Кислород как химический элемент — Основы химии на Ида Тен

Кислород как химический элемент - Основы химии на Ида Тен Кислород

— кислород — большая советская энциклопедия

Кислород (латинское Oxygenium), О, химический элемент VI группы периодической системы Менделеева; атомный номер 8, атомная масса 15,9994. При нормальных условиях кислородгаз без цвета, запаха и вкуса. Трудно назвать другой элемент, который играл бы на нашей планете такую важную роль, как кислород.

  Историческая справка. Процессы горения и дыхания издавна привлекали внимание учёных. Первые указания на то, что не весь воздух, а лишь «активная» его часть поддерживает горение, обнаружены в китайских рукописях 8 в. Много позже Леонардо да Винчи (1452—1519) рассматривал воздух как смесь двух газов, лишь один из которых расходуется при горении и дыхании. Окончательное открытие двух главных составных частей воздухаазота и кислорода, сделавшее эпоху в науке, произошло только в конце 18 в. (см. Химия, Исторический очерк). Кислород получили почти одновременно К. Шееле (1769—70) путём прокаливания селитр (KNO3, NaNO3), двуокиси марганца MnO2 и других веществ и Дж. Пристли (1774) при нагревании сурика Pb3O4 и окиси ртути HgO. В 1772 Д. Резерфорд открыл азот. В 1775 А. Лавуазье, произведя количественный анализвоздуха, нашёл, что он «состоит из двух (газов) различного и, так сказать, противоположного характера», т. е. из кислорода и азота. На основе широких экспериментальных исследований Лавуазье правильно объяснил горение и дыхание как процессы взаимодействия веществ с кислородом. Поскольку кислород входит в состав кислот, Лавуазье назвал его oxygene, т. е. «образующий кислоты» (от греческого oxýs — кислый и gennáo — рождаю; отсюда и русское название «кислород»).

  Распространение в природе. Кислород — самый распространённый химический элемент на Земле. Связанный кислород составляет около 6/7 массы водной оболочки Земли — гидросферы (85,82% по массе), почти половину литосферы (47% по массе), и только в атмосфере, где кислород находится в свободном состоянии, он занимает второе место (23,15% по массе) после азота.

  Кислород стоит на первом месте и по числу образуемых им минералов (1364); среди минералов, содержащих кислород, преобладают силикаты (полевые шпаты, слюды и др.), кварц, окислы железа, карбонаты и сульфаты. В живых организмах в среднем около 70% кислорода; он входит в состав большинства важнейших органических соединений (белков, жиров, углеводов и т.д.) и в состав неорганических соединений скелета. Исключительно велика роль свободного кислорода в биохимических и физиологических процессах, особенно в дыхании. За исключением некоторых микроорганизмов-анаэробов, все животные и растения получают необходимую для жизнедеятельности энергию за счёт окисления биологического различных веществ с помощью кислорода.

  Вся масса свободного кислорода. Земли возникла и сохраняется благодаря жизнедеятельности зелёных растений суши и Мирового океана, выделяющих кислород в процессе фотосинтеза. На земной поверхности, где протекает фотосинтез и господствует свободный кислород, формируются резко окислительные условия. Напротив, в магме, а также глубоких горизонтах подземных вод, в илах морей и озер, в болотах, где свободный кислород отсутствует, формируется восстановительная среда. Окислительно-восстановительные процессы с участием кислорода определяют концентрацию многих элементов и образование месторождений полезных ископаемыхугля, нефти, серы, руджелеза, меди и т.д. (см. Круговорот веществ). Изменения в круговорот кислорода вносит и хозяйственная деятельность человека. В некоторых промышленных странах при сгорании топлива расходуется кислорода больше, чем его выделяют растения при фотосинтезе. Всего же на сжигание топлива в мире ежегодно потребляется около 9·109 т кислорода.

  Изотопы, атом, молекула. Кислород имеет три устойчивых изотопа: 16О, 17O и 18O, среднее содержание которых составляет соответственно 99,759%, 0,037% и 0,204% от общего числа атомовкислорода на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16O связано с тем, что ядро атома16O состоит из 8 протонов и 8 нейтронов. А такие ядра, как следует из теории атомного ядра, обладают особой устойчивостью.

  В соответствии с положением кислорода в периодической системе элементов Менделеева электроныатомакислорода располагаются на двух оболочках: 2 — на внутренней и 6 — на внешней (конфигурация 1s22s22p4 см. Атом). Поскольку внешняя оболочка атомакислорода не заполнена, а потенциал ионизации и сродство к электрону составляют соответственно 13,61 и 1,46 эв, атомкислорода в химических соединениях обычно приобретает электроны и имеет отрицательный эффективный заряд. Напротив, крайне редки соединения, в которых электроны отрываются (точнее оттягиваются) от атомакислорода (таковы, например, F2O, F2O2). Раньше, исходя единственно из положения кислорода в периодической системе, атомукислорода в окислах и в большинстве других соединений приписывали отрицательный заряд (—2). Однако, как показывают экспериментальные данные, ион O2- не существует ни в свободном состоянии, ни в соединениях, и отрицательный эффективный заряд атомакислорода практически никогда существенно не превышает единицы.

