Химическая схема процесса, Сжигание серы — Производство серной кислоты из серы

Химическая схема процесса, Сжигание серы - Производство серной кислоты из серы Кислород

Cпособы получения оксида серы (iv)

1.Сжигание серы на воздухе:

S      O2  →  SO2

2.Горение сульфидов и сероводорода:

2H2S      3O2  →   2SO2      2H2O

2CuS      3O2  →   2SO2      2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

Например, сульфит натрия взаимодействует с серной кислотой:

Na2SO3       H2SO4    →  Na2SO4      SO2       H2O

4.Обработка концентрированной серной кислотой неактивных металлов.

Например, взаимодействие меди с концентрированной серной кислотой:

Cu       2H2SO4   →   CuSO4      SO2      2H2O

Азотсодержащие вещества

Чаще всего во время горения веществ, содержащих азот, выделяется чистый азот – N2. Этот газ и так содержится в атмосфере в большом количестве. Азот может быть примером продукта горения аминов. Но при термическом разложении, к примеру, солей аммония, а в некоторых случаях и при самом горении, в атмосферу выбрасываются и его оксиды, со степенью окисления азота в них плюс один, два, три, четыре, пять. Оксиды – газы, имеют бурый цвет и чрезвычайно токсичны.

Акролеин

Пропеналь, акролеин, акрилальдегид – все это названия одного вещества, ненасыщенного альдегида акриловой кислоты: СН2=СН-СНО. Этот альдегид тоже является сильно летучей жидкостью. Акролеин бесцветен, с резким запахом, очень ядовит.

Горение — сера
— большая энциклопедия нефти и газа, статья, страница 1

Cтраница 1

Горение серы и обжиг сернистых руд — процессы экзотермические.
[1]

Горение серы представляет собой сложный процесс в связи с тем, что сера имеет молекулы с разным числом атомов в различных аллотропных состояниях и большой зависимостью ее физико-химических свойств от температуры. Механизм реакции и выход продуктов изменяется как от температуры, так и от давления кислорода.
[3]

Горение серы в 80 з возможно по различным причинам. Твердо установленной теории этого процесса пока не имеется. Предполагается, что частично это происходит в самой топке при высокой температуре и при достаточном избытке воздуха. Исследования в этом направлении ( рис. 66) показывают, что при малых избытках воздуха ( порядка сст 1 05 и ниже) образование 80 з в газах резко снижается.
[5]

Горение серы в кислороде протекает при 280 С, а на воздухе — при 360 С.
[6]

Горение серы происходит во всем объеме печи. При этом газы получаются более концентрированными и переработка их осуществляется в аппаратах меньших габаритов, а очистка газов почти исключается. Двуокись серы, получаемая при сжигании серы, кроме производства серной кислоты, применяется в ряде отраслей промышленности для очистки погонов нефти как холодильный агент, в производстве сахара и др. SCb перевозится в стальных баллонах и цистернах в жидком состоянии. Ожижение SO2 производится сжатием предварительно осушенного и охлажденного газа.
[8]

Горение серы происходит во всем объеме печи и заканчивается в камерах, образованных перегородками 4, куда подается дополнительное количество воздуха. Из этих камер выводится горячий печной газ, содержащий сернистый ангидрид.
[9]

Горение серы очень легко налбюдать в механических печах. На верхних этажах печей, где в горящем материале много FeS2, все пламя окрашено в синий цвет — это характерное пламя горения серы.
[10]

Процесс горения серы описывается уравнением.
[11]

За горением серы наблюдают через смотровое стекло в стенке печи. Температуру расплавленной серы следует поддерживать в пределах 145 — 155 С. Если продолжать повышать температуру, вязкость серы постепенно увеличивается и при 190 С она превращается в густую темно-коричневую массу, что крайне затрудняет ее перекачивание и разбрызгивание.
[12]

При горении серы на один атом серы приходится одна молекула кислорода.
[13]

При горении серы в печи получают обжиговый сернистый газ с содержанием около 14 % S02 и температурой на выходе из печи около 1000 С. С этой температурой газ поступает в котел-утилизатор 7, где путем снижения его температуры до 450 С получают пар. В контактный аппарат 8 необходимо направлять сернистый газ с содержанием около 8 % SO2, поэтому после котла-утилизатора часть газа или весь обжиговый газ разбавляют до 8 % SO2 подогретым в теплообменнике 9 воздухом. В контактном аппарате окисляется 50 — 70 % сернистого ангидрида до серного ангидрида.
[15]

Страницы:  

   1

   2

   3

   4

Горение серы в кислороде

Горение серы в кислороде протекает согласно уравнению:

    [ S   O_2 rightarrow SO_2.]

