Кислородное голодание: причины и профилактика

Кислородное голодание: причины и профилактика Кислород

Инспираторная одышка

Одышка представляет собой защитную реакцию организма, направленную на нормализацию газового состава крови. По определению клиницистов и патофизиологов одышка – это состояние, которое характеризуется тяжёлым субъективным ощущением недостаточности воздуха на фоне нарушения частоты, ритма, глубины

По характеру и форме нарушения внешнего дыхания одышка бывает инспираторной, экспираторной и смешанной. При наличии инспираторной одышки увеличивается продолжительность фазы вдоха по отношению к выдоху. Экспираторная одышка характеризуется преобладанием выдоха над вдохом. При смешанной одышке на фоне удлинённого вдоха еще более удлиняется выдох.

Развитие инспираторной, экспираторной и смешанной одышек обеспечивается за счёт рефлекса Геринга-Брейера. В его формировании важная роль отводится высокочувствительным, низкопороговым механорецепторам растяжения альвеол. Импульсы этих рецепторов направляются по альфа-волокнам блуждающего нерва в ретикулярную формацию ствола мозга и дыхательный центр продолговатого мозга, а затем по нервным путям, которые идут от центра, к дыхательным мышцам.

Рефлекторные влияния с барорецепторов аорты и каротидных синусов включаются в механизм развития одышки при кровопотере, коллапсе, шоке, коллапсе. При артериальном давлении ниже 70 мм рт. ст. уменьшается поток импульсов, которые тормозят центр вдоха.

Если в крови снижается напряжение кислорода, увеличивается концентрация углекислого газа или возрастает уровень ионов водорода, усиливается поток импульсов с центральных и периферических хеморецепторов в бульбарный дыхательный центр, активируется вдох, развивается инспираторная одышка.

Различают пять степеней тяжести инспираторной одышки:

  • Нулевая – одышка в покое отсутствует, возникает после физических нагрузок;
  • Лёгкая – инспираторная одышка возникает после подъёма на лестницу или быстрой ходьбы;
  • Средняя – вдох затруднён при обычной ходьбе, что заставляет человека замедлить движение, делать остановки, чтобы отдохнуть;
  • Тяжёлая – человек не может пройти без остановки более 100 м;
  • Очень тяжелая – беспокоит пациента в состоянии физического и эмоционального покоя.

Основным признаком инспираторной одышки является затруднении с дыханием во время вдоха. Человек иногда слышит свист и хрипы при дыхании.

Пульмонологи проводят общий осмотр пациентов, которых беспокоит инспираторная одышка, подсчитывают частоту дыхательных движений и сердечных сокращений, измеряют артериальное давление. Во время физикального обследования проводят пальпацию и перкуссию грудной клетки, определяют нижние границы и экскурсию лёгких.

Лечение пациентов с инспираторной одышкой направлено на устранение основного заболевания, которое привело к её развитию. При наличии у пациента вязкой мокроты, которая затрудняет акт вдоха, врачи назначают ингаляции с лекарственными средствами, расширяющими бронхи и снимающими бронхоспазм, разжижающие мокроту.

При возникновении выраженной инспираторной одышки необходимо успокоить больного, обеспечить доступ чистого воздуха (открыть форточку, развязать галстук, расстегнуть воротник, снять стесняющую дыхательные движения одежду). Пациенту предлагают присесть. При улучшении самочувствия можно выпить стакан тёплого чая с мёдом.

История 1: treg-лимфоциты vs. th17-лимфоциты

Наивные CD4  T клетки в зависимости от микроокружения способны дифференцироваться в различные субпопуляции с весьма отличающимися друг от друга функциями: Th1, Th2, Tfh, Th17 и iTreg. Огромное внимание в вопросах аутоиммунных заболеваний и противоопухолевого иммунитета обращено к двум не так давно открытым популяциям T лимфоцитов — Th17 и iTreg [17].

Th17-клетки дифференцируются из наивных CD4 лимфоцитов под действием TGF-β и IL-6; критичным является активация транскрипционных факторов STAT3 и RORgt. Th17-лимфоциты обладают мощным бактерицидным и фунгицидным действием за счет секреции IL-17 и IL-22.

Индуцированные iTreg дифференцируются из наивных CD4 лимфоцитов под действием TGF-β и IL-2; критичным является активация транскрипционного фактора Foxp3. Treg вырабатывают IL-10, TGFβ, экспрессируют на своей поверхности много интересных молекул (типа рецептора к IL-2 СD25, ингибиторного корецептора CTLA-4), за счет которых проявляют свои иммуносупрессивные свойства.

Итого, мы имеем две субпопуляции лимфоцитов, обладающих диаметрально противоположными свойствами, не способными перепрограммироваться друг в друга и происходящие из единого предшественника — наивных CD4  лимфоцитов. Часто говорят о балансе Treg и Th17, сдвиге баланса либо в иммуносупрессивную, либо в провоспалительную сторону при разных заболеваниях, и подчеркивают первостепенную важность механизмов, определяющих дифференцировку по одному из двух путей. Кратко рассмотрим механизмы и попытаемся понять, в чем соль.