  В обычных условиях молекулакислорода двухатомна (O2); в тихом электрическом разряде образуется также трёхатомная молекула O3озон; при высоких давлениях обнаружены в небольших количествах молекулы O4 Электронное строение O2 представляет большой теоретический интерес. В основном состоянии молекула O2 имеет два неспаренных электрона; для неё неприменима «обычная» классическая структурная формула О=О с двумя двухэлектронными связями (см. Валентность). Исчерпывающее объяснение этого факта дано в рамках теории молекулярных орбиталей. Энергия ионизации молекулыкислорода (O2 — е®О2 ) составляет 12,2 эв, а сродство к электрону (O2 е ® O2) — 0,94 эв. Диссоциация молекулярного кислорода на атомы при обычной температуре ничтожно мала, она становится заметной лишь при 1500 °С; при 5000 °С молекулыкислорода почти полностью диссоциированы на атомы.

  Физические свойства. Кислород — бесцветный газ, сгущающийся при —182,9 °С и нормальном давлении в бледно-синюю жидкость, которая при —218,7 °С затвердевает, образуя синие кристаллы. Плотность газообразного кислорода (при 0°С и нормальном давлении) 1,42897 г/л. Критическая температуракислорода довольно низка tkpит = —118,84 °С), т. е. ниже, чем у Cl2, CO2, SO2 и некоторых других газов; Ркрит = 4,97 Мн/м2 (49,71 am). Теплопроводность (при 0 °С) 23,86Ч10-3 вт/(м·К), т. е. 57Ч10-6 кал/сек·см·°С). Молярная теплоёмкость (при 0 °С) в дж/(моль·К) Ср = 28,9, Cv = 20,5; в кал/(моль· oC) Ср = 6,99, Cv = 4,98; Cp/Cv = 1,403. Диэлектрическая проницаемость газообразного кислорода 1,000547 (0 °С), жидкого 1,491. Вязкость 189 мпуаз (0 °С). Кислород мало растворим в воде: при 20 °С и 1 am в 1 м3воды растворяется 0,031 м3, а при 0 °С — 0,049 м3кислорода. Хорошими твёрдыми поглотителями кислорода являются платиновая чернь и активный древесный уголь.

  Химические свойства. Кислород образует химические соединения со всеми элементами, кроме лёгких инертных газов. Будучи наиболее активным (после фтора) неметаллом, кислород взаимодействует с большинством элементов непосредственно;  исключение составляют тяжелые инертные газы, галогены, золото и платина; их соединения с кислородом получают косвенным путем. Почти все реакциикислорода с другими веществамиреакцииокисления экзотермичны, т. е. сопровождаются выделением энергии. С водородом при обычных температурахкислород реагирует крайне медленно, выше 550 °С эта реакция идёт со взрывом: 2Н2 O2 = 2H2O. С серой, углеродом, азотом, фосфоромкислород взаимодействует при обычных условиях очень медленно. При повышении температурыскорость реакции возрастает и при некоторой, характерной для каждого элемента температуревоспламенения начинается горение. Реакцияазота с кислородом благодаря особой прочностимолекулы N2 эндотермична и становится заметной лишь выше 1200 °С или в электрическом разряде: N2 O2 = 2NO. Кислород активно окисляет почти все металлы, особенно легко — щелочные и щёлочноземельные. Активность взаимодействия металла с кислородом зависит от многих факторов — состояния поверхности металла, степени измельчения, присутствия примесей (см. Алюминий, Железо, Хром и т.д.).

  В процессе взаимодействия вещества с кислородом исключительно важна роль воды. Например, даже такой активный металл, как калий, с совершенно лишённым влаги кислородом не реагирует, но воспламеняется в кислороде при обычной температуре в присутствии даже ничтожных количеств паровводы. Подсчитано, что в результате коррозии ежегодно теряется до 10% всего производимого металла.

  Окиси некоторых металлов, присоединяя кислород, образуют перекисные соединения, содержащие 2 или более связанных между собой атомовкислорода. Так, перекиси Na2O2 и ВаО2 включают перекисный ион O22-, надперекиси NaO2 и KO2ион O2, а озониды NaO3, KO3, RbO3 и CsO3ион O3. Кислород экзотермически взаимодействует со многими сложными веществами. Так, аммиак горит в кислороде в отсутствии катализаторов, реакция идёт по уравнению: 4NH3 3O2 = 2N22О. Окислениеаммиакакислородом в присутствии катализатора даёт NO (этот процесс используют при получении азотной кислоты). Особое значение имеет горениеуглеводородов (природного газа, бензина, керосина) — важнейший источник тепла в быту и промышленности, например СН42 = СО22О. Взаимодействие углеводородов с кислородом лежит в основе многих важнейших производственных процессов — такова, например, так называемая конверсия метана, проводимая для получения водорода: 2СН4 О22О=2СО22 (см. Конверсия газов). Многие органические соединения (углеводороды с двойной или тройной связью, альдегиды, фенолы, а также скипидар, высыхающие масла и др.) энергично присоединяют кислород. Окислениекислородом питательных веществ в клетках служит источником энергии живых организмов.

  Получение. Существует 3 основных способа получения кислорода: химический, электролизный (электролизводы) и физический (разделение воздуха).

  Химический способ изобретён ранее других. Кислород можно получать, например, из бертолетовой соли KClO3, которая при нагревании разлагается, выделяя O2 в количестве 0,27 м3 на 1 кг соли. Окись бария BaO при нагревании до 540 °С сначала поглощает кислород из воздуха, образуя перекись BaO2, а при последующем нагревании до 870 °С BaO2 разлагается, выделяя чистый кислород. Его можно получать также из KMnO4, Ca2PbO4, K2Cr2O7 и других веществ при нагревании и добавлении катализаторов. Химический способ получения кислорода малопроизводителен и дорог, промышленного значения не имеет и используется лишь в лабораторной практике.