Реакция носит окислительно-восстановительный характер поскольку степени окисления меняются: серы повышается от 0 до 4, кислорода понижается с 0 до -2.
Экстрагенты чаще всего делят на три группы: кислотные (катионообменные), основные (анионообменные) и нейтральные (координационные). К первой из них относят хелатообразующие экстрагенты, такие как beta-дикетоны, купфероны, гидроксамовые кислоты, 8-оксихинолин, диметилглиоксим, дифенилтиокарбазон, диэтилдитиокарбаминаты; карбоновые и нафтеновые кислоты; фосфорорганические кислоты (ди(2-этилгексил)фосфорная); сульфокислоты (динонилнафталинсульфокислота).
Анионообменниками являются соли третичных аминов, соли четвертичных аммониевых оснований — R_4N^{ }X^{-}-дикетоны, купфероны, гидроксамовые кислоты, 8-оксихинолин, диметилглиоксим, дифенилтиокарбазон, диэтилдитиокарбаминаты; карбоновые и нафтеновые кислоты; фосфорорганические кислоты (ди(2-этилгексил)фосфорная); сульфокислоты (динонилнафталинсульфокислота).
Анионообменниками являются соли третичных аминов, соли четвертичных аммониевых оснований — R_4N^{ }X^{-}
, соли тетрафенилфосфония и тетрафениларсония — (C_6H_5)_4P^{ }X^{-}, (C_6H_5)_4As^{ }X^{-}, (C_6H_5)_4As^{ }X^{-}.
Координационными экстрагентами могут выступать эфиры (диэтиловый, 2,2-дихлордиэтиловый), кетоны (метилизобутилкетон (гексон), окись мезитила, циклогексанон), фосфаты (RO_3)PO, фосфонаты (RO_2)RPO, фосфонаты (RO_2)RPO, фосфинаты (RO)R_2PO, фосфиноксиды R_3PO, фосфиноксиды R_3PO, фосфины (C_6H_5)_3P, диантипирилметан и его аналоги, сульфиды — RR'S, диантипирилметан и его аналоги, сульфиды — RR'S, сульфоксиды — RR'SO, производные тиомочевины — (RNH)(R'NH)CS, производные тиомочевины — (RNH)(R'NH)CS.

Про кислород:  Генераторы кислорода промышленные в Москве: 110-товаров: бесплатная доставка [перейти]

Действие на организм человека

Степень токсичности веществ связана с их физической и химической природой. Взаимодействуя с организмом, продукты горения вызывают патологические синдромы.

По механизму действия на человека отравляющие компоненты в составе дыма делятся на пять групп.

  1. Вещества, которые вызывают поражение кожного покрова и слизистой оболочки. Симптомы такого отравления продуктами горения – зуд, жжение кожи и её воспаление, боль в области глаз, век, слезотечение, кашель. Примеры – пары дёгтя, сернистый газ, формальдегид.
  2. Продукты горения, которые вызывают острые ингаляционные отравления. Пострадавшие жалуются на одышку, кашель. При осмотре обращает на себя внимание частое дыхание, синюшность. При высокой концентрации токсичного газа может произойти остановка дыхания. Так, признаки отравления продуктами горения ПВХ могут проявиться через несколько часов. Ингаляционные отравления вызывает хлор, аммиак, оксид азота.
  3. Продукты горения с образованием токсичных веществ, которых называют «ядами крови». Связывая гемоглобин, они нарушают доступ кислорода к тканям и запускают патологические реакции, охватывающие весь организм. Примеры – угарный газ, диоксид азота.
  4. Продукты горения, для которых органом-мишенью является нервная система. Это бензол, сероводород.
  5. Ферментные яды, которые воздействуют на тканевое дыхание, блокируя процессы активации кислорода. Это сероводород, синильная кислота.