Первое, на что внимательный читатель обратит внимание, это общий для двух субпопуляций индуктор TGFβ. Известно, что сами по себе высокие концентрации TGFβ способны поддерживать активацию Foxp3 и коммитировать образование iTreg. Однако для Th17 также характерна активация Foxp3, которая в обязательном порядке должна быть подавлена.

Теперь о роли HIF-1. Для немиелоидных клеток показано, что активация STAT3 может приводить к негипоксической активации HIF-1. HIF-1, в свою очередь, способен ингибировать Foxp3, причем, вероятно, за счет механизма активации полиубиквитинирования с последующей протеасомной деградацией, т.е. механизма по которому HIF-1 разрушается сам.

Ингибируя Foxp3, HIF-1 способствует дифференцировке CD4 наивных лимфоцитов в Th17 направлении. Что интересно, данную STAT3-зависимую негипоксическую активацию HIF-1 с последующим ингибированием Foxp3 можно заменить циклами периодической гипоксии-нормоксии, которая приводит к стабилизации и накоплению HIF-1 (рис. 8).

Любопытно, что то же самое не случается в условиях длительной гипоксии. И виной здесь отрицательная обратная связь — длительная гипоксия повышает экспрессию HIF-зависимой микроРНК-210, которая способна подавлять трансляцию HIF-1α.

Приведенную выше концепцию особой роли HIF-1 в активации фактора RORgt (критичного для Th17) и ингибирования Foxp3 (критичного для Treg) подтверждает недавняя замечательная статья о роли фактора Deltex1 в поддержании стабильности Foxp3 за счет ингибирования его негативного регулятора HIF-1 [18].

Не так давно была открыта новая субпопуляция лимфоцитов — Tr1, обладающих иммуносупрессивными свойствами, при этом не экспрессирующих Foxp3 (маркер регуляторных T-лимфоцитов). Tr1 играют особую роль в супрессии воспаления в нервной системы и кишечнике [19].

Интересно, что гипоксия и повышенная концентрация внеклеточного АТФ — частые атрибуты воспаления — способны угнетать дифференцировку Tr1-лимфоцитов. Весьма красивым оказался механизм: критичным фактором для дифференцировки в Tr1 лимфоциты является фактор AHR, который при взаимодействии со своим ядерным переносчиком ARNT, переносится в ядро и активирует экспрессию IL-10, IL-21 и прочих факторов, определяющих иммуносупрессивные свойства Tr1-лимфоцитов.

Однако ARNT хорошо известен нам как HIF-1β, кислород независимая субъединица, с которой димеризуется HIF-1α. Между HIF-1α и AHR в указанных условиях происходит конкуренция за ARNT и HIF-1α в этой конкуренции побеждает. Впрочем, если условия позволяют, и в схватке побеждает ARNT, ему есть чем ответить — активируясь, он способствует деградации HIF-1α, предположительно за счет повышения экспрессии пролилгидроксилаз PHDs по кислород-зависимому механизму (рис. 9).

Хочется отметить также, что угнетающая роль HIF-1α на дифференцировку Tr1-лимфоцитов оказалась не столь уж однозначной — исследователи отмечают то, что активность HIF-1α важна на ранних стадиях дифференцировки, главным образом, за счет своей способности переключать метаболизм на гликолитический тип.

Как проявляется гипоксия головного мозга?

Как проявляется

В зависимости от степени выраженности расстройств со стороны головного мозга при гипоксии, выделяют:

  • Легкая степень. Это проявляется такими симптомами, как: заторможенность, оглушенность, либо, напротив, человек становится гипервозбужденным, у него наблюдается эйфория, повышается артериальное давление, учащается сердцебиение. Глазные щели становятся неравномерными по размеру в результате пареза лицевого нерва. Если не устранить патогенный фактор, оказывающий влияние на кислородное голодание головного мозга, то через несколько часов или суток, оно перейдет в следующую стадию.

  • Средняя степень. У больного сохраняется парез лицевого нерва, рефлексы слизистых оболочек и сухожильные рефлексы чаще всего понижены. Время от времени возможно возникновение судорог, которые начинаются с лицевой части, а затем распространяются на туловище и конечности. Тревожность и психомоторное возбуждение повышено. Пострадавший с трудом ориентируется в пространстве, у него ухудшается память и иные когнитивные способности.

  • Тяжелая степень. У больного наблюдается глубокое угнетение сознания с утратой произвольной деятельности, но рефлексы при этом сохраняется. Такое состояние называется сопорозным. Иногда уже на этой стадии человек впадает в тяжелую кому. У него развиваются судороги верхних и нижних конечностей, появляются хватательные и сосательные рефлексы, мышечный тонус падает. Возможно стойкое повышение температуры, усиление потливости и слезотечения.

  • Критическая степень, которая несет угрозу жизни. Это состояние характеризуется глубокой комой, страдают все структуры головного мозга. Кожа больного холодная, мимика отсутствует, глазные яблоки находятся без движения, зрачки расширены, на свет не реагируют. Рот остается полуоткрытым, веки прикрыты, кожа цианотична. Сердце работает слабо, тонус сосудов снижен. По мере прогрессирования гипоксии, функции коры больших полушарий головного мозга угасают. Человек погибает, если его жизнь не поддерживается с помощью аппарата искусственного дыхания и средствами для тонизирования сердечно-сосудистой деятельности.