  Электролизный способ состоит в пропускании постоянного электрического тока через воду, в которую для повышения её электропроводности добавлен растворедкого натра NaOH. При этом вода разлагается на кислород и водород. Кислород собирается около положительного электрода электролизёра, а водород — около отрицательного. Этим способом кислород добывают как побочный продукт при производстве водорода. Для получения 2 м3водорода и 1 м3кислорода затрачивается 12—15 квт·ч электроэнергии.

  Разделение воздуха является основным методом получения кислорода в современной технике. Осуществить разделение воздуха в нормальном газообразном состоянии очень трудно, поэтому воздух прежде сжижают, а затем уже разделяют на составные части. Такой способ получения кислорода называют разделением воздуха методом глубокого охлаждения. Сначала воздух сжимается компрессором, затем, после прохождения теплообменников, расширяется в машине-детандере или дроссельном вентиле, в результате чего охлаждается до температуры 93 К (—180 °С) и превращается в жидкий воздух. Дальнейшее разделение жидкого воздуха, состоящего в основном из жидкого азота и жидкого кислорода, основано на различии температурыкипения его компонентов [tkип O2 90,18 К (—182,9 °С), tkип N2 77,36 К (—195,8 °С)]. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость всё более обогащается кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн (см. Ректификация), получают жидкий кислород нужной чистоты (концентрации). В СССР выпускают мелкие (на несколько л) и самые крупные в мире кислородные воздухоразделительные установки (на 35000 м3кислорода). Эти установки производят технологический кислород с концентрацией 95—98,5%, технический — с концентрацией 99,2—99,9% и более чистый, медицинский кислород, выдавая продукцию в жидком и газообразном виде. Расход электрической энергии составляет от 0,41 до 1,6 квт·ч/м3.

  Кислород можно получать также при разделении воздуха по методу избирательного проницания (диффузии) через перегородки-мембраны. Воздух под повышенным давлением пропускается через фторопластовые, стеклянные или пластиковые перегородки, структурная решётка которых способна пропускать молекулы одних компонентов и задерживать другие. Этот способ получения кислорода пока (1973) используется лишь в лабораториях.

  Газообразный кислород хранят и транспортируют в стальных баллонах и ресиверах при давлении 15 и 42 Мн/м2 (соответственно 150 и 420 бар, или 150 и 420 am), жидкий кислород — в металлических сосудах Дьюара или в специальных цистернах-танках. Для транспортировки жидкого и газообразного кислорода используют также специальные трубопроводы. Кислородные баллоны окрашены в голубой цвет и имеют чёрную надпись «кислород».

  Применение. Технический кислород используют в процессах газопламенной обработки металлов, в сварке, кислородной резке, поверхностной закалке, металлизации и др., а также в авиации, на подводных судах и пр. Технологический кислород применяют в химической промышленности при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, перекисейметаллов и др. химических продуктов. Жидкий кислород применяют при взрывных работах (см. Оксиликвиты), в реактивных двигателях и в лабораторной практике в качестве хладагента.

  Заключенный в баллоны чистый кислород используют для дыхания на больших высотах, при комических полетах, при подводном плавании и др. В медицине кислород дают для вдыхания тяжелобольным, применяют для приготовления кислородных, водяных и воздушных (в кислородных палатках) ванн, для внутримышечного введения и т.п. (см. Кислородная терапия).

  В. Л. Василевский, И. П. Вишнев, А. И. Перельман.

  Кислород в металлургии широко применяется для интенсификации ряда пирометаллургических процессов. Полная или частичная замена поступающего в металлургические агрегаты воздухакислородом изменила химизм процессов, их теплотехнические параметры и технико-экономические показатели. Кислородное дутьё позволило сократить потери тепла с уходящими газами, значительную часть которых при воздушном дутье составлял азот. Не принимая существенного участия в химических процессах, азот замедлял течение реакций, уменьшая концентрацию активных реагентов окислительно-восстановительной среды. При продувке кислородом снижается расход топлива, улучшается качество металла, в металлургических агрегатах возможно получение новых видов продукции (например, шлаков и газов необычного для данного процесса состава, находящих специальное техническое применение) и др.

  Первые опыты по применению дутья, обогащенного кислородом, в доменном производстве для выплавки передельного чугуна и ферромарганца были проведены одновременно в СССР и Германии в 1932—33. Повышенное содержание кислорода в доменном дутье сопровождается большим сокращением расхода последнего, при этом увеличивается содержание в доменном газеокиси углерода и повышается его теплота сгорания. Обогащение дутья кислородом позволяет повысить производительность доменной печи, а в сочетании с газообразным и жидким топливом, подаваемым в горн, приводит к снижению расхода кокса. В этом случае на каждый дополнительный процент кислорода в дутье производительность увеличивается примерно на 2,5%, а расход кокса снижается на 1%.