Многие токсины, образующие в продуктах горения «универсальны», так как вызывают поражение сразу нескольких систем организма.

Индивидуальное химическое соединение

В этом случае расчет ведут, исходя из уравнения реакции горения. Объем влажных продуктов сгорания единицы массы (кг) горючего вещества при нормальных условиях рассчитывают по формуле:

где:

Vп.с. – объем влажных продуктов сгорания, м3/кг; Число киломолей – число киломолей диоксида углерода, паров воды, азота и горючего вещества в уравнении реакции горения; М – масса горючего вещества, численно равная молекулярной массе, кг.

Например, чтобы определить объем сухих продуктов сгорания 1 кг ацетона при нормальных условиях, составляем уравнение реакции горения ацетона в воздухе:

CH3COCH3 4O2 4·3,76N2 = 3CO2 3H2O 4·3,76N2

Определяем объем сухих продуктов сгорания ацетона:

Объем влажных продуктов сгорания 1 м3 горючего вещества (газа) можно рассчитать по формуле:

где:

Vп.с. – объем влажных продуктов сгорания 1 м3горючего газа, м33; Число киломолей – число молей диоксида углерода, паров воды, азота и горючего вещества (газа).

Классификация

Большинство продуктов горения являются отравляющими веществами. Поэтому, говоря об их классификации, будет правильным ознакомить вас со следующим термином:

Классификация опасности веществ по степени воздействия на организм – это установление (ранжирование) уровней опасности веществ по их поражающему и повреждающему воздействию на организм человека и (или) животного. Более подробно о данной классификации читайте в материале по ссылке >>

Также ознакомьтесь с познавательным материалом по теме:

Токсичность продуктов горения

Показатель токсичности продуктов горения

Лабораторная работа №28. горение серы на воздухе и в кислороде — гдз и решебник по химии за 9 класс габриелян

Глава 3. Неметаллы. Сера. Лабораторная работа №28. Горение серы на воздухе и в кислороде

Оксид углерода

Оксид углерода или угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен. Относительная плотность равна 0,97. Плотность угарного газа при Т = 0 °С и р = 760 мм Hg составляет 1,25 кг/м3.

Этот газ легче воздуха и скапливается в верхней части помещения при пожарах. В воде оксид углерода почти не растворяется. Способен гореть и с воздухом образует взрывчатые смеси. Угарный газ при горении дает пламя синего цвета. Угарный газ является очень токсичным.

Пепел, зола, копоть, сажа, уголь

Копоть, или сажа – остатки углерода, который не вступил в реакцию, по разным причинам. Сажу называют также амфотерным углеродом. Зола, или пепел – мелкие частицы неорганических солей, не сгоревших или не разложившихся при температуре горения.

При выгорании топлива эти микросоединения переходят во взвешенное состояние или скапливаются внизу. А уголь – это продукт неполного сгорания дерева, то есть не сгоревшие его остатки, но при этом еще способные гореть. Конечно, это далеко не все соединения, которые выделятся при сгорании тех или иных веществ.

Первая помощь при отравлении

https://www.youtube.com/watch?v=Bqq2JJrGEIk

Симптомы интоксикации разными веществами могут отличаться, но принципы оказания первой помощи всегда одинаковые.

Большинство ядов поступает через дыхательные пути. Первое, что необходимо сделать при отравлении – прекратить поступление продуктов горения в организм. Для этого необходимо:

  • соблюдая безопасность и если имеется такая возможность прекратить поступление токсичного вещества – газа, дыма;
  • проветрить помещение или иной объем где находится пострадавший;
  • снять загрязнённую одежду;
  • при отсутствии противопоказаний перенести пострадавшего в безопасное место.