Отдельно следует описать симптомы хронической гипоксии головного мозга к которым относятся:

  • Повышенная утомляемость.

  • Чрезмерная раздражительность.

  • Эмоциональная несдержанность.

  • Снижение интеллекта.

  • Нарушения эмоционально-волевой сферы.

  • Ухудшение памяти и внимания.

  • Плохое настроение.

  • Повышенная плаксивость.

  • Апатия.

  • Чаще всего люди становятся безучастными ко всему происходящему, реже они благодушны и находятся в эйфории.

  • Часто человек испытывает головные боли, головокружения.

  • Возможны периодические приступы тошноты.

  • Ночной отдых нарушен, а днем человек испытывает приступы сонливости. Засыпает он с трудом, сон поверхностный, прерывистый. Часто больному снятся кошмарные сновидения. После ночи человек чувствует себя уставшим и не отдохнувшим.

  • Для хронической гипоксии характерны вегетативные нарушения, среди которых: усиление пульсации в голове, появление шума в ушах, частые эпизоды потемнения в глазах, ощущение прилива жара к голове. Сердцебиение учащается, возможно появление болей в сердце и одышки. Не исключены даже эпизоды потери сознания.

Лечение кислородного голодания

Лечение кислородного голодания должно быть комплексным и своевременным, направленным на ликвидацию причины гипоксии и восстановление адекватной перфузии и оксигенации тканей. При острых формах и асфиксии необходима неотложная терапия и реанимация.

Вне зависимости от разновидности кислородного голодания в качестве одного из основных методов патогенетической терапии применяется гипербарическая оксигенация, при которой в легкие поступает кислород под повышенным давлением. Из-за высокого давления кислород может сразу же раствориться в крови, минуя связь с эритроцитом, поэтому доставка его к тканям будет быстрой и не зависящей от морфо-функциональных особенностей красных клеток крови.

Гипербарическая оксигенация позволяет насытить клетки кислородом, способствует расширению артерий головного мозга и сердца, работа которых усиливается и улучшается. В дополнение к оксигенации назначаются кардиотонические средства, препараты для ликвидации гипотонии. В случае необходимости производится переливание компонентов крови.

Гемическая гипоксия лечится:

  1. Гипербарической оксигенацией;
  2. Гемотрансфузиями (переливание крови);
  3. Введением препаратов-переносчиков активного кислорода — перфторан, например;
  4. Методами экстракорпоральной детоксикации — гемосорбция, плазмаферез для выведения из крови токсинов;
  5. Применением препаратов, нормализующих дыхательную цепь — аскорбиновая кислота, метиленовый синий;
  6. Введением глюкозы для обеспечения энергетических потребностей клеток;
  7. Глюкокортикостероидами.

Кислородное голодание при беременности требует госпитализации в клинику и коррекции как акушерской, так и экстрагенитальной патологии женщины с восстановлением адекватного кровообращения в плаценте. Назначаются покой и постельный режим, оксигенотерапия, вводятся спазмолитики для снижения маточного тонуса (папаверин, эуфиллин, магнезия), препараты, улучшающие реологические показатели крови (курантил, пентоксифиллин).

При хронической гипоксии плода показаны витамины Е, С, группы В, введение глюкозы, антигипоксических средств, антиоксидантов и нейропротекторов. По мере улучшения состояния беременная женщина осваивает дыхательные упражнения, аквааэробику, проходит физиопроцедуры (ультрафиолетовое облучение).

Если тяжелую гипоксию плода не удается устранить, то в сроке с 29 недели гестации необходимо экстренно родоразрешить женщину путем кесарева сечения. Естественные роды при хронической кислородной недостаточности проводят при контроле показателей сердечной деятельности плода. Если ребенок рождается в условиях острой гипоксии или асфиксии, ему оказывают реанимационную помощь.

В дальнейшем малыши, перенесшие гипоксию, наблюдаются у невролога, может потребоваться участие психолога и логопеда. При тяжелых последствиях гипоксического повреждения мозга дети нуждаются в длительной медикаментозной терапии.

Опасными осложнениями кислородного голодания считаются:

Нередко после гипоксии, не излеченной своевременно, остаются вегетативные расстройства, психологические проблемы, быстрая утомляемость.

Профилактика кислородного голодания состоит в предотвращении состояний, сопровождающихся недостатком кислорода: активный образ жизни, прогулки на свежем воздухе, физическая активность, полноценное питание и своевременная терапия соматической патологии.

Рекомендации читателям СосудИнфо дают профессиональные медики с высшим образованием и опытом профильной работы.

На ваш вопрос в форму ниже ответит один из ведущих авторов сайта.

В данный момент на вопросы отвечает: А. Олеся Валерьевна, к.м.н., преподаватель медицинского вуза

Поблагодарить специалиста за помощь или поддержать проект СосудИнфо можно произвольным платежом по ссылке.

Некоторые современные сведения о факторах hif

Далее дорогой читатель будет вынужден простить мне несколько справочный раздел, суммирующий часть современных сведений о факторе HIF.

