Кобальт, химические свойства, получение

Кобальт, химические свойства, получение Кислород

Аэробное окисление циклогексанола в циклогексанон, катализируемое n-гидроксифталимидом

УДК 542.943:661.725.6

Е. А. Курганова, К. А. Пуркарьян, А. С.Фролов, Н. В. Лебедева, Г. Н. Кошель

АЭРОБНОЕ ОКИСЛЕНИЕ ЦИКЛОГЕКСАНОЛА В ЦИКЛОГЕКСАНОН,

КАТАЛИЗИРУЕМОЕ И-ГИДРОКСИФТАЛИМИДОМ

Ключевые слова: аэробное окисление, циклогексанол, циклогексанон, N-гидроксифталимид, ацетат кобальта (II).

Жидкофазным окислением кислородом при атмосферном давлении и температуре 90-100°С в присутствии комплексного катализатора (N-гидроксифталимид — ацетат кобальта II) циклогексанол с конверсией 45-50 % был окислен в циклогексанон с селективностью 95-98 %. Обсужден механизм реакции.

Key words: aerobic oxidation, cyclohexanol, cyclohexanone, N-hydroxyphthalimide, cobalt (II) acetate.

Liquid-phase oxidation with oxygen at atmospheric pressure and a temperature of 90-100 °C in the presence of a complex catalyst (N-hydroxyphthalimide — cobalt II acetate) cyclohexanol with a conversion of45-50 % was oxidized to cyclohexanone, the selectivity of95-98 %. It was discussed the mechanism of the reaction.

Введение

Циклогексанон, являясь крупнотоннажным продуктом органического и нефтехимического синтеза, широко применяется в производстве полиамидных пластмасс, синтетических волокон, биологически активных препаратов [1]. В связи с этим масштабы его производства ежегодно возрастают. В промышленных масштабах циклогексанон в основном получают каталитическим дегидрированием циклогексанола при температуре 400-450°С. Несмотря на достаточно высокую селективность образования циклогексанона (80%), этот процесс сопровождается образованием большого количества побочных продуктов в виде смол и полимеров, что приводит к быстрой дезактивации катализатора. Альтернативой указанному выше способу получения циклогексанона может стать жидкофазное окисление циклогексанола. Существенным преимуществом этого метода получения циклогексанона является резкое снижение температуры (до 80-100°С) и повышение селективности образования циклогексанона (более 95%). В то же время относительно невысокая конверсия циклогексанола сдерживает дальнейшую реализацию этого метода получения циклогексанона [2,3]. Повысить эффективность процесса окисления циклогексанола в циклогексанон, как известно, можно за счет его проведения в присутствии фталимидных катализаторов. Настоящая работа посвящена изучению ряда закономерностей этого метода получения циклогексанона.

Экспериментальная часть

В работе был использован циклогексанол х.ч. ТУ 2632-183-44493179-2022 (Ткип = 160,8°С; М = 100,16 г/моль). Окисление циклогексанола проводили кислородом в стеклянном реакторе емкостью 10 см3 на установке проточно-замкнутого типа (рисунок 1) при постоянном перемешивании в присутствии катализаторов. За ходом реакции следили по поглощению кислорода, окисление проводили в кинетическом режиме, когда скорость

реакции не зависела от интенсивности перемешивания [4].

Хроматографический анализ продуктов окисления проводили на хроматографе «Хроматек-кристалл 5000.2» с пламенно-ионизационным детектором. Колонка капиллярная СК-5, длиной 30 м, диаметром 0,32 мм, заполнена 5 % фенил 95 % диметилполисилоксаном. Газ-носитель — азот, расход 2 см3/мин. Программированный подъём температуры — от 70 до 180 °С со скоростью 15 °С в минуту.

Ж-гидроксифталимид (Ж-ГФИ) был синтезирован путем взаимодействия гидроксиламина

солянокислого в пиридине с фталевым ангидридом.

NH2OH*HCl/Py

-OH

Рис. 1 — Схема кинетической установки для жидкофазного окисления циклогексанола: 1 -Мерный цилиндр; 2, 12, 15 — краны; 3, 10 -газовые бюретки; 4 — соединительный шланг; 5 -держатель для реактора; 6 — реактор; 7 — шкив электродвигателя; 8 — шатун; 9 — холодильник; 11 — хлоркальциевая трубка; 13 — трехходовой кран; 14 — напорная склянка

O

O

O

O

Температура плавления полученного Ж-ГФИ составила 231,5 °С. Структура Ж-ГФИ была подтверждена методом ИК-спектроскопии. Спектр был записан на приборе ИК Фурье RX-1, обработку которого проводили в программе «Spektrum», предоставленной фирмой Perkin Elmer. На ИК-спектре Ж-ГФИ видны полосы валентных колебаний С-Н-связей и С=С-связей бензольного кольца в области частот 3030, 1606 и 1080 см-1. Наибольшей интенсивностью обладают полосы поглощения в области 1789, 1736 и 1710 см-1, что характерно для С=О групп в имидах. Наличие гидроксогруппы подтверждается полосой на частоте 3134 см-1, а частота 975 см-1 указывает на присутствие N-O-H связи.

Результаты и их обсуждение

Аэробное окисление циклогексанола до циклогексанона проводили в отсутствии растворителей, в интервале температур 90-120 °С, в течении 0,5-1,5 часа с использованием Ж-ГФИ. Этот катализатор может быть легко получен на основе доступного сырья, обладает низкой стоимостью и высокой эффективностью в процессах окисления различных углеводородов [5-7].

Как видно из таблицы 1 и рисунка 2, при увеличении концентрации Ж-ГФИ наблюдается прямолинейная зависимость скорости окисления циклогексанола от концентрации Ж-ГФИ. При этом Ж-ГФИ не теряет своей каталитической активности при повторном использовании. Таким образом, с большой степенью вероятно можно утверждать, что в процессе аэробного окисления циклогексанола до циклогексанона Ж-ГФИ выступает в качестве катализатора.

Рис. 2 — Влияние концентрации ^-ГФИ на процесс окисления циклогексанола до циклогексанона. Температура 100°С; концентрация ^-ГФИ, % мол.: 1 — 3,5; 2 — 4,6; 3 — 6,7

Наибольшего содержания циклогексанона в продуктах окисления 30-32 % удается достичь при температуре 100°С за 1 час реакции. Снижение температуры до 90 °С или ее повышение до 120 °С

не дает положительных результатов. При окислении циклогексанола воздухом в металлическом реакторе на установке типа «УОСУГ» под давлением 5 атм при температуре 100 °С содержание циклогексанона в продуктах окисления составило 23 % при селективности его образования 98 %.