  Кислород в мартеновском производстве в СССР сначала использовали для интенсификации сжигания топлива (в промышленном масштабе кислород для этой цели впервые применили на заводах «Серп и молот» и «Красное Сормово» в 1932—33). В 1933 начали вдувать кислород непосредственно в жидкую ванну с целью окисления примесей в период доводки. С повышением интенсивности продувки расплава на 1 м3/т за 1 ч производительность печи возрастает на 5—10%, расход топлива сокращается на 4—5%. Однако при продувке увеличиваются потери металла. При расходе кислорода до 10 м3/т за 1 ч выход стали снижается незначительно (до 1%). В мартеновском производстве кислород находит всё большее распространение. Так, если в 1965 с применением кислорода в мартеновских печах было выплавлено 52,1% стали, то в 1970 уже 71%.

  Опыты по применению кислорода в электросталеплавильных печах в СССР были начаты в 1946 на заводе «Электросталь». Внедрение кислородного дутья позволило увеличить производительность печей на 25—30%, снизить удельный расход электроэнергии на 20—30%, повысить качество стали, сократить расход электродов и некоторых дефицитных легирующих добавок. Особенно эффективной оказалась подача кислорода в электропечи при производстве нержавеющих сталей с низким содержанием углерода, выплавка которых сильно затрудняется вследствие науглероживающего действия электродов. Доля электростали, получаемой в СССР с использованием кислорода, непрерывно растет и в 1970 составила 74,6% от общего производства стали.

  В ваграночной плавке обогащенное кислородом дутьё применяется главным образом для высокого перегрева чугуна, что необходимо при производстве высококачественного, в частности высоколегированного, литья (кремнистого, хромистого и т.д.). В зависимости от степени обогащения кислорода ваграночного дутья на 30—50% снижается расход топлива, на 30—40% уменьшается содержание серы в металле, на 80—100% увеличивается производительность вагранки и существенно (до 1500 °С) повышается температура выпускаемого из неё чугуна.

  О значении кислорода в конвертерном производстве см. в ст. Кислородно-конвертерный процесс.

  Кислород в цветной металлургии получил распространение несколько позже, чем в чёрной. Обогащенное кислородом дутьё используется при конвертировании штейнов, в процессах шлаковозгонки, вельцевания, агломерации и при отражательной плавке медных концентратов. В свинцовом, медном и никелевом производстве кислородное дутьё интенсифицировало процессы шахтной плавки, позволило снизить расход кокса на 10—20%, увеличить проплав на 15—20% и сократить кол-во флюсов в отдельных случаях в 2—3 раза. Обогащение кислородом воздушного дутья до 30% при обжиге цинковых сульфидных концентратов увеличило производительность процесса на 70% и уменьшило объём отходящих газов на 30%. Разрабатываются новые высокоэффективные процессы плавки сульфидных материалов с применением чистого кислорода: плавка в кислородном факеле, конвертирование штейнов в вертикальных конвертерах, плавка в жидкой ванне и др.

  С. Г. Афанасьев.

  Лит.: Чугаев Л. А., Открытие кислорода и теория горения в связи с философскими учениями древнего мира, Избр. труды, т. 3, М., 1962, с. 350; Коттон Ф., Уилкинсон Дж., Современная неорганическая химия, пер. с англ., т. 1—3, М., 1969; Некрасов Б. В., Основы общей химии, т. 1, М., 1965; Кислород. Справочник, под ред. Д. Л. Глизманенко, ч. 1—2, М., 1967; Разделение воздуха методом глубокого охлаждения, под ред. В. И. Епифановой, Л. С. Аксельрода, т. 1—2, М., 1964; Справочник по физико-техническим основам глубокого охлаждения, М. — Л., 1963.

История открытия

Официально считается[2][3], что кислород был открыт английским химиком Джозефом Пристли1 августа1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»).

О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле.

Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Пьера Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория.

Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Кислород охлажденный жидкий № оон 1073 (un1073)

Главная > О предприятии > Техническая информация > Справочник химических веществ

КИСЛОРОД ОХЛАЖДЕННЫЙ ЖИДКИЙ № ООН 1073 (UN1073) — класс опасности, перевозки автоцистернами

  • Производство
  • Технологии
  • История завода
  • Новости
  • Фотогалерея
  • Статьи
  • Карьера
  • F.A.Q.
  • Техническая информация
  • Документоборот
1.

Идентификация химической продукции

1.1.Идентификация химической продукции
1.1.1.Техническое наименование:КИСЛОРОД ЖИДКИЙ
1.1.2Краткие рекомендации по применению (в т.ч. ограничения по применению):Кислород жидкий применяется для газопламенной обработки металлов и других технических целей.
2.

Идентификация опасности (опасностей)

2.1Степень опасности химической продукции в целом:По степени воздействия на организм человека в соответствии с требованиями ГОСТ 12.1.007 не классифицируется.
2.2.Гигиенические нормативы для продукции в целом в воздухе рабочей зоны: (ПДКр.з. или ОБУВ р.з.)ПДК р.з. не установлена. Контроль осуществлять по кислороду, объемная доля которого в воздухе рабочей зоны должна составлять не более 23%
2.3.Сведения о маркировке (по ГОСТ 31340-13)
2.3.1.Описание опасности:Символы: «Газовый баллон», «Пламя над окружностью», Сигнальное слово: «Опасно». Характеристика опасности: Охлажденный газ, может вызвать обморожение. Окислитель, может вызвать или усилить возгорание.
3.