  1. Что есть гипоксия? Нормоксия — условие, при котором концентрация (напряжение) кислорода в окружающей организм/клетку среде «нормальное атмосферное», т.е. близко к 21%. Гипоксия, соответственно, это все, что ниже, гипероксия — все, что выше указанной цифры. На самом деле, понятия эти весьма условны. Классической нормоксии in vivo нет даже для дыхательного эпителия (~14,5%), а большинство тканей в норме прибывает в условиях так называемой физиологической гипоксии (2–9% в зависимости от ткани, обычно около 5%), которая для них и не гипоксия вовсе. Помимо этого, выделяют также умеренную гипоксию, собственно гипоксию и аноксию. Единой чёткой классификации гипоксий нет, но есть попытки (как в таблице 1).
  2. Как все начиналось. В самом начале протерозоя — 2,4 млрд. лет назад (или на 830 миллионов лет ранее, если верить совсем свежим данным [3]) — произошла так называемая кислородная катастрофа — довольно стремительное глобальное накопление кислорода в атмосфере Земли, что привело примерно 0,54 млрд. лет назад к формированию атмосферы, близкой к современной. Для многих организмов произошла смена восстановительного, анаэробного типа метаболизма на принципиально новый окислительный тип. Эволюционно возникла потребность в появлении кислород-чувствительного регулятора.
  3. Основные принципы работы кислород-чувствительных систем. Кислород-чувствительные системы прокариот и эукариот устроены сходным образом — в роли сенсора выступает фермент 2-оксоглутарат оксигеназа с двухвалентным железом в качестве кофактора [4]. Фермент в условиях нормоксии в присутствии 2-оксоглутара и молекулярного кислорода способен гидроксилировать остатки аминокислот (обычно пролина или аспарагина) в составе белка-регулятора транскрипции или трансляции, регулируя его функции (рис. 2).

    Кислород-чувствительная система эукариот (PHD-HIF) претерпевала некоторую эволюцию. Уже довольно сходная с человеческой PHD-HIF система функционирует у Trichoplax adhaerens[5] — примитивного двухслойного животного, еще не обладающего билатеральной симметрией (рис. 3).