Таблица 1 — Окисление циклогексанола до циклогексанона в присутствии ^-ГФИ и его производных

Катализатор Температура, °С Содержание катализа-тора, % мол. Время реакции, ч Содержание циклогексанона в продуктах окисления, % Се-лек-тив- ность, %

Ж-ГФИ 100 3,5 1,0 9 99

Ж-ГФИ 4,6 10 99

Ж-ГФИ 6,7 32 97

Ж-ГФИ 23* 98

Ж-ГФИ 90 6,7 1,0 17 98

Ж-ГФИ 110 16 97

Ж-ГФИ 120 15 97

Ж-ГФИ 100 0,5 24 98

Ж-ГФИ 1,5 35 97

Ж-ГФИ 1,0 33** 97

Ж-ГФИ 32*** 97

4-фенил-Ж-ГФИ 100 6,7 1,0 15 99

4-метил-Ж-ГФИ 100 6,7 1,0 21 97

3-метил-Ж-ГФИ 100 6,7 1,0 20 98

4-бром-Ж-ГФИ 100 6,7 1,0 17 98

* — окисление в металлическом реакторе под давлением ** — второй цикл работы Ж-ГФИ; *** — третий цикл работы Ж-ГФИ.

Известно, что повысить эффективность окисления алкил- и циклогексилароматических углеводородов можно за счет использования фталимидных катализаторов на основе Ж-ГФИ, модифицированного введением в его структуру электронодонорных и электроноакцепторных заместителей [8]. Этот подход был использован и при окислении циклогексанола. Однако применение производных Ж-ГФИ в процессе окисления не дало положительных результатов (табл. 1).

Другим направлением повышения

эффективности окисления циклогексанола является использование, в качестве катализаторов процесса, солей металлов переменной валентности совместно с Ж-ГФИ. Исследование влияния добавок солей Со (II), Мп (II) к Ж-ГФИ на окисление циклогексанола показало, что совместное использование Ж-ГФИ, стеарата или ацетата Со (II) позволяет повысить конверсию циклогексанола до 45-50 % при селективности образования циклогексанола около 95-98 % (табл. 2). Применение ацетата Мп (II) совместно с Ж-ГФИ является малоэффективным.

Основываясь на известных представлениях о механизмах окисления циклогексана и циклогексанола, катализируемого солями металлов переменной валентности [9,10] и углеводородов в

Таблица 2 — Окисление циклогексанола в присутствии ^-ГФИ и солей металлов переменной валентности Температура 100 °С; время реакции 1 ч

Фталимидны е катализаторы Соли металлов переменной валентности Моль- Содержание

Кон-центра- ция, % мол. Кон-центра- ция, % мол. ное соот-ношение катализа-торов циклогексанона в продуктах окисления, % Се-лек-тив- ность, %

N- ГФИ 3,5 Со(СН3 СОО)2 5:1 32 97

N- ГФИ 4,5 Со(СН3 СОО)2 7:1 34 97

N- ГФИ 6,7 Со(СН3 СОО)2 10:1 52 95

N- ГФИ 3,5 Со(СНз (СН2)16 СОО)2 5:1 28 97

N- ГФИ 4,5 Со(СНз (СН2)16 СОО)2 7:1 31 96

N- ГФИ Со(СНз (СН2)16 СОО)2 10:1 44 95

N- ГФИ Со(СНз (СН2)6 СОО)2 0,65 10:1 30 96

N- ГФИ 6,7 Мп(СНз СОО) 2 10:1 18 97

N- ГФИ Со(СНз СОО)2 10:1 36* 98

N- ГФИ Со(СНз СОО)2 10:1 34** 96

4-мети л-N-ГФИ Со(СНз СОО)2 10:1 38 96

4-мети л-N-ГФИ 3,5 Со(СН3 СОО)2 5:1 27 97

* — время реакции 30 мин.; ** — время реакции 90 мин.

Рис. 3 — Влияние добавки ацетата Со (II) к ^-ГФИ на процесс окисления циклогексанола до циклогексанона. Температура 100 °С; концентрация ^-ГФИ 6,7 % мол.; концентрация ацетата Со (II), % мол.: 1 — 0; 2 — 0,65

присутствии фталимидных катализаторов [11,12] химизм окисления циклогексанола с использованием комплексного катализатора (Ж-ГФИ — ацетат Со II) можно представить следующим образом.

В присутствии солей металлов переменной валентности таких как Со (II) реакция автоокисления не требует термического инициирования. При этом процесс инициирования, вероятнее всего, заключается в образовании радикального комплекса Со(Ш)00* (реакция 1), который реагирует с Ж-ГФИ с получением Ж-оксифталимидного радикала (реакция 2):

СоОПЮО

N-оксифталимидный радикал в свою очередь отрывает атом водорода от циклогексанола (I) с образованием а-гидроксикарборадикала (II). Последний при взаимодействии с кислородом превращается в а-гидрокси-а-пероксирадикал (III), который затем трансформируется в циклогексанон (V) через промежуточное образование а-гидроксигидропероксида (IV) по схеме на рис.4.

Рис. 4 — Схема возможных превращений при окислении циклогексанола в циклогексанон

Высокая селективность (95-98%) образования циклогексанона и конверсия циклогексанола (4550%), доступный катализатор и умеренная температура дают основание считать, что данный метод получения циклогексанона может представлять интерес для дальнейшего практического использования.