Информация при перевозках (транспортировании)

3.1Номер ООН (UN): (в соответствии с рекомендациями ООН по перевозке опасных грузов (типовые правила), последнее издание)Номер ООН 1073
3.2Надлежащее отгрузочное наименование и/или транспортное наименование:UN 1073 КИСЛОРОД ОХЛАЖДЕННЫЙ ЖИДКИЙ, 2.2 (5.1), (С/Е) /КИСЛОРОД жидкий
3.3Виды применяемых транспортных средств:Перевозить всеми видами транспорта в соответствии с Правилами перевозки опасных грузов, действующими на данном виде транспорта.
3.4Классификация опасности груза: (по ГОСТ 19433 и рекомендациям ООН по перевозке опасных грузов)По ГОСТ 19433 — класс 2, подкласс 2.1, классификационный шифр 2125 Согласно рекомендациям ООН по перевозке опасных грузов продукт относится к классу 2, подклассу 2.2 5.1
3.5Транспортная маркировка: (манипуляционные знаки; основные, дополнительные и информационные надписи)Знак опасности в соответствии с ГОСТ 19433 по чертежу №2, 5(доп). Транспортная маркировка по ГОСТ 14192 с нанесением манипуляционного знака «Беречь от солнечных лучей»
3.6Группа упаковки: (в соответствии с рекомендациями ООН по перевозке опасных грузов)Не применяется
3.7Информация об опасности при автомобильных перевозках (КЭМ):№ 234
3.8Аварийные карточки: (при железнодорожных, морских и др. перевозках)
При железнодорожных перевозках аварийная карточки № 202. При морских перевозках АвК: F-C, S-W
3.9Информация об опасности при международном грузовом сообщении: (по СМГС, ADR (ДОПОГ), RID (МПОГ), IMDG Code (ММОГ), ICAO/IАTA (ИКАО) и др., включая сведения об опасности для окружающей среды, в т.ч. о «загрязнителях моря»)225
4.

Правила хранения химической продукции и обращения с ней при погрузочно-разгрузочных работах

4.1Меры безопасности при обращении с химической продукцией
4.1.1Меры безопасности и коллективные средства защиты: (в т.ч. система мер пожаровзрывобезопасности)Непрерывно действующая общеобменная приточно-вытяжная вентиляция производственных помещений; герметизация оборудования для получения, хранения и транспортирования жидкого кислорода; использование СИЗ. Оснащение рабочих мест первичными средствами пожаротушения. Взрывобезопасное исполнение электрооборудования и освещения. Применение мер защиты от накопления статического электричества; оборудование и трубопроводы должны быть заземлены в соответствии с Правилами защиты от статического электричества. При проливах или утечках жидкого кислорода возможно появление зон с повышенным содержанием кислорода, что создает опасность возникновения пожаров. Эти зоны должны быть обозначены специальным предупредительным знаком, в них должно быть ограничено пребывание людей и не должны находиться легковоспламеняемые материалы. Места возможного накопления продукта, а также места возможных утечек или проливов должны быть оснащены автоматическими системами обнаружения и контроля содержания кислорода. При снижении или превышении объемной доли кислорода менее 19 или более 23% должна включаться световая и звуковая сигнализация, сблокированная с автоматически включающейся вытяжной вентиляцией. Определять места утечек жидкого газа при помощи огня или тлеющих предметов запрещается. Технология работы с жидким кислородом должна исключать возможность неконтролируемого накопления в нем органических и других горючих веществ. Для работы в контакте с кислородом использовать только разрешенные материалы. Запрещается опорожнять и наполнять транспортные цистерны и криогенные сосуды кислородом на площадках из асфальта и других органических покрытий, а также на железнодорожных путях с деревянными шпалами.
4.1.2Меры по защите окружающей среды:Не допускать попадания в объекты окружающей среды(водоемы, почву), канализационные коллекторы или систему оборотного водоснабжения. Герметизация технологического оборудования и транспортной тары. Контроль выбросов в атмосферу.
4.1.3Рекомендации по безопасному перемещению и перевозке:Перевозить всеми видами транспорта в специальных транспортных цистернах и криогенных сосудах в соответствии с Правилами перевозки опасных грузов, действующими на данном виде транспорта, а также Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением. Цистерны, наполненные кислородом, должны быть закреплены так, чтобы они не перемещались и не подвергались ударам; криогенные сосуды должны транспортироваться в вертикальном положении. Транспортные устройства, предназначенные для перевозок цистерн и криогенных сосудов, должны быть чистыми и безопасными в пожарном отношении. Запрещается перевозить с жировыми веществами.
4.2Правила хранения химической продукции
4.2.1Условия и сроки безопасного хранения: (в т.ч. гарантийный срок хранения, срок годности)Жидкий кислород хранят в транспортных цистернах, предназначенных для хранения и перевозки криогенных продуктов, и в транспортных газификационных установках, а также в криогенных сосудах при низкой температуре. Площадки, где расположены резервуары хранения и сливные устройства для жидкого кислорода, должны быть выполнены из бетона или других негорючих неорганических материалов. Применение асфальта запрещается. Размеры такого покрытия должны выступать за габариты резервуаров и разъемных соединений сливноналивных устройств не менее чем на 2 м. Предохранительные клапаны и другие защитные устройства, установленные на оборудовании должны быть отрегулированы на соответствующее давление и опломбированы. Сосуды для переноски жидкого кислорода должны наполняться не более чем на 2/4 объема. Переносные сосуды при хранении и транспортировании должны быть закрыты крышками с отверстиями. Гарантийный срок хранения не установлен.
4.2.2Несовместимые при хранении вещества и материалы:Горючие газы (водород, аммиак, монооксид углерода и т.д.), органические вещества (масла, ацетилен, пропилен, сероуглерод и др.), пористые органические материалы (асфальт, дерево, бумага, уголь и т.д.), восстановители.
4.2.3Материалы, рекомендуемые для тары и упаковки:Жидкий кислород наливают в транспортные цистерны, предназначенные для хранения и перевозки криогенных продуктов, и в транспортные газификационные установки. Количество кислорода, наливаемого в транспортную цистерну, должно соответствовать нормативно-технической документации на наполняемую цистерну. Кислород жидкий так же наливают в криогенные сосуды. Для работы в контакте с кислородом использовать только разрешенные материалы.
4.3Меры безопасности и правила хранения в быту:В быту не применяется.
5.