  4. Факторы HIFs и канонический кислород-зависимый путь регуляции их активности.У эукариот кислород-сенсорная система связана с функционированием важнейшего транскрипционного фактора HIF, регулирующего работу (по разным оценкам) 1–2% всех генов (что довольно приличная цифра). Факторы HIF представляет собой гетеродимерные белки, состоящие из конститутивно экспрессирующейся HIF-β субъединицы и одной из трех кислород-зависимых HIF-α субъединиц (HIF-1α, HIF-2α или HIF-3α), которые формируют при димеризации с β-субъединицами соответственно HIF-1, HIF-2 и HIF-3 (рис. 4). Лучше всего изучены факторы HIF-1 и HIF-2. Роль 2-оксоглутарат оксигеназы у эукариот выполняют пролилгидроксилазы (PHD 1-3), гидроксилирующие в условиях нормоксии остатки пролина в кислород-чувствительной α-субъединице, что приводит к ее деградации. В условиях гипоксии α- и β-субъединицы образуют гетеродимер, перемещаются в ядро и взаимодействуют с особыми последовательностями в промоторах генов HRE (hypoxia responsive elements), активируя экспрессию этих так называемых HIF-зависимых генов.
    В условиях нормоксии транскрипционная активность HIF-1α и HIF-2α регулируется также за счет другого кислород-зависимого фермента — FIH-1 (factor inhibiting HIF-1), который, гидроксилируя остатки аспарагина, способен препятствовать взаимодействию HIFs с кофакторами [6].
  5. Неканонические пути регуляции активности факторов HIFs или та самая негипоксическая гипоксия. Помните пример с кобальтовой кардиомиопатией? Это был хороший пример так называемого неканонического пути активации HIF, когда он, по сути, активировался в условиях нормоксии. В данном случае Co2 выступает в качестве хелатора Fe2 (содержащегося в активном центре пролилгидроксилаз PHD), ингибирует их функцию и нарушает кислород-зависимое разрушение α-субъединицы. Это приводит к активации HIFs в условиях нормоксии. Так у любителей пива происходила постоянная активация HIFs и HIF-зависимого гена эритропоэтина — даже несмотря на то, что в их кровь была пересыщена гемоглобином, и никакой реальной гипоксии, разумеется, не наблюдалось. Воздействовать на Fe2  в составе пролилгидроксилаз PHD способны активные формы кислорода (АФК) [7], которые образуются в клетке в огромном количестве разнообразных процессов.
    Позднее выяснилось, что активность HIF может регулироваться множеством других механизмов на уровне транскрипции, трансляции и посттрансляционных модификаций (фосфорилирование, ацетилирование/деацетилирование, убиквитинирование/деубиквитинирование, SUMO-илирование [8], S-нитрозилирование, NEDD-илирование). Механизмы эти могут быть как зависящими от кислорода, так и нет; как селективными, так и нет по отношению к HIF-1α и HIF-2α изоформам [9]. Но к этому мы вернемся несколько позже.
  6. HIF-1 и HIF-2. В чем разница? А теперь еще один важный пункт — изоформоспецифические особенности фактора HIF. Напомню, что существуют главным образом две изоформы — HIF-1 и HIF-2; они обладают примерно 48%-идентичностью по аминокислотной последовательности, имеют один и тот же сайт для посадки — HRE — и, главным образом, один и тот же перечень контролируемых ими генов. Однако есть и особенности.
    • Экспрессия первой изоформы повсеместна; экспрессия же HIF-2 тканеспецифична: это почечная ткань, кишечник, жировая ткань, эндотелий и другие.
    • Существует специфика в активируемых изоформами генов: HIF-1 регулирует экспрессию ключевых ферментов гликолиза: 6-фосфофрукто-2-киназы/фруктозо-2,6-бифосфатазы 3, фосфоглицераткиназы, лактатдегидрогеназы А, карбангидразы-9; некоторых антиапоптотических факторов: BNIP3, BNIP3L; тогда как как HIF-2 (кстати, Семенза открыл именно фактор HIF-2) контролирует экспрессию «фактора стволовости» OCT-3/4 [10, 11], циклина D1, эритропоэтина и другие (рис. 5) [12].
    • В настоящее время формируется парадигма кооперации двух факторов при гипоксии. Очень наглядно эта концепция продемонстрирована на модели динамики роста сосудов в ответ на ишемию и роста опухолевой массы (рис. 6). И в том, и в другом случае первоначально клетки находятся в состоянии выраженной гипоксии (аноксии) и активируются сразу оба фактора — HIF-1 и HIF-2, причем главным «игроком» является HIF-1. В это время происходят критические, быстрые события: стремительное переключение на гликолиз, защита от апоптоза, продукция ростовых факторов. Постепенно происходит переключение на изоформу HIF-2, которая активна при более умеренной гипоксии и более длительное время, экспрессируется другой спектр факторов, определяющих созревание сосудистой сети и дальнейший рост опухоли с метастазированием.
      За переключение изоформ ответственна особая E3 лигаза, названная HAF — hypoxia-associated factor. В условиях продолжительной и незначительной гипоксии она способна связываться с С-концевым доменом HIF-2α, что приводит к его стабилизации и дополнительному повышению трансактивационных свойств HIF-2. В условиях острой, кратковременной гипоксии/аноксии активность ее подавлена.
    • Факторы HIF способны взаимодействовать с другими факторами, как связанными с регуляцией транскрипции (красивый пример — HIF-1 и HIF-2 по-разному взаимодействуют с участниками Notch-сигналинга и по-разному влияют на биологию стволовой клетки глиобластомы [13]), так и не связанными с транскрипцией (взаимодействие с g-секретазой при раке молочной железы [14]). Неканонические взаимодействия HIF-сигналинга, возможно, одна из самых интригующих и многообещающих областей.
  7. Случай из практики. В заключение данного раздела скажу, что явления негипоксической активации HIFs и различия в изоформной специфичности между HIF-1 и HIF-2 — это реальные вещи, с которыми я столкнулся лично. В своей дипломной работе я изучал экспрессию эндотелием различных хемокинов под действием ростовых факторов VEGF165 и HGF, по одиночке и в комбинации. Исследовалась закономерная активация киназ ERK-1/2, p38 и активация NF-kB. Экспрессия некоторых хемокинов и факторов адгезии (MCP-1, ICAM-1, VCAM-1) четко ложилась в нашу концепцию о «провоспалительном» действии VEGF165 и «противовоспалительном» действии HGF и согласовывалась с активностью провоспалительного фактора NFkB.
    Однако экспрессия и продукция IL-8 (важнейшего провоспалительного хемокина) регулировалась загадочным и не совсем объяснимым образом. Позднее мы решили эту задачу и нашли, что в нашей системе фактор HGF способен стабилизировать и активировать HIF-2 в нормоксических условиях (скорее всего за счет прямого фосфорилирования HIF-2α и повышения стабильности) и, таким образом, повышать экспрессию и продукцию IL-8 (рис. 7), что и придавало загадочности в профиль его экспрессии [15].

Итак, дорогой читатель, я надеюсь, что вы не сильно утомились ознакомлением первой части рассказа. Скорее перейдем к его иммунологическому разделу!

Приступы удушья — причины появления, при каких заболеваниях возникает, диагностика и способы лечения

Приступы удушья: причины появления, при каких заболеваниях возникают, диагностика и способы лечения.

Определение

Удушье, или асфиксия, – мучительное, жизнеугрожающее, патологическое состояние, которое характеризуется нехваткой кислорода и накоплением углекислого газа в тканях.

Удушье является крайней степенью одышки, когда человек ощущает внезапную нехватку воздуха, учащение сердцебиения и страх.

Удушье является симптомом тяжелых заболеваний и состояний, для которых характерно нарушение проходимости дыхательных путей, наблюдается при некоторых патологиях сердечно-сосудистой, костно-мышечной и нервной системы.

