Oxygen sensing and homeostasis. Physiology. 30 (5), 340–348;
- Активный кислород: друг или враг, или О пользе и вреде антиоксидантов;
- SUMO: японская борьба или уникальная посттрансляционная модификация?;
- Agani F. and Jiang B.H. (2022). Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr. Cancer. Drug Targets. 13 (3), 245–251;
- Была клетка простая, стала стволовая;
- Ствол и ветки: стволовые клетки;
- Koh M.Y. and Powis G. (2022). Passing the baton: the HIF switch. Trends Biochem. Sci. 37 (9), 364–372;
- Hu Y.Y., Fu L.A., Li S.Z., Chen Y., Li J.C., Han J. et al. (2022). Hif-1α and Hif-2α differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Lett. 349 (1), 67–76;
- Villa J.C., Chiu D., Brandes A.H., Escorcia F.E., Villa C.H., Maguire W.F. et al. M. (2022). Nontranscriptional role of Hif-1α in activation of γ-secretase and notch signaling in breast cancer. Cell Rep. 8 (4), 1077–1092;
- Gluhanyuk E., Makarevich P., Gallinger J., Dergilev K., Beloglazova I., Parfyonova Ye. (2022). Diverse modulation of endothelial chemokine production by VEGF165 and HGF via NFkB and HIF-2. Материалы конференции Hypoxia: From Basic Mechanisms to Therapeutics;
- Palazon A., Goldrath A.W., Nizet V., Johnson R.S. (2022). HIF transcription factors, inflammation, and immunity. Immunity. 41 (4), 518–528;
- Phan A.T. and Goldrath A.W. (2022). Hypoxia-inducible factors regulate T cell metabolism and function. Mol. Immunol. doi: 10.1016/j.molimm.2022.08.004;
- Hsiao H.W., Hsu T.S., Liu W.H., Hsieh W.C., Chou T.F., Wu Y.J. et al. (2022). Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat. Commun. 6, 6353;
- Yao Y., Vent-Schmidt J., McGeough M.D., Wong M., Hoffman H.M., Steiner T.S., Levings M.K. (2022). Tr1 cells, but not Foxp3 regulatory T cells, suppress NLRP3 inflammasome activation via an IL-10—dependent mechanism. J. Immunol. 195 (2), 488–497;
- Netea M.G., Latz E., Mills K.H., O’Neill L.A. (2022). Innate immune memory: a paradigm shift in understanding host defense. Nat. Immunol. 16 (7), 675–679;
- Одураченные макрофаги, или Несколько слов о том, как злокачественные опухоли обманывают иммунитет;
- Thomas A., Tambuwala M.M., McNicholas W.T., Roche H.M., Taylor C.T., Pepin J.L. et al. (2022). Chronic intermittent hypoxia contributes to pro-inflammatory macrophage alteration in visceral adipose tissue of lean and obese mice. Am. J. Respir. Crit. Care Med. 191, A2691;
- Страшней клешней на свете нет…;
- Forooghian F. and Das B. (2007). Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha. Am. J. Ophthalmol. 144 (5), 761–768;
- Loboda A., Jozkowicz A., Dulak J. (2022). HIF-1 versus HIF-2 — Is one more important than the other?Vascul. Pharmacol. 56 (5), 245–251..