Острая интоксикация требуют оказания экстренной помощи. Действия при отравлении продуктами горения, следующие:

  • вызвать «скорую помощь»;
  • при задымлении предусмотреть способы защиты органов дыхания от продуктов горения;
  • если есть симптомы раздражения – промыть глаза, полость рта, носа;
  • при отсутствии сознания придать пострадавшему горизонтальное положение и обеспечить проходимость дыхательных путей;
  • до приезда медицинских специалистов наблюдать за сознанием, дыханием, частотой сердечных сокращений, артериальным давлением;
  • если есть признаки терминального состояния, то приступить к сердечно-лёгочной реанимации.

Некоторые ингаляционные отравления продуктами горения имеют период мнимого благополучия. Даже при отсутствии патологических симптомов, стоит внимательно следить за состоянием тех, кто может быть отравлен. При первых же признаках неблагополучия необходимо вызывать соответствующих специалистов.

Отравление продуктами горения у детей развивается быстрее, чем у взрослых. Это объясняется более высоким уровнем кислородного обмена. У малышей появляются жалобы на головную боль, сонливость, слезотечение, тошноту. При осмотре заметны изменения цвета кожи, учащение и затруднение дыхания, нарушения координации.

Про кислород:  Высокое артериальное давление или артериальная гипертензия

Сернистый газ

Сернистый газ (SO2) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом. Относительная плотность сернистого газа равна 2,25. Плотность этого газа при Т = 0 °С и р = 760 мм Hg составляет 2,9 кг/м3, то есть он намного тяжелее воздуха.

Сернистый газ хорошо растворяется в воде, например, при температуре Т = 0 °С в одном литре воды растворяется восемьдесят литров SO2, а при Т = 20 °С – сорок литров. Сернистый газ горение не поддерживает. Действует раздражающим образом на слизистые оболочки дыхательных путей, вследствие чего является очень токсичным.

Сложная смесь химических соединений

Если известен элементный состав сложного горючего вещества, то состав и количество продуктов сгорания 1 кг вещества можно определить по уравнению реакции горения отдельных элементов. Для этого составляют уравнения реакции горения углерода, водорода, серы и определяют объем продуктов сгорания, приходящийся на 1 кг горючего вещества. Уравнение реакции горения имеет вид:

С О2 3,76N2 = СО2 3,76N2

При сгорании 1 кг углерода получается 22,4 / 12 = 1,86 м3 СО2 и 22,4 × 3,76/12 = 7,0 м3 N2.

Аналогично определяют объем (в м3) продуктов сгорания 1 кг серы и водорода. Полученные данные приведены ниже:

СО2N2Н2ОSO2
Углерод1,867,00
Водород21,0011,2
Сера2,630,7

При горении углерода, водорода и серы кислород поступает из воздуха. Однако в состав горючего вещества может входить кислород, который также принимает участие в горении. В этом случае воздуха на горение вещества расходуется соответственно меньше.

В составе горючего вещества могут находиться азот и влага, которые в процессе горения переходят в продукты сгорания. Для их учета необходимо знать объем 1 кг азота и паров воды при нормальных условиях.

Объем 1 кг азота равен 0,8 м3, а паров воды 1,24 м3. В воздухе при 0 °С и давлении 101325 Па на 1 кг кислорода приходится 3,76 × 22,4 / 32 = 2,63 м3 азота.

На основании приведенных данных определяют состав и объем продуктов сгорания 1 кг горючего вещества.

Например, чтобы определить объем и состав влажных продуктов сгорания 1 кг каменного угля, состоящего из 75,8 % С, 3,8 % Н, 2,8 % О, 1,1 % N, 2,5 % S, W = 3,8 %, A = 11,0 %.

Объем продуктов сгорания будет следующий, м3:

Состав продуктов сгоранияСО2Н2ОN2SO2
Углерод1,86 × 0,758 = 1,47 × 0,758 = 5,306
Водород11,2 × 0,038 = 0,42521 × 0,038 = 0,798
Сера2,63 × 0,025 = 0,6580,7 × 0,025 = 0,017
Азот в горючем веществе0,8 × 0,011 = 0,0088
Влага в горючем веществе1,24 × 0,03 = 0,037
Сумма1,40,4626,7708 – 0,0736 = 6,69720,017

Из общего объема азота вычитают объем азота, приходящийся на кислород в составе каменного угля 0,028 × 2,63 = 0,0736 м3. Итог указывает состав продуктов сгорания каменного угля: объем влажных продуктов сгорания 1 кг каменного угля равен:

Vп.с. = 1,4 0,462 6,6972 0,017 = 8,576 м3/кг.