Разновидности удушья

По механизму возникновения и развития выделяют следующие виды асфиксии:

  • механическая асфиксия – это удушье, возникающее вследствие ограничения или прекращения притока воздуха в дыхательные пути при их сужении (например, из-за отека подсвязочного пространства при развитии ложного крупа у детей), обтурации (или иначе закупорке) дыхательных путей и их сдавлении (например, при опухолях).
  • травматическая асфиксия – это удушье, возникающее из-за сильного сдавления грудной клетки. Часто происходит во время дорожно-транспортных происшествий.
  • токсическая асфиксия – удушье, которое развивается в результате угнетения дыхательного центра, паралича дыхательной мускулатуры (диафрагмы) или при нарушении транспортной функции крови (при отравлении угарном газом).

Возможные причины удушья

При развитии бронхиальной обструкции (уменьшении диаметра мелких бронхов вследствие спазма или отека) приступ развивается внезапно, может сопровождаться предвестниками: чувством давления за грудиной, беспокойством, а также кожным зудом.

Приступы бронхиальной астмы часто возникают после контакта с аллергеном, при острых респираторных заболеваниях.

Удушье постепенно нарастает, и человеку становится тяжело дышать, увеличивается частота дыхания, выдох удлиняется. Состояние несколько облегчает принятие специфической позы: сидя или стоя, упершись руками в стол, кровать или в подоконник. Так восстанавливается дыхание за счет вовлечения вспомогательной дыхательной мускулатуры. Приступ удушья может сопровождаться выраженными хрипами, которые слышны на расстоянии, цианозом (цвет кожи принимает синеватый оттенок) и набуханием вен. Продолжительность приступа может варьироваться от нескольких минут до нескольких часов. По окончании приступа появляется кашель с последующим отхождением бесцветной мокроты.

Астма.jpg
Удушье может быть проявлением развивающегося отека легких при болезнях сердечно-сосудистой системы. Образуется застой в кровеносной системе легких из-за снижения насосной функции сердца, поэтому ткань легких пропитывается жидкой частью крови. Скопившаяся жидкость попадает в дыхательные пути, затрудняет движение воздуха, вызывая удушье, и выходит в виде розовой пены.

Отек легких часто является следствием инфаркта миокарда.

Причиной удушья у детей часто становится попадание инородного тела в верхние дыхательные пути. Это случается из-за невнимательности и спешки при приеме пищи, смехе, кашле и чихании во время еды. Дети, оставленные без присмотра, могут проглотить мелкие игрушки или их части. У взрослых инородные тела нередко попадают в дыхательные пути при алкогольном опьянении. Для пожилых людей опасность представляют зубные протезы.

Удушье у детей может стать следствием развития ложного крупа. Из-за воспаления слизистой оболочки гортань отекает и просвет дыхательных путей значительно сужается. Сопутствующими симптомами являются лающий кашель, осиплость, грубый голос, небольшой подъем температуры тела и участие вспомогательной мускулатуры в процессе дыхания.

При термическом или химическом ожоге дыхательных путей возникает рефлекторный спазм (сужение) бронхов, вследствие чего человек не может сделать полноценный вдох.

Заболевания, при которых могут наблюдаться приступы удушья

Основной группой заболеваний, при которых возникают приступы удушья, являются болезни системы органов дыхания:

  • бронхиальная астма,
  • хроническая обструктивная болезнь легких (ХОБЛ),
  • пневмоторакс (попадание воздуха в плевральную полость, вследствие чего легкое сжимается),
  • опухоли органов средостения и дыхательных путей (гортани, трахеи, бронхов),
  • острый стенозирующий ларинготрахеит, или ложный круп (характерен для детского дошкольного возраста),
  • эпиглоттит (воспалительное заболевание надгортанника),
  • рак легкого.

Среди других причин удушья выделяют следующие:

  • тромбоэмболия легочной артерии (закупорка тромботическими массами сосуда, по которому кровь попадает в легкие. Тромбы чаще всего образуются в венах нижних конечностей, а когда отрываются, попадают в легочную артерию);
  • отек легкого;
  • черепно-мозговая травма;
  • отек Квинке (аллергическая реакция);
  • ожоги верхних дыхательных путей;
  • эпилепсия;
  • передозировка некоторых лекарственных и наркотических средств;
  • панические атаки.

К каким врачам обращаться при возникновении приступов удушья

Прежде всего, в момент приступа удушья необходимо вызвать скорую медицинскую помощь.

Подбор основного лечения для профилактики дальнейших эпизодов удушья и одышки осуществляет

врач-терапевт

или

педиатр

. В зависимости от сопутствующих симптомов может потребоваться консультация узких специалистов, например,

кардиолога

, пульмонолога, врача-эндоскописта, аллерголога, токсиколога,

невролога

.

Диагностика и обследования при приступах удушья

В зависимости от сопутствующих симптомов могут быть назначены следующие обследования:

  • клинический анализ крови;
Что делать при удушье?

Необходимо вызвать бригаду скорой медицинской помощи. Далее следует открыть окна и обеспечить больному приток свежего воздуха.

Если человек в момент начала приступа находился на улице и приступ начался из-за аллергической реакции (например, на пыльцу растений), нужно покинуть это место или перейти в помещение. Следует расстегнуть или снять стесняющую одежду (галстук, рубашку, бюстгальтер) — ничто не должно мешать процессу дыхания. По возможности необходимо, чтобы человек сел, уперся руками в сиденье или другой стул, постарался глубоко дышать. Если лечащим врачом было прописано лечение, следует использовать необходимые медикаменты.