Литература

1. Н.Н. Лебедев, Химия и технология основного органического и нефтехимического синтеза. Химия, Москва, 1988. 522 с.;

2. Т.Н. Антонова, Г.Н. Кошель, М.И. Фарберов, Ученые записки. Химия и химическая технология, XXVII, 100103 (1971);

3. Л.Л. Залыгин, Т.Н. Антонова, Г.Н. Кошель, М.И. Фарберов, Журнал прикладной химии, XLVII, 7, 15991603 (1974);

4. A.S. Frolov, E.A. Kurganova, G.N. Koshel’, T.N. Nesterova, European Journal of Analytical and Applied Chemistry, 1, 16-22 (2022);

5. Г.Н. Кошель, Е.В. Смирнова, Е.А. Курганова, И.Д. Екимова, Н.В. Лебедева, С.Г. Кошель, В.В. Плахтинский, Катализ в промышленности, 3, 26-29 (2022);

6. Е.А. Курганова, Ю.Б. Румянцева, Г.Н. Кошель, А.А. Иванова, Е.В. Смирнова, Химическая промышленность сегодня, 4, 20-25 (2022);

7. Е.А.Курганова, Г.Н. Кошель, Российский химический журнал, LVIII, 3-4, 91-102 (2022);

8. K. Kasperczyk, B. Orlinska, J. Zawadiak, Cent Eur J Chem, 12 (11), 1176-1182 (2022);

9. М.С. Фурман, А.М. Гольдман, Производство циклогексанона и адипиновой кислоты окислением циклогексана. Химия, Москва, 1967. 72 с.;

10. И.В. Березин, Е.Т. Денисов, Н.М. Эммануэль, Окисление циклогексана. Изд-во МГУ, Москва, 1962. 302 с.;

11. Y. Ishii, S. Sakaguchi, T. Iwahama, Adv. Synth. Catal., 343 (5), 393-427 (2001);

12. F. Recupero and C. Punta, Chem. Rev., 107, 3800-3842 (2007).

© Е. А. Курганова, доцент кафедры «Общая и физическая химия» Ярославского госуд. технич. ун-та, kurganovaea@ystu.ru; К. А. Пуркарьян, магистрант той же кафедры, purkaryan@list.ru; А. С. Фролов, аспирант той же кафедры, frolovas.11@ystu.ru; Н. В. Лебедева, доцент той же кафедры, lebedevanv@ystu.ru; Г. Н. Кошель, проф. той же кафедры, koshelgn@ystu.ru.

© E. A. Kurganova, assistant professor of general and physical chemistry department of the Yaroslavl state technical university, kurganovaea@ystu.ru; K A. Purkaryan, master of general and physical chemistry department of the Yaroslavl state technical university, purkaryan@list.ru; A. S. Frolov, postgraduate student of general and physical chemistry department of the Yaroslavl state technical university, frolovas.11@ystu.ru; N. V. Lebedeva, assistant professor of general and physical chemistry department of the Yaroslavl state technical university, lebedevanv@ystu.ru; G. N. Koshel, professor of general and physical chemistry department of the Yaroslavl state technical university, koshelgn@ystu.ru.

Кислород

Электронная конфигурация невозбужденного атома кислорода 1s22s24:

Кобальт, химические свойства, получение

Подобно фтору, кислород образует соединения почти со всеми элементами (кроме гелия, неона и аргона). Поскольку по электроотрицательности кислород уступает только фтору, степень окисления кислорода в подавляющем большинстве соединений равна —2. Кроме того, кислород проявляет степени окисления 2 и 4, а также 1 и –1 в соединениях со связью О—О.

Кислород — самый распространенный элемент (58,0 мол. доли) на Земле. Состоит из трех стабильных изотопов: 16О (99,759%), 17О (0,037%) и 18O (0,204%). Искусственно получены также изотопы 14O, 15O и 19О, период полураспада которых исчисляется десятками секунд. Вследствие количественного преобладания и большой окислительной активности кислород предопределяет форму существования на Земле всех остальных элементов. Его значение было особенно велико в период образования земной коры. Предполагается, что наличие кислорода в атмосфере обусловлено вторичными процессами деятельностью зеленых растений.

Простые вещества. Наиболее устойчива двухатомная молекула кислорода О2. Как показывают магнитные исследования, она парамагнитна. При этом величина ее парамагнетизма отвечает наличию двух непарных электронов:

Кобальт, химические свойства, получение

Кобальт, химические свойства, получение

В молекуле О2 на 8 связывающих электронов приходится 4 разрыхляющих, поэтому порядок связи в ней равен двум. Учитывая парамагнетизм и порядок связи, строение молекулы О2 можно передать структурными формулами[1]:

Кобальт, химические свойства, получение

Вследствие кратности связи межатомное расстояние в О2 (0,1207 нм) меньше длины одинарной связи 0—О (0,148 нм). По этой же причине молекула О2 весьма устойчива, ее энергия диссоциации равна 494 кДж/моль, в то время как энергия одинарной связи О–О всего 210 кДж/моль. Диссоциация молекул О2 на атомы становится заметной лишь при 2000°С; она имеет место также при поглощении ультрафиолетового излучения (фотолиз).

Температуры плавления (—218,9 °С) и кипения (—183 °С) кислорода очень низкие. Он плохо растворяется в воде (5 объемов О2 в 100 объемах Н2О при 0 °С). Жидкий и твёрдый кислород притягивается магнитом.

Аллотропическую модификацию кислорода озон О3 можно рассматривать как соединение О (IV).

Кислород обладает высокой химической активностью, особенно при нагревании и в присутствии катализатора; с большинством простых веществ он взаимодействует непосредственно, образуя оксиды; лишь по отношению к фтору проявляет восстановительные свойства.

Кислород получают ректификацией жидкого воздуха, а также как побочный продукт при электролизе воды. В лаборатории для его получения используют термическое разложение богатых кислородом соединений (КМnО4, КСlO3 и др.).

Соединения со степенью окисления кислорода —2. Как уже указывалось, образование двух- и многозарядных одноатомных анионов Эn энергетически невыгодно. Поэтому не существует соединений, содержащих ион О2-. Даже в кристаллических оксидах наиболее активных металлических элементов типа Nа2O и СаО эффективный заряд атома кислорода составляет всего около 1—.

Как и для других р-элементов 2-го периода, максимальная валентность (число двухэлектронных двухцентровых связей) кислорода равна четырем. При этом атомы кислорода могут находиться в состоянии 3-, 2— и -гибридизации, что соответствует тетраэдрическому, треугольному и линейному расположению s–связей. В качестве примера соединений, в которых проявляются эти гибридные состояния орбиталей кислорода, можно указать соответственно кристаллические ВeО, ТiO2 и SiO2.

Весьма разнообразны также оксиды, в которых координационное число кислорода превышает значение его максимальной валентности, т. е. больше четырех. Например, в кристалле МgO координационное число кислорода равно шести, а в кристалле Nа2O восьми. Согласно теории молекулярных орбиталей это обусловлено тем, что в кристалле MgO (структурный тип NаСI) каждый атом О (за счет 2pх-, 2рy— и 2рz-орбиталей) объединяется с шестью соседними атонами Мg посредством трех трехцентровых связей. Аналогично построены кристаллические МnО, FеО, СоО, NiO и другие оксиды со структурой типа NаСI.