Рекомендации по удалению отходов (остатков)

5.1Меры безопасности при обращении с отходами, образующимися при применении, хранении, транспортировании и др.В производстве жидкого кислорода должно быть предусмотрено устройство для испарения небольших количеств продукта. Около этого устройства должен быть установлен предупреждающий знак с надписью: «Место для слива жидкого кислорода. Опасно!» Конструкция и расположение устройств сбросов в атмосферу продукта должны обеспечивать объемную долю кислорода в воздухе в местах возможного нахождения людей, а также в местах забора воздуха для вентиляции и технологических нужд не менее 19% и не более 23%. Меры безопасности при обращении с отходами аналогичны применяемым мерам при работе с продукцией.
5.2Сведения о местах и способах обезвреживания, утилизации или ликвидации отходов вещества (материала), включая тару (упаковку):В случае утечки для осаждения газа использовать распыленную воду. Способ ликвидации – слив жидкого кислорода из емкостей хранения (транспортирования) в специально отведенных местах, не имеющих покрытий из асфальта, дерева или других органических материалов, до полного рассеивания. Цистерны для хранения и перевозки криогенных продуктов предназначены для многократного использования.
5.3Рекомендации по удалению отходов, образующихся при применении продукции в быту:Не применяется.

Возврат к списку

Онлайн урок: кислород по предмету химия 8 класс |

Кислород – самый распространенный на Земле химический элемент:

земная кора содержит 47% кислорода

мировой океан состоит из кислорода на 85%

Кроме этого, кислород – основной участник обмена веществ в живых организмах – дыхания и фотосинтеза.

В таблице приведены основные сведения о кислороде.

Химический элемент

Простое вещество

Название «Oxygenium» произошло от двух слов, в переводе «рождающий кислоты»

Химический знак – О

Атомный номер – 8

Расположение в периодической системе – 2 период, VI группа

Типичный неметалл (сильный окислитель)

Атомная масса – 16 а. е. м.

Валентность – 2

Степени окисления –   –2; 0; 1; 2

Химическая формула – O2

Молекулярная масса – 32 а. е. м.

Бесцветный газ без запаха; светло-голубая жидкость; синие кристаллы

Температура кипения –   –183 °С

Температура плавления –   –218 °С

В жидком состоянии кислород имеет голубой цвет, поэтому на всех формулах мы его будем обозначать голубым!

кислород

Изучением кислорода занимались несколько учёных примерно в одно и то же время.

Официально первооткрывателем кислорода считается англичанин Джозеф Пристли (1774 год).

Однако установлен факт, что в свое время Леонардо да Винчи изучал химию кислорода, не подозревая тогда, что он является элементом.

Название «кислород» в русский язык ввёл Михаил Ломоносов, который также ввёл в употребление термин «кислота», который в те времена обозначал оксид – соединение элемента с кислородом.

Поэтому истинное значение названия «кислород» переводится как «рождающий оксиды». Некоторое время в России кислород называли «кислотвор».

Химический элемент кислород образует два простых вещества: кислород (O2) и озон (O3).

Кислород активно участвует в обмене веществ, именно ему обязана наша планета возникновением на ней жизни.

Атмосфера содержит 21 % кислорода.

Считается, что несколько сотен миллионов лет назад концентрация кислорода в атмосфере была почти в 2 раза выше – около 40%.

Количество кислорода в воздухе ниже 8% является угрозой для жизни человека.

В отличие от кислорода, озон даже в газообразном состоянии имеет голубой цвет, в жидком – насыщенный фиолетовый, в твёрдом – почти чёрный.

Озон  (O3) образуется из кислорода при воздействии ионизирующих излучений: радиации или жестких ультрафиолетовых лучей (это свойство кислорода было открыто в 1899 году учеными Пьером и Марией Кюри).

Он образуется в атмосфере под воздействием разрядов молнии, а также при работе бытовой техники, например, лазерных принтеров.

При этом вы можете чувствовать характерный запах – это и есть запах озона.

Слово «озон» с греческого языка так и переводится: «пахну».

Озон также способен в некоторой степени задерживать ультрафиолетовые лучи. Это его свойство является одним из факторов существования жизни на Земле.

 Кислород и озон являются парамагнетиками – это значит, что они притягиваются к магниту.

Это заметно при проведении опытов с жидкими кислородом и озоном.

Применение при сварке и резке

Кислород – важнейший газ для сварки и резки. При сжигании горючего газа в воздухе образуется пламя с температурой не более 2000°C, а в технически чистом кислороде она может превышать 2500–3000°C. Именно такая температура пламени практически пригодна для сварки многих металлов.

При газопламенной обработке обычно используется кислород с объемным содержанием 99,2–99,5% и выше. Для неответственных видов газовой сварки, пайки, поверхностной закалки и других способов нагрева газовым пламенем может применяться кислород чистотой 92–98%.