Если пострадавший находится в бессознательном состоянии, следует повернуть его набок во избежание западения языка и аспирации рвотных масс.

При попадании инородного тела в дыхательные пути выполняется прием Геймлиха: нужно обхватить пострадавшего сзади и надавливать на область желудка кулаком. Вторую руку положить на кулак и сильно надавить снизу вверх (под грудную клетку).

Прием Геймлиха.jpgПрием Геймлиха

Если после принятых мер застрявший предмет не вышел, пострадавший потерял сознание, переходят к проведению сердечно-легочной реанимации до приезда скорой помощи. Компрессии могут способствовать выходу инородного тела, поэтому следует регулярно проверять ротовую полость.

Если ребенок подавился едой или мелким предметом и не может сделать вдох и откашляться самостоятельно, нужно положить ребенка на живот на свою руку, голова при этом должна находиться ниже туловища, и ребром ладони сделать пять похлопываний между лопатками. Важно придерживать голову ладонью для профилактики травм шеи.

Помощь ребенку.jpgПомощь ребенку

Второй вариант оказания помощи –взять ребенка за ножки, опустить вниз головой и похлопать между лопатками. Все производимые похлопывания должны быть не сильными, но резкими.

При приступе удушья важно не паниковать, быстро вызвать бригаду скорой помощи и эффективно оказать первую помощь.

Лечение приступов удушья

Удушье является симптомом многих заболеваний и состояний, поэтому в зависимости от причины его появления подходы к лечению существенно отличаются друг от друга.

Самостоятельный подбор медикаментов недопустим и опасен для здоровья.

При выявлении в ходе обследования тех или иных заболеваний специалист назначает соответствующее лечение. Так, при развитии отека легкого больного госпитализируют и проводят комплексное лечение, направленное на устранение причины возникновения отека и восстановление функций дыхания и кровообращения.

Для лечения бронхиальной астмы используется ступенчатая схема терапии, которая включает применение препаратов неотложной помощи – ингаляционных бета-адреномиметиков короткого действия, глюкокортикостероидов, а также препаратов основной (базовой) терапии – глюкокортикостероидов, бета-адреномиметиков длительного действия, м-холиноблокаторов. Схема лечения подбирается индивидуально врачом.

Для лечения ХОБЛ используют бронхорасширяющие препараты различных групп короткого и длительного действия.

Для лечения острого стенозирующего ларинготрахеита (ложного крупа) используются ингаляции глюкокортикостероидов.

При попадании инородного тела в дыхательные пути необходимо обратиться за медицинской помощью для его извлечения с помощью специальных методик и инструментов.

Источники:

  1. Думанский Ю.В., Кабанова Н.В. и соавт. Заболевания и поражения системы дыхания. Медицина неотложных состояний, журнал. № 3(42), 2022. С. 135-145.
  2. Клинические рекомендации «Бронхиальная астма». Разраб.: Российское респираторное общество, Российская ассоциация аллергологов и клинических иммунологов, Союз педиатров России. –2021.
  3. Клинические рекомендации «Хроническая обструктивная болезнь легких». Разраб.: Российское респираторное общество. – 2021.
  4. Клинические рекомендации «Острый обструктивный ларингит [круп] и эпиглоттит. Разраб.: Союз педиатров России, Межрегиональная ассоциация по клинической микробиологии и антимикробной химиотерапии, Национальная медицинская ассоциация оториноларингологов. – 2021.

Вместо заключения

В настоящее время разработаны/разрабатываются методы селективного ингибирования HIF-1 и HIF-2; селективного ингибирования различных изоформ пролилгидроксилаз PHDs, за счет чего возможно активировать HIF-1 и HIF-2, причем также селективно; можно ингибировать фермент FIH-1и прочие участники пути регуляции кислород-зависимого пути деградации. При желании и достаточной фантазии можно пробовать воздействовать на кислород-независимые пути.

Все это, несомненно, должно найти и, я уверен, найдет применение в практической медицине. Но это потребует крайней обдуманности, многостадийного контроля и досконального изучения. Чем далеко ходить, лучше приведу пример.

Не так давно, в начале-середине 2000-х годов, наблюдался некоторый бум: для многих типов онкологических заболеваний была показана сверхэкспрессия HIF-1α, что вполне соответствовало понятиям об опухолевой биологии: быстрорастущая опухолевая масса в условиях жесткой гипоксии переходит на гликолитический анаэробный тип метаболизма [23], при этом активно секретируя вокруг себя многочисленные факторы роста сосудов, факторы инвазии и т.д. Что делать? Подавим экспрессию HIF-1α и дело в шляпе! Не тут-то было — реальность оказалась сложнее и запутанней.