В оксидах типа Nа2O (К2O, Rb2O, Li2O) атомы кислорода (за счет 2s, 2рx-, 2pу— и 2рz-орбиталей) с восемью соседними атомами металла объединяются посредством четырех трехцентровых связей.

Состав кристаллических оксидов (в особенности d-элементов) в большей или меньшей степени переменный. Так, для МnО он изменяется в пределах от МnО до МnО1.5, а для МnО2 — от МnO1,5 до МnО2,6. Если в оксидах содержание кислорода выше стехиометрического, они проявляют дырочную проводимость, а если содержание металла выше стехиометрического, то электронную. Полупроводниками с дырочной проводимостью являются МnО, Сu2О, FеО н др. Ряд оксидов, состав которых не подчиняется обычным правилам степеней окисления (например, Сr3О, Тi6О, Тi3О), — металлические соединения.

Про кислород:  Заправка порошкового огнетушителя цена

Важнейшим из оксидов является оксид водорода — вода. Достаточно сказать, что она составляет 50—99% массы любого живого существа. Кровь человека содержит более 4/5 воды, мускулы — 35% воды. При средней продолжительности жизни (70 лет) человек выпивает около 25 т воды.

Молекула воды имеет угловую форму, что согласно теории валентных связей соответствует 3-гибридвому состоянию атома кислорода. В молекуле Н2O две 3-гибридные орбитали атома кислорода участвуют в образовании двух связей О—Н. На двух других 3-гибридных орбиталях расположены две несвязывающие электронные пары. Валентный угол в молекуле воды НOН составляет 104,5о.

В рамках теории молекулярных орбиталей модель молекулы воды соответствует распределению восьми валентных электронов по двум связывающим и двум несвязывающим молекулярным орбиталям

Кобальт, химические свойства, получение

и наличию двух свободных разрыхляющих орбиталей (рис. 1). Такое объяснение подтверждается наличием у молекулы Н2О четырех первых потенциалов ионизации (27,3; 16,2; 14,5 и 12,6 эВ).

Кобальт, химические свойства, получениеС позиций теории молекулярных орбиталей строение молекулы Н2О можно объяснить следующим образом. Взаимное расположение атомов водорода и кислорода в молекуле воды можно представить схемой:

Кобальт, химические свойства, получение

Рис 1. Энергетическая Молекулярные орбитали Н2О образуются за счет 2s-,

диаграмма орбиталей и 2р-орбиталей атома кислорода и 1s-орбиталей

молекулы Н2О двух атомов водорода. Характер перекрывания этих

орбиталей показан на рис. 2.

Перекрывание 2рx-орбитали атома кислорода и 1s-орбиталей двух атомов водорода приводит к возникновению молекулярных sxсв.— и sхразр.-орбиталей, Как видно из рис. 2, характер перекрывания 2s— и 2рz-орбиталей кислорода одинаков. В результате образуются три молекулярные орбитали: связывающая ssсв., почти несвязывающая sz и разрыхляющая szразр.. Орбиталь 2рy, расположенная перпендикулярно плоскости расположения атомов Н и О, с 1s-орбиталями атомов Н не перекрывается и в молекуле Н2O играет роль не-связывающей молекулярной py -орбитали.

Кобальт, химические свойства, получение

Рис. 2. Перекрывание 2s-, 2рz— и 2рx-орбиталей атома кислорода с 1s-орбиталями двух атомов водорода молекулы воды.

Таким образом, комбинация исходных четырех атомных орбиталей кислорода и двух орбиталей атомов водорода приводит к образованию двух связыазющнх (ssсв. и sxсв.), двух несвязывающих (sz и py) и двух разрыхляющих (sxразр. И szразр.) молекулярных орбиталей (см. рис. 1).

В соответствии с природой элемента в положительной степени окисления характер оксидов в периодах и группах периодической системы закономерно изменяется. В периодах уменьшается отрицательный эффективный заряд на атомах кислорода dо и осуществляется постепенный переход от основных через амфотерные оксиды к кислотным, например:

Кобальт, химические свойства, получениеРазличие в свойствах оксидов разного типа проявляется при их взаимодействии с водой:

Кобальт, химические свойства, получение

Кобальт, химические свойства, получениеа также при взаимодействии оксидов разного типа друг с другом:

Амфотерные оксиды с водой не взаимодействуют, но могут реагировать и с кислотами, и с щелочами:

Кобальт, химические свойства, получение

а при сплавлении — с основными и кислотными оксидами.

Сравнительную количественную оценку основно-кислотной активности оксидов можно дать на основании значений DG соответствующих однотипных реакций. Уменьшение отрицательного значения DGо298 в реакциях

Кобальт, химические свойства, получение

свидетельствует об ослаблении в ряду Nа2О – МgО —Al2O3 их основных свойств, а также об их способности взаимодействовать с водой. В ряду Р2О5—SO3—Сl2О7

Кобальт, химические свойства, получение

наоборот, наблюдается увеличение отрицательного значения DGо298, что свидетельствует об усилении у оксидов кислотных свойств.

Соединения перекисного типа. Сродство к электрону молекулы O2 составляет 0,8 эВ, а ее энергия ионизации 12,08 эВ. При химических превращениях молекула O2 может присоединять или терять электроны с образованием молекулярных ионов типа O22-, O2 и O2 (табл. 1).

Таблица 1.

Кобальт, химические свойства, получение

Как видно из табл. 1, удаление электрона с pразр. -орбитали молекулы О2 соответствует повышению порядка связи в О2 , а появление электронов на pразр -орбитали приводит, наоборот, к уменьшению порядка связи в молекулярных нонах О22- и О2. В соответствии с этим в ряду О2 – О2 — О2 — О22- расстояние между атомами кислорода увеличивается, а средняя энергия связи уменьшается.

Присоединение одного электрона к молекуле О2 вызывает образование надпероксид— нона О2:

Кобальт, химические свойства, получение

Производные радикала О2 называются надпероксидами; они известны для наиболее активных щелочных металлов (К, Rb, Сs). Надпероксиды образуются при прямом взаимодействии простых веществ:

К O2 = КO2.

Непарный электрон нона О2 обусловливает парамагнетизм надпероксидов и наличие у них окраски. Надпероксиды — очень сильные окислители. Oни бурно реагируют с водой с выделением кислорода.