Смесь газов

Количество и состав продуктов сгорания для смеси газов определяют по уравнению реакции горения компонентов, составляющих смесь. Например, горение метана протекает по следующему уравнению:

СН4 2О2 2 × 3,76N2 = СО2 2Н2О 7,52N2

Согласно этому уравнению, при сгорании 1 м3 метана получается 1 м3 диоксида углерода, 2 м3 паров воды и 7,52 м3 азота. Аналогично определяют объем (в м3) продуктов сгорания 1 м3 различных газов:

СО2Н2ОN2SO2
Водород1,01,88
Окись углерода1,01,88
Сероводород1,05,641,0
Метан1,02,07,52
Ацетилен2,01,09,54
Этилен2,02,011,28

На основании приведенных цифр определяют состав и количество продуктов сгорания смеси газов.

Анализ продуктов сгорания, взятых на пожарах в различных помещениях, показывает, что в них всегда содержится значительное количество кислорода. Если пожар возникает в помещении с закрытыми оконными и дверными проемами, то пожар при наличии горючего может продолжаться до тех пор, пока содержание кислорода в смеси воздуха с продуктами сгорания в помещении не снизится до 14-16 % (об.).

Следовательно, на пожарах в закрытых помещениях содержание кислорода в продуктах сгорания может быть в пределах от 21 до 14 % (об.). Состав продуктов сгорания во время пожаров в помещениях с открытыми проемами (подвал, чердак) показывает, что содержание в них кислорода может быть ниже 14 % (об.):

СОСО2О2
В подвалах0,15-0,50,8-8,510,6-19
На чердаках0,1-0,60,3-4,016,0-20,2

По содержанию кислорода в продуктах сгорания на пожарах можно судить о коэффициенте избытка воздуха, при котором происходило горение.

Углекислый газ

Углекислый газ или двуокись углерода (СО2) – продукт полного горения углерода. Не имеет запаха и цвета. Плотность его по отношению к воздуху равна 1,52. Плотность углекислого газа при температуре Т = 0 °С и при нормальном давлении р = 760 миллиметров ртутного столба (мм Hg)

равна 1,96 кг/м3 (плотность воздуха при этих же условиях равна ρ = 1,29 кг/м3). Углекислый газ хорошо растворим в воде (при Т = 15 °С в одном литре воды растворяется один литр газа). Углекислый газ не поддерживает горение веществ, за исключением щелочных и щелочно-земельных металлов. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

CO2 2 Mg = C 2 MgO.

Токсичность углекислого газа незначительна. Концентрация углекислого газа в воздухе 1,5 % безвредна для человека длительное время. При концентрации углекислого газа в воздухе, превышающей 3-4,5 %, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни.

Про кислород:  СЕРА — Большая Медицинская Энциклопедия

При температуре Т = 0 °С и давлении р = 3,6 МПа углекислый газпереходит в жидкое состояние. Температура кипения жидкой углекислоты составляет Т = –78 °С. При быстром испарении жидкой углекислоты газ охлаждается и переходит в твердое состояние. Как в жидком, так и твердом состоянии, капли и порошки углекислоты применяются для тушения пожаров.

Формальдегид

Подобно акролеину, формальдегид принадлежит к классу альдегидов и является альдегидом муравьиной кислоты. Также это соединение известно как метаналь. Это токсичный, бесцветный газ с резким запахом.

Формулы для расчета объема

Вид формулы для расчета объема продуктов полного сгорания при теоретически необходимом количестве воздуха зависит от состава горючего вещества.

Химические свойства кислорода

Химический элемент кислород может существовать в виде двух аллотропных модификаций, т.е. образует два простых вещества. Оба этих вещества имеют молекулярное строение. Одно из них имеет формулу O2 и имеет название кислород, т.е. такое же, как и название химического элемента, которым оно образовано.