Так, например, при применении siRNA против HIF-1α на культуре пигментного эпителия сетчатки и эндотелия сосудов, наблюдалось вполне закономерное снижение секреции таких ангиогенных факторов как VEGF, TGF-β (это очень хорошо), но росла секреция IL-8, мощного хемокина с ярко выраженными ангиогенными свойствами (это очень плохо)

[24]. Позднее, группой профессора Лобода был раскрыт механизм — дело в том, что HIF-1 подавляет экспрессию IL-8, а HIF-2 — активирует. Подавляя HIF-1 в клетках, исследователи добивались реципрокной активации HIF-2 и экспрессии IL-8 [25]. Такая неоднозначная выходила терапия.

Также нужно быть аккуратными с иммунной системой. Системное подавление HIF-1 при аутоиммунных заболеваниях, возможно, и приведет к снижению популяции Th17 и росту числа Treg, что теоретически способно облегчить течение заболевания, но также способно привести к искусственному комбинированному иммунодефициту за счет дисфункции M1-макрофагов, нейтрофилов, Th1, Th2, Th17 и СD8  T лимфоцитов.

Это, конечно, спекуляции, но все же.

  1. Alexander C.S. (1972). Cobalt-beer cardiomyopathy: a clinical and pathologic study of twenty-eight cases. Am. J. Med53 (4), 395–417;
  2. Gregg L. Semenza, M.D., Ph.D.Сайт The Johns Hopkins Hospital;
  3. Satkoski A.M., Beukes N.J., Li W., Beard B.L., Johnson C.M. (2022). A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 430, 43–53;
  4. Scotti J.S., Leung I.K., Ge W., Bentley M.A., Paps J., Kramer H.B. et al. (2022). Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Proc. Natl. Acad. Sci. USA.111 (37), 13331–13336;
  5. Loenarz C., Coleman M.L., Boleininger A., Schierwater B., Holland P. W., Ratcliffe P.J., Schofield C.J. (2022). The hypoxia‐inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep. 12 (1), 63–70;
  6. Prabhakar N.R. and Semenza G.L. (2022). Oxygen sensing and homeostasis. Physiology. 30 (5), 340–348;
  7. Активный кислород: друг или враг, или О пользе и вреде антиоксидантов;
  8. SUMO: японская борьба или уникальная посттрансляционная модификация?;
  9. Agani F. and Jiang B.H. (2022). Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr. Cancer. Drug Targets. 13 (3), 245–251;
  10. Была клетка простая, стала стволовая;
  11. Ствол и ветки: стволовые клетки;
  12. Koh M.Y. and Powis G. (2022). Passing the baton: the HIF switch. Trends Biochem. Sci. 37 (9), 364–372;
  13. Hu Y.Y., Fu L.A., Li S.Z., Chen Y., Li J.C., Han J. et al. (2022). Hif-1α and Hif-2α differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Lett. 349 (1), 67–76;
  14. Villa J.C., Chiu D., Brandes A.H., Escorcia F.E., Villa C.H., Maguire W.F. et al. M. (2022). Nontranscriptional role of Hif-1α in activation of γ-secretase and notch signaling in breast cancer. Cell Rep. 8 (4), 1077–1092;
  15. Gluhanyuk E., Makarevich P., Gallinger J., Dergilev K., Beloglazova I., Parfyonova Ye. (2022). Diverse modulation of endothelial chemokine production by VEGF165 and HGF via NFkB and HIF-2. Материалы конференции Hypoxia: From Basic Mechanisms to Therapeutics;
  16. Palazon A., Goldrath A.W., Nizet V., Johnson R.S. (2022). HIF transcription factors, inflammation, and immunity. Immunity. 41 (4), 518–528;
  17. Phan A.T. and Goldrath A.W. (2022). Hypoxia-inducible factors regulate T cell metabolism and function. Mol. Immunol. doi: 10.1016/j.molimm.2022.08.004;
  18. Hsiao H.W., Hsu T.S., Liu W.H., Hsieh W.C., Chou T.F., Wu Y.J. et al. (2022). Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat. Commun. 6, 6353;
  19. Yao Y., Vent-Schmidt J., McGeough M.D., Wong M., Hoffman H.M., Steiner T.S., Levings M.K. (2022). Tr1 cells, but not Foxp3 regulatory T cells, suppress NLRP3 inflammasome activation via an IL-10—dependent mechanism. J. Immunol. 195 (2), 488–497;
  20. Netea M.G., Latz E., Mills K.H., O’Neill L.A. (2022). Innate immune memory: a paradigm shift in understanding host defense. Nat. Immunol. 16 (7), 675–679;
  21. Одураченные макрофаги, или Несколько слов о том, как злокачественные опухоли обманывают иммунитет;
  22. Thomas A., Tambuwala M.M., McNicholas W.T., Roche H.M., Taylor C.T., Pepin J.L. et al. (2022). Chronic intermittent hypoxia contributes to pro-inflammatory macrophage alteration in visceral adipose tissue of lean and obese mice. Am. J. Respir. Crit. Care Med. 191, A2691;
  23. Страшней клешней на свете нет…;
  24. Forooghian F. and Das B. (2007). Anti-angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1alpha. Am. J. Ophthalmol. 144 (5), 761–768;
  25. Loboda A., Jozkowicz A., Dulak J. (2022). HIF-1 versus HIF-2 — Is one more important than the other?Vascul. Pharmacol. 56 (5), 245–251..
Оцените статью
Кислород
Добавить комментарий