Для сварки и резки используют кислород в газообразном виде, поступающий от баллона, газификационной установки (СГУ-1, СГУ-4, СГУ-7К, СГУ-8К, ГХ-0,75, ГХК-3 и др.) или автономной станции (КГСН-150, К-0,15, К-0,4, К-0,5 и др.). При значительных объемах потребления кислород безопаснее и экономически целесообразнее хранить и транспортировать в жидком, а не газообразном виде, несмотря на неизбежные потери при испарении сжиженного газа.

Превращение жидкого кислорода в газообразный осуществляется в газификационных установках – насосных или безнасосных. Примером насосной установки может служить стационарная установка СГУ-1, предназначенная для газификации непереохлажденного кислорода и наполнения реципиентов и баллонов под давлением до 240 кгс/см2 (24 МПа).

Наряду с процессами газопламенной обработки кислород также применяется:

  • в качестве вспомогательного газа при лазерной резке ряда материалов;
  • при кислородной резке с поддержкой лазерным лучом;
  • в качестве плазмообразующего газа при плазменной резке;
  • при резке копьем;
  • для добавки в небольших количествах к защитному газу (аргону, углекислому газу) при дуговой сварке некоторых сталей, металлов (в целях повышения производительности, предотвращения пористости и т. п.).

Надежный и удобный баллон
кислородный новый!

Баллон кислородный новый создан для транспортировки и хранения
газообразного вещества.

Стоит отметить, что баллон кислородный новый является
классическим типом концентратора химического элемента. Человечество использует
специальную емкость на протяжении нескольких десятилетий. Даже ведущие
европейские страны продолжают применять такой тип оборудования.

В настоящее время на
российском рынке представлен богатый ассортимент кислородного оборудования для
бытового, промышленного и клинического использования. Аквалангисты всегда
применяют баллон кислородный новый при
погружении под воду, мастера во время сварочных, работ, стоматологи при лечении
зубов и т. д.

Баллон кислородный новый выполняет широкий спектр серьезных задач в
каждой из этих сфер. Именно поэтому к его изготовлению применяется ряд важных
требований. Такой тип баллонов производят из цельнотянутых труб с обжатием
горловины и днища.

Сорт легированных и
углеродистых сталей может быть различным. Чем крепче материал, тем больше емкость
сможет выдержать максимальное давление. В конструкции сосуда предусмотрен специальный
клапан высокого давления, который обеспечивает эффективное распределение
кислорода.

Владелец оборудования
должен помнить о повышенной взрывоопасности и пожароопасности нового
кислородного баллона. В стандартной емкости давление химического элемента достигает
200 атмосфер.

Для того чтобы не
допустить чрезвычайной ситуации, каждый должен выполнить ряд требований.

В первую очередь мастер
должен пройти курсы безопасности по использованию специализированного
оборудования подобного вида. Заполнять баллон
кислородный новый можно только в официальных компаниях, имеющих профиль и
все необходимые лицензии.

В процессе
эксплуатации необходимо грамотно ухаживать за сосудами: постоянно
контролировать уровень замасленности, а также выполнять обезжиривание
поверхностей спиртом.

Отечественные и зарубежные
производители специализированных емкостей дают высокую гарантию качества. Тем
не менее, перед покупкой такого важного оборудования владельцу необходимо
попросить вскрыть новый кислородный баллон, чтобы убедится в его надежности.
Покупатель вместе со специалистами осматривают внутреннюю поверхность баллона.

В широком ассортименте
продукции каждый найдет баллон
кислородный новый!

Примечания

  1. Дикислород // Большая Энциклопедия Нефти Газа
  2. J. Priestley, Experiments and Observations on Different Kinds of Air, 1776.
  3. W. Ramsay, The Gases of the Atmosphere (the History of Their Discovery), Macmillan and Co, London, 1896.
  4. 4,04,14,2Inorganic Crystal Structure Database
  5. Margaret-Jane Crawford и Thomas M. Klapötke The trifluorooxonium cation, OF3 // Journal of Fluorine Chemistry. — 1999. — Т. 99. — С. 151-156.
  6. Curie P., Curie M. (1899). «Effets chimiques produits par les rayons de Becquerel«. Comptes rendus de l’Académie des Sciences129: 823-825. 
  7. Радиационная химия // Энциклопедический словарь юного химика. 2-е изд.. — М.: 1990. — С. 200.
  8. Руководство для врачей скорой помощи / Михайлович В. А. — 2-е изд., перераб. и доп. — Л.: Медицина, 1990. — С. 28-33. — 544 с. — 120 000 экз. — ISBN 5-225-01503-4. (см. ISBN )
  9. Food-Info.net : E-numbers : E948 : Oxygen.

Ракетное топливо

В качестве окислителя для ракетноготоплива применяется жидкий кислород, пероксид водорода, азотная кислота и другие богатые кислородом соединения.

Смесь жидкого кислорода и жидкого озона — один из самых мощных окислителей ракетного топлива (удельный импульс смеси водород — озон превышает удельный импульс для пары водород-фтор и водород-фторид кислорода).

Медицинский кислород хранится в металлических газовых баллонах высокого давления (для сжатых или сжиженных газов) голубого цвета различной ёмкости от 1,2 до 10,0 литров под давлением до 15 МПа (150 атм) и используется для обогащения дыхательных газовых смесей в наркозной аппаратуре, при нарушении дыхания, для купирования приступа бронхиальной астмы, устранения гипоксии любого генеза, при декомпрессионной болезни, для лечения патологии желудочно-кишечного тракта в виде кислородных коктейлей.