Другое простое вещество, образованное кислородом, называется озон. Озон в отличие от кислорода состоит из трехатомных молекул, т.е. имеет формулу O3.

Поскольку основной и наиболее распространенной формой кислорода является молекулярный кислород O2, прежде всего мы рассмотрим именно его химические свойства.

Химический элемент кислород находится на втором месте по значению электроотрицательности среди всех элементов и уступает лишь фтору. В связи с этим логично предположить высокую активность кислорода и наличие у него практически только окислительных свойств.

Действительно, список простых и сложных веществ, с которыми может реагировать кислород огромен. Однако, следует отметить, что поскольку в молекуле кислорода имеет место прочная двойная связь, для осуществления большинства реакций с кислородом требуется прибегать к нагреванию.

Среди простых веществ не окисляются кислородом лишь благородные металлы (Ag, Pt, Au), галогены и инертные газы.

Сера сгорает в кислороде с образованием диоксида серы:

Фосфор в зависимости от избытка или недостатка кислорода может образовать как оксида фосфора (V), так и оксид фосфора (III):

Взаимодействие кислорода с азотом протекает в крайне жестких условиях, в виду того что энергии связи в молекулах кислорода и особенно азота очень велики. Также свой вклад в сложность протекания реакции делает высокая электроотрицательность обоих элементов. Реакция начинается лишь при температуре более 2000 oC и является обратимой:

Не все простые вещества, реагируя с кислородом образуют оксиды. Так, например, натрий, сгорая в кислороде образует пероксид:

а калий – надпероксид:

Чаще всего, при сгорании в кислороде сложных веществ образуется смесь оксидов элементов, которыми было образовано исходное вещество. Так, например:

Однако, при сгорании в кислороде азотсодержащих органических веществ вместо оксида азота образуется молекулярный азот N2. Например:

При сгорании в кислороде хлорпроизводных вместо оксидов хлора образуется хлороводород:

Химические свойства оксида серы (iv)

Оксид серы (IV) – это типичный кислотныйоксид. За счет серы в степени окисления 4 проявляет свойства окислителяи восстановителя.

1. Как кислотный оксид, сернистый газ реагирует с щелочамии оксидами щелочных и щелочноземельных металлов.

Например, оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):

SO2       2NaOH(изб)   →   Na2SO3      H2O

SO2(изб)      NaOH  → NaHSO3

Еще пример: оксид серы (IV) реагирует с основным оксидом натрия:

SO2    Na2O   →  Na2SO3 

2. При взаимодействии с водой SO2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

SO2     H2O   ↔  H2SO3  

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Например, оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:

2SO2       O2    ↔  2SO3

Сернистый ангидрид обесцвечивает бромную воду:

SO2      Br2     2H2O   →  H2SO4    2HBr

Азотная кислота очень легко окисляет сернистый газ:

SO2      2HNO3   →  H2SO4      2NO2

Озон также окисляет оксид серы (IV):

SO2       O3  →   SO3    O2

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

5SO2      2H2O      2KMnO4  → 2H2SO4      2MnSO4      K2SO4    

Оксид свинца (IV) также окисляет сернистый газ:

SO2      PbO2  → PbSO4

4. В присутствии сильных восстановителей SO2  способен проявлять окислительные свойства.

Например, при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:

SO2       2Н2S    →    3S    2H2O

Оксид серы (IV) окисляет угарный газ и углерод:

SO2        2CO    →   2СО2        S 

SO2      С  →   S    СO2

Цианистый водород

Цианистый калий – сильнейший яд – соль синильной кислоты, также известной как цианистый водород – HCN. Это бесцветная жидкость, но очень летучая (легко переходящая в газообразное состояние). То есть при горении она тоже будет выделяться в атмосферу в виде газа.

Синильная кислота очень ядовита, даже небольшая – 0,01 процент – концентрация в воздухе приводит к летальному исходу. Отличительной чертой кислоты является характерный запах горького миндаля. Но синильной кислоте присуща одна «изюминка» – отравиться ей можно, не только вдыхая непосредственно органами дыхания, но и через кожу. Так что защититься только средствами индивидуальной защиты органов дыхания и зрения не получится.

Оцените статью
Кислород
Добавить комментарий