Присоединяя два электрона, молекула О2 превращается в пероксид-ион О22-, в котором атомы связаны одной двухэлектронной связью, и поэтому он диамагнитен:

Кобальт, химические свойства, получение

Это также согласуется с отсутствием окраски у пероксидов,

Пероксиды образуются при окислении ряда металлов, например:

Ва О2 = ВаО2

Наибольшее практическое значение имеет пероксид (перекись) водорода Н2О2. Строение молекулы показано ниже:

Кобальт, химические свойства, получение

Энергия связи О — О (210 кДж/моль) почти в два раза меньше энергии связи О — Н (468 кДж/моль).

Из-за несимметричного распределения связей Н – О молекула Н2О2 сильно полярна ( = 0,7. 10-29 Кл×м). Между молекулами Н2О2 возникает довольно прочная водородная связь, приводящая к их ассоциации. Поэтому в обычных условиях пероксид водорода — сиропообразная жидкость (пл. 1,44) с довольно высокой температурой кипения (т. кип. 150,2 °С, т. пл. 0,41 °С). Она имеет бледно-голубую окраску. Пероксид водорода — хороший. ионизирующий растворитель. С водой смешивается в любых отношениях благодаря возникновению новых водородных связей. Из растворов выделяется в виде неустойчивого кристаллогидрата Н2О2×2Н2О (т. пл. —52,0 °С). В лаборатории обычно используются 3%-ные и 30%-ные растворы Н2О2 (последний называют пергидролем).

В водных растворах пероксид водорода — слабая кислота (Киониз = 2,24×10-12):

Кобальт, химические свойства, получение

В химических реакциях пероксид-радикал может, не изменяясь, переходить в другие соединения, например:

Кобальт, химические свойства, получение

Последняя реакция используется для получения перекиси водорода.

Кобальт, химические свойства, получениеЧаще, однако, протекают реакции, сопровождающиеся разрушением связи О — О или изменением заряда иона О22-. Можно считать, что ион О присоединяет или теряет электроны:

Окислительные свойства пероксидов выражены сильнее, чем восстановительные:

Кобальт, химические свойства, получение

Так, при действии концентрированных растворов Н2О2 на бумагу, опилки или другие горючие вещества происходит их самовоспламенение. Восстановительные свойства перекись водорода проявляет только по отношению к таким сильным окислителям, как ионы МnО4.

Для пероксида водорода характерен также распад по типу диспропорционирования:

Кобальт, химические свойства, получение

Этот распад ускоряется в присутствии примесей, при освещении, нагревании и может протекать со взрывом. Довольно устойчивы только очень чистая Н2О2 и ее 30—65%-ные растворы. Пероксид водорода и его растворы обычно хранят в темной посуде и на холоде; для стабилизации добавляют ингибиторы.

Водные растворы пероксида водорода широко используются для отбелки различных материалов, для обеззараживания сточных вод. Пероксид водорода применяют как окислитель ракетного топлива.

В последнее время удалось синтезировать Н2О3 и Н2О4. Эти соединения весьма неустойчивы. При обычных температурах они разлагаются за доли секунды. Однако при низких температурах порядка —70°С они существуют часами. Спектроскопическое исследование показывает, что их молекулы имеют зигзагообразную цепную структуру:

Кобальт, химические свойства, получение

Молекулы Н2О2, как и Н2О, могут выступать в качестве нейтральных лигандов, например [Fе(ОН2)52Н2)]3 , и давать аналогичные кристаллогидратам пероксогидраты: К2СО3 ×3Н2O2, СаО2×2Н2O2, ВаO2×2Н2О×2Н2О2 и др. Роль лиганда может играть и пероксидион, например в комплексе [V(О2)4]3-:

Кобальт, химические свойства, получение

Кислоты, в которых имеется группировка О22-, называют пероксокислотами:

Кобальт, химические свойства, получение

При гидролизе пероксокислот образуется пероксид водорода, что используется для его получения в промышленности.

Характерным свойством пероксидных соединений, как простых, так и комплексных, является способность образовывать пероксид водорода при взаимодействии с разбавленными растворами кислот, а также выделять кислород при термическом разложении или действии воды и других химических агентов. Другие неорганические соединения, которые могут быть источником кислорода, как, например, нитраты, хлораты, перхлораты, перманганаты и некоторые оксиды, не выделяют пероксид водорода при действии воды. Кислород они выделяют только при нагревании и в присутствии катализаторов.

Соединения кислорода (II) и кислорода (I). Можно считать, что электроположительная поляризация атомов кислорода проявляется в соединениях с фтором, а также в ионе О2 . Некоторые примеры фторопроизводных кислородных соединений приведены в табл. 2.

Простейший представитель такого рода соединений — дифторид кислорода ОF2: его получают при быстром пропускании фтора через 2%-ный раствор щелочи:

2F2 2NaOH = OF2 2NaF H2O

Таблица 2.

Кобальт, химические свойства, получение

Молекула ОF2 имеет угловую форму (dOF = 0,139 нм, ÐFОF = 104° 16’, m= 0,1 × 10-29 Кл×м.) Дифторид кислорода ядовитый газ бледно-желтого цвета, термически устойчив до 200—250 °С, сильный окислитель, эффективный фторирующий агент.

В диоксидифториде О2F2 радикал О22 ковалентно связан с атомами фтора. Молекула О2F2 диамагнитна. Это соединение образуется (в виде красной летучей жидкости) в результате непосредственного взаимодействия простых веществ в электрическом разряде или под действием ионизирующих излучений при температуре жидкого воздуха (—190 °С). Согласно спектроскопическим данным молекула О2F2 (m = 0,48×10-29 Кл×м) по структуре аналогична Н2О2:

Кобальт, химические свойства, получение

Соединение крайне неустойчиво, что определяется низкой энергией разрыва связи ОF (75 кДж/моль).

Получены также полиоксидифториды типа О4F2, О5F2 и О6F2, существующие лишь при низкой температуре (—190 °с). Предполагают, что их молекулы имеют цепное строение, например F—О—О—О—О—F. Термическая устойчивость полиоксидифторидов уменьшается с увеличением числа атомов в молекуле ОnF2 (n = 2 – 6).

Энергия ионизации молекулы О2 довольно значительная (12,08 эВ), однако при взаимодействии О2 с сильнейшим окислителем РtF6 образуется солеподобное вещество О2 [РF6]

Кобальт, химические свойства, получение

в котором роль катиона играет молекулярный ион О2 (диоксигенил):

Кобальт, химические свойства, получение

Гексафтороплатинат (V) диоксигенила О2[РtF6] – парамагнитное вещество красного цвета, плавится с разложением при 219 °С. Синтез этого соединения канадским ученым Н. Бартлетом в 1962 г. послужил толчком к синтезу соединений ксенона, энергия ионизации которого близка к таковой молекулы кислорода.

Производные О2 получены также при взаимодействии O2F2 и O4F2 с резко кислотными фторидами типа ВF3, РF5, AsF5, SbF5, ВrF5:

Кобальт, химические свойства, получение

Синтез диоксигенильных солей можно осуществлять нагреванием в автоклаве (в течение 10—20 ч) при 150—500 °С смеси кислорода, фтора и порошка соответствующего металла:

О2 3 F2 Э = O2[ЭF6]

где Э – As, Sb, Bi, Nb, Au, Ru, Rh.

Частота валентных колебаний О2 в диоксигенильных соединениях близка к таковой для свободного иона, что подтверждает существование иона О2 в указанных солях. Межъядерное расстояние в катионе О2 , известное из спектроскопических данных (0,112 нм), как и следовало ожидать, короче, чем в О2 0,1207 нм). Ион О2 имеет один непарный электрон (см. табл. 1). Энергия диссоциации О2F2, ОF2 (~70 кДж/моль) меньше, чем у F2 (159 кДж/моль). Они — удобная форма хранения фтора, который выделяется при распаде этих фторидов уже при обычных температурах.

В соединениях типа СlО4F, NO3F мостиковый атом кислорода относительно центрального атома (Сl, N) поляризован отрицательно, а относительно атома фтора — положительно. Рассматриваемые соединения можно получить при взаимодействии с фтором концентрированных растворов НСlО4 и НNO3 или твердых солей КСlО4 и KNO3

HClO4 F2 = ClO4F HF

KNO3 F2 = NO3F KF

В воде эти соединения разлагаются, выделяя кислород:

ClO4F 2Н2О = HClO4 O2 2HF

Производные положительной степени окисления кислорода являются сильнейшими энергоемкими окислителями, способными выделять запасенную в них химическую энергию в определенных условиях. Их можно использовать как эффективные окислители ракетного топлива.

Соединения кислорода (IV). В качестве производного, в котором кислород проявляет степень окисления 4, можно рассматривать аллотропическую модификацию кислорода озон O3 – (О 4O2).

Молекула O3 диамагнитна, имеет угловую форму (ÐООО = 116,5°) и обладает некоторой полярностью (m = 0,17 × 10-29 Кл × м). Длина связи dOO ( 0,128 нм) является промежуточной между длиной одинарной (0,149 нм) и двойной связи (0,1207 нм). Поэтому считают, что в молекуле О3 порядок связи 1,5. Строение молекулы О3 можно передать следующей структурной формулой:

Кобальт, химические свойства, получение

Исходя из приведенных данных, строение молекулы О3 можно объяснить следующим образом. Центральный атом кислорода молекулы О3 находится в состоянии 2-гибридизации (за счет 2s-, 2pх н 2рy,-орбиталей). Две из гибридных 2-орбиталей центрального атома участвуют в образовании двух s-связей О—О (двух молекулярных sсв.-орбиталей). Третья 2-гибридная орбиталь (молекулярная s-орбиталь) содержит неподеленную электронную пару. 2рz -орбиталъ центрального атома (расположенная перпендикулярно плоскости расположения атомов) и 2рz-орбитали крайних атомов участвуют в образовании нелокализованной p-связи (молекулярная pсв.-орбиталь). Таким образом, невозбужденное состояние молекулы О3 отвечает следующему заполнению молекулярных орбиталей: (sсв.)4(pсв.)2(s)2.

Остальные электроны заполняют несвязывающие орбитали, локализованные у периферических атомов.

Шести электронам, связывающим три атома кислорода, соответствует порядок связи 1,5.

Озон газ синего цвета с резким раздражающим запахом, очень токсичен. Жидкий озон — темно-синяя жидкость, твердый – темно- фиолетовые кристаллы (т. пл. —192,7 °С). Поскольку молекула О3 обладает большей полярностью и поляризуемостью, озон имеет более высокую температуру кипения (—111,9 °С), чем кислород. Этим же объясняется большая интенсивность окраски озона и лучшая его растворимость в воде.

Озон образуется в процессах, сопровождающихся выделением атомарного кислорода (радиолиз воды, разложение перекисей и др.), а также при действии на молекулярный кислород потока электронов, протонов, коротковолнового излучения, т. е. за счет радиохимических

и фотохимических реакций. Цепную реакцию образования озона из кислорода можно представить схемой

О2 hn ® O2·

O2· O2 = O3 ·O·

·O· O2 = O3

или суммарно 3О2 = 2О3 DGо298 = 326 кДж/моль.

В естественных условиях озон образуется из атмосферного кислорода при грозовых разрядах, а на высоте 10—30 км — под действием ультрафиолетовых солнечных лучей. Озон задерживает вредное для жизни ультрафиолетовое излучение Солнца и поглощает инфракрасное излучение Земли, препятствуя ее охлаждению. Следовательно, «озонный пояс» играет большую роль в обеспечении жизни на Земле.

В технике озон получают в озонаторах действием тихого электрического разряда на кислород.

Озон — вещество эндотермическое (DНof,298 = 142,3 кДж/моль, DGof,298 = 162,7 кДж/моль). Но тем не менее в отсутствие катализаторов или без ультрафиолетового облучения газообразный озон разлагается довольно медленно даже при 250 °С. Жидкий озон и его концентрированные смеси (70% 0) взрывчаты.

Окислительная активность озона заметно выше, чем О2. Например, уже при обычных условиях он окисляет многие малоактивные простые вещества (Аg, Нg и пр.):

8Аg 2O3 = 4Аg2О O2

О более высокой химической активности О3, чем O2, свидетельствует также сравнение их окислительно-восстановительных потенциалов для водных растворов, например:

О3 (г) Н2О (ж) 2е = О2 (г) 2ОН (р), Ео298 = 1,24 В;

Про кислород:  Сравните строение атомов и свойства кислорода и серы. укажите их сходство и различия.

О2 (г) 2Н2О (ж) 4е = 4ОН(р), Ео298 = 0,401 В.

Для количественного определения озона можно использовать его взаимодействие с раствором КI:

2I (р) O3 (г) Н2O (ж) = I2 (т) 2ОН (р) О2 (г)

Сродство к электрону озона около 180 кДж/моль, поэтому он может переходить в озонид-ион О3. В частности, при действии озона на щелочные металлы образуются озониды: К О3 = КО3

Озониды — это соединения состоящие из положительных ионов металла и отрицательных ионов О3 (dOO = 0,134 нм). Наличие в ионе О3 непарного электрона обусловливает парамагнетизм и наличие окраски у озонидов, Обычно они окрашены в красный цвет.

Как сильный окислитель озон используется для очистки питьевой воды, для дезинфекции воздуха, в различных химических синтезах.

[1] Тремя точками обозначены связи, обусловленные двумя pсв. и одним pразр. электроном, что отвечает порядку связи 0,5. Во второй формуле непарные точки означают pразр.-электроны, При возбуждении молекул О2 становится диамагнитной. Этому состоянию отвечает структурная формула .

§

Т 4 Л 10 Подгруппа мышьяка

Мышьяк Аs, сурьма Sb и висмут Вi — полные электронные аналоги с конфигурацией s2р3. По мере увеличения размеров атомов в ряду Аs — Sb — Вi значения устойчивых координационных чисел возрастают. Степени окисления мышьяка, сурьмы и висмута равны —3, 3 и 5. Вследствие особой устойчивости конфигурации 6s2 для висмута наиболее характерна степень окисления 3.

Содержание в земной коре мышьяка, сурьмы и висмута сравнительно невелико. Они обычно встречаются в виде сульфидных минералов:

Простые вещества. В ряду N—Р—Аs—Sb—Вi отчетливо наблюдается усиление металлических признаков простых веществ.

В частности, в этом ряду устойчивость неметаллических модификаций падает, а металлических возрастает. Мышьяк, как и фосфор, имеет несколько аллотропных форм. При быстром охлаждении пара (состоящего из молекул As4) образуется неметаллическая модификация — желтый мышьяк (пл. 2,0 г/см3), изоморфный белому фосфору и подобно ему растворимый в сероуглероде. Эта модификация менее устойчива, чем белый фосфор, и при действии света или при слабом нагревании легко переходит в металлическую модификацию — серый мышьяк. Неметаллическая модификация сурьмы (желтая сурьма) еще менее устойчива, чем желтый мышьяк. У висмута же неметаллическая модификация неизвестна вообще.

Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический вид, электропроводны, но хрупки. Они изоморфны, имеют слоистую структуру типа черного фосфора. Каждый из атомов пирамидально связан с тремя соседними по слою и имеет трех ближайших соседей в другом слое. В ряду As—Sb—Вi различие межъядерных расстояний внутри и между слоями уменьшается (0,063—0,050—0,0З7 нм), т. е. происходит постепенно приближение к характерному для металлических структур равенству межъядерных расстояний. Благодаря близости параметров кристаллических решеток сурьма образует твердые растворы с мышьяком и висмутом, но последние друг с другом их не образуют.

Кобальт, химические свойства, получение

Некоторые сведения о простых веществах р-элементов V группы приведены ниже: ( в твердом состоянии; При 1,8×109 Па; При 3,6×106 Па.)

Кобальт, химические свойства, получение

В обычных условиях металлические модификации устойчивы по отношению к воздуху и воде. В ряду напряжений они располагаются после водорода. При взаимодействии с концентрированной НNО3 мышьяк переходит в мышьяковую кислоту:

Кобальт, химические свойства, получение

Сурьма в этих же условиях образует b-сурьмяную кислоту НSbO3 (Sb2О5× nН2О):

3Sbo 5HNO3 = 3НSb 5O3 5NO Н2О

Висмут же в концентрированной НNО3 пассивируется, а с разбавленной дает нитрат, т. е. ведет себя как металл:

Вio 4HNO3 = Вi 3(NO3)3 NО 2Н2О

Для получения мышьяка, сурьмы и висмута их природные сульфиды обжигают; образующиеся при этом оксиды восстанавливают углем:

2S3 9O2 = 6SO22O3

Э2O3 3С = 2Э 3СО

Мышьяк, сурьма и висмут существенно отличаются по структуре от типичных металлов и поэтому с металлами твердые растворы обычно не образуют. Более характерно возникновение эвтектических смесей. Так, сплав состава 60% Вi и 40% Сd плавится при 144 °С. Широко применяемый сплав Вуда, температура плавления которого 65 – 70 °С, т. е. ниже точки кипения воды, содержит 50 % Вi, 25 % Рb, 12,5 % Sn и 12,5 % Сd. Сплав состава 41 % Вi, 22 % Рb, 11 % Sn, 8 % Сd и I8 % In плавится лишь при 47 °С. Сплавы висмута эвтектического состава применяются в автоматических огнетушителях и в качестве припоев.

Мышьяк и сурьма используются главным образом в качестве добавки к свинцу для придания ему повышенной твердости. Важное значение имеет типографский сплав, содержащий 25 % Sb, 60% Рb и 15% Sn.

Соединения со степенью окисления мышьяка, сурьмы и висмута—3. В качестве солеподобных соединений, в которых мышьяк, сурьма и висмут проявляют степень окисления —3, можно рассматривать арсениды, стибиды (антимониды) и висмутиды s-элементов I и II групп (К3Э, Са3Э2, Мg3Э2 и др.). В большинстве же других случаев при взаимодействии металлов с мышьяком, сурьмой и висмутом образуются соединения металлического типа. Стибиды и арсениды р-элементов и элементов подгруппы цинка — полупроводники. В ряду однотипных нитридов, фосфидов, арсенидов, стибидов и висмутидов ширина запрещенной зоны уменьшается, что свидетельствует об увеличении доли нелокализованной связи. Например:

АlN АlР АlAs АlSb

DЕ, эВ ……………3,8 3,0 2,16 1,6

Большинство арсенидов, стибидов и висмутидов довольно легко разлагается кислотами.

Ослабление признаков неметаллических элементов в ряду Аs—Sb—Вi проявляется также в их соединениях с водородом Н3Э. Строение молекул Н3Э аналогично строению Н3N и H3Р. Но по мере увеличения размеров электронных облаков в ряду N—Р—As—Sb—Вi полярность и прочность связи Э — Н уменьшается. По этой же причине несвязывающее двухэлектронное облако становится пространственно менее направленным, значение валентного угла — ÐНЭН приближается к 90о и наблюдается уменьшение электрического момента диполя молекул. В обычных условиях Н3Аs (арсин), Н3Sb (стибин) и ВiН3 (висмутин) — газообразные вещества с резким запахом. Арсин, стибин и особенно висмутин сильно эндотермичны. При нагревании они довольно легко распадаются с образованием на стенках сосуда черного осадка с металлическим блеском (простые вещества Аs, Sb, Вi). В ряду Н3Аs—Н3Sb—ВiН3 устойчивость падает, вследствие чего висмутин недостаточно изучен. Все они сильные восстановители.

Образуются Н3Э действием разбавленных кислот на арсениды, стибиды и висмутиды:

Мg3Э2 6НСl = 3МgСl23Э

а также действием цинка на подкисленные растворы соединений:

Аs2O3 6Zn I2НСl = 2Н3Аs 6ZnСl22O

Арсин (в меньшей степени стибин и висмутин) очень токсичен. Поскольку цинк почти всегда содержит небольшие количества мышьяка, опасно вдыхать водород, выделяющийся при действии кислот на цинк.

В ряду Н3N—Н3Р—Н3Аs—Н3Sb—ВiН3 электронодонорные свойства молекул ослабевают. Так, если производные аммония вполне устойчивы, то арсоний-ион АsН5 обнаружен лишь с помощью ИК-спектра (в смеси Н3Аs и НI при низкой температуре). Ионы SbH4 и ВiН4 вообще не обнаружены.

В молекулах арсина и стибина связь почти неполярна и в зависимости от условий характер поляризации атомов Аs и Sb может изменяться. Поэтому для Н3Аs и Н3Sb характерен ряд свойств гидридов, т. е. производных Аs (III) и Sb (III). В частности, при взаимодействии арсина с растворами щелочей выделяется водород.

Соединении мышьяка (III), сурьмы (III) и висмута (III). В степени окисления 3 атомы Аs, Sb и Вi сохраняют несвязывающую электронную пару; имеют координационные числа 3, 4, 5 и 6. Этим координационным числам отвечают структурные единицы в виде тригональной пирамиды искаженного тетраэдра, тетрагональной пирамиды, искаженного октаэдра соответственно.

Степень окисления 3 у мышьяка и его аналогов проявляется в галогенидах ЭНаl3, оксидах Э2О3, сульфидах Э2S3. Бинарные соединения и гидроксиды Э(III) амфотерны.

В ряду однотипных соединений Аs (III) — Sb (III) — Вi (III) кислотные признаки ослабевают и нарастают основные.

Оксиды Э2О3 получают прямым взаимодействием простых веществ, Sb2О3 также окислением сурьмы разбавленной НNО3, а Вi2О3 — термическим разложением Вi(NO3)3.

Структура оксидов в при переходе от Аs (III) к Вi (III) существенно изменяется. Кристаллы низкотемпературных модификаций Аs2О3 и Sb2O3 имеют, как и Р2O3, молекулярную решетку, построенную из молекул Э4O6. Последние состоят из четырех объединенных друг с другом пирамид ЭO3. В высокотемпературной модификации Sb2O3 пирамиды SbO3 связаны в бесконечные сдвоенные цепи:

Кобальт, химические свойства, получение

Оксид висмута (III) Вi2O3 имеет координационную решетку с искаженной октаэдро-тетраэдрической координацией атомов. Различие в структуре, естественно, сказывается на свойствах оксидов.

Аs2O3 (белый мышьяк) — преимущественно кислотный оксид. Он растворяется в воде и щелочах, но в отличие от Р2О3 взаимодействует также с галогеноводородными кислотами:

Аs2O3 Н2О = 2Н3АsO3

Аs2O3 8НCl = 2HAsCl4 H2O

Sb2O3 в воде практически не растворяется, но взаимодействует со щелочами, а также с соляной кислотой.

Взаимодействие Аs2O3 с растворами щелочей приводит к образованию соответственно гидроксоарсенатов (III) (гидроксоарсенитов) и гидроксостибатов (III) (гидроксоантимонитов):

Э2О3 2КОН 3Н2О = 2К[Э(ОН)4]

Наоборот, Вi2О3 легко взаимодействует с кислотами, образуя разнообразные соли Вi (III), в воде не растворяется, со щелочами практически не реагирует.

Аналогично изменяются свойства и в ряду гидроксидов. В отличие от Н3РО3 гидроксиды Аs(ОН)3 и Sb(ОН)3 амфотерны: у первого преобладают кислотные свойства, у второго — основные. При этом и кислотная, и основная ионизации Э(ОН)3 в растворе выражены слабо.

В свободном состоянии Аs(ОН)3 не выделен, в водном растворе ведет себя как слабая кислота Н3АsО3, называемая мышьяковистой.

Гидроксиды Sb (III) и Вi (III) в воде практически не растворяются. Они получаются в виде белых осадков переменного состава Э2O3×nН2О при действии щелочей на катионные производные Э (III):

Bi(NO3)3 3KOH = Bi(OH)3¯ 3KNO3

или кислот на анионные производные Э (III):

Nа[Sb(ОН)4] НСl = NаСI Sb(ОН)3¯ Н2О

При сплавлении Э2O3 или Э(ОН)3 со щелочами обычно образуются полимерные метаарсенаты (III) (метаарсениты) и метастибаты (III) (метаантимониты) состава М 1ЭО2.

Оксовисмутаты (III) неустойчивы.

Ослабление кислотных признаков проявляется также в ряду сульфидов Э2S3. Желтый Аs2S3, оранжевый Sb2S3 и черно-бурый Вi2S3 твердые вещества, нерастворимые в воде.

Сульфиды образуются непосредственным взаимодействием простых веществ или действием сероводорода на растворимые соединения Э (III) в кислой среде:

Кобальт, химические свойства, получение

Сульфиды Аs (III) и Sb (III) — преимущественно кислотные соединения. Они легко растворяются в присутствии основных сульфидов с образованием сульфидоарсенатов (III) и сульфидостибатов (III) типа М 1ЭS2 и М 13ЭS3:

Э2S3 (NH4)2S = 2NH4ЭS2

Растворяются As2S3 и Sb2S3 и в щелочах.

Сульфид висмута (III) Вi2S3 кислотные свойства в растворах не проявляет, с основными сульфидами взаимодействует лишь при сплавлении.

Соединения Э2S3 характеризуются сравнительно небольшими значениями энергий Гиббса образования; довольно легко переходят в Э2О3, ЭF3 и ЭСl3 при окислении кислородом, фтором и хлором, например:

2Sb2S