Для индивидуального применения медицинским кислородом из баллонов заполняют специальные прорезиненные ёмкости — кислородные подушки.

Для подачи кислорода или кислородо-воздушной смеси одновременно одному или двум пострадавшим в полевых условиях или в условиях стационара применяются кислородные ингаляторы различных моделей и модификаций. Достоинством кислородного ингалятора является наличие конденсатора-увлажнителя газовой смеси, использующего влагу выдыхаемого воздуха.

Для расчёта оставшегося в баллоне количества кислорода в литрах обычно величину давления в баллоне в атмосферах (по манометруредуктора) умножают на величину ёмкости баллона в литрах.

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавкиE948[9], как пропеллент и упаковочный газ.

Температура – кипение – жидкий кислород

Температура кипения жидкого кислорода 182 9 С, аргона – 186 1 С. Из-за близости этих температур разделить их довольно сложно, однако, применяя многократную ректификацию, получают газ с содержанием 45 – 50 % аргона, 45 – 50 % кислорода и около 5 % азота.

Для освобождения аргона от кислорода применяют также цеолит – синтетический силикат алюминия и натрия, являющийся молекулярным ситом. Через поры цеолита молекулы кислорода проходят ( d – 2 8 А), а молекулы аргона задерживаются. Аргон получают также из отходов азотно-туковых заводов.

Аг применяется для световых реклам, как защитная среда. [1]Температура кипения жидкого кислорода при атмосферном давлении – 183 С, критическая температура кислорода равна – 119 С, а критическое давление 50 атм; плотность жидкого кислорода равна 1 13, и, таким образом, он тонет в воде, что легко демонстрировать. [3]

Температура кипения жидкого кислорода равна – 183 С, температура плавления – 219 С. Критическая температура для кислорода – 118 8 С и соответствующее ей критическое давление 49 7 атм. Вязкость жидкого кислорода ( концентрация 90 %) при температуре кипения составляет 0 189 спз, скрытая теплота испарения 1 632 ккал / моль, теплоемкость кислорода в интервале от – 173 до 25 С находится в пределах 7 0 – 6 9 пал / моль. При расчетах следуот учитывать затрату тепла на испарение кислорода и нагревание его паров до 18 С. [5]

При температуре кипения жидкого кислорода ( минус 183 С) – озон растворяется в кислороде, образуя однородную смесь. Растворы озона в жидком кислороде в концентрации до 25 % вполне стабильны и малочувствительны к воздействию внешних импульсов. Практически растворы такой концентрации могут безопасно транспортироваться и применяться в ракетных двигателях. [6]

При повышении температуры кипения жидкого кислорода величина ДГ между кислородом и азотом в конденсаторе уменьшается. [7]

Низкотемпературное разделение воздуха основано на различии температур кипения жидкого кислорода и азота. Предварительно воздух сжимается компрессорами с целью последующего расширения и охлаждения до низкой температуры, при которой воздух переходит в жидкое состояние.

Так как температура кипения жидкого азота ( – 195 8 С) ниже, чем температура кипения жидкого кислорода ( – 183 С), то жидкий воздух относительно скоро обогащается кислородом. [9]

Количества азота ( 1 % по весу) в жидком кисло роде принято, что растворы имеют температуру кипения жидкого кислорода 90 188 К, хотя температура кипения жидкого азота существенно ниже. [10]

Затем трубку устанавливали горизонтально над сосудом с жидким кислородом ( рис. 29) так, чтобы ее поверхность касалась зеркала жидкости и охлаждалась до температуры, близкой к температуре кипения жидкого кислорода . [12]

Температурная депрессия обусловлена тем, что давление внизу конденсатора становится больше, чем на поверхности кипящей жидкости, вследствие действия веса столбе жидкости. В результате температура кипения жидкого кислорода , которая возрастает с повышением давления, в нижних слоях будет больше, чем в верхних.

При понижении температуры прочность и твердость большинства неметаллических материалов возрастают, а пластичность и динамическая вязкость снижаются. Такие материалы как резина при температуре кипения жидкого кислорода становятся хрупкими и практически непригодными для работы в этих условиях.

Это же относится к большинству смазочных материалов, которые затвердевают и теряют антифрикционные свойства. При криогенных температурах пластичность большинства пластмасс снижается незначительно, поэтому их можно использовать для изготовления деталей и узлов криогенного оборудования. [15]

Физические свойства

Файл:AYool WOA surf O2.png

В мировом океане содержание растворённого O2 больше в холодной воде, а меньше — в тёплой.

При нормальных условиях кислород — это газ без цвета, вкуса и запаха.

1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте (2,78 мл/100 г при 25 °C).

Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C).
Межатомное расстояние — 0,12074 нм. Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

Файл:Phase diagram of oxygen.png
Фазовая диаграмма O2

Твёрдый кислород (температура плавления −218,35°C) — синие кристаллы.
Известны 6 кристаллических фаз, из которых три существуют при давлении в 1 атм.:

  • α2 — существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейкиa=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°[4].
  • β2 — существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°[4].
  • γ2 — существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å[4].

Ещё три фазы образуются при высоких давлениях:

Оцените статью
Кислород
Добавить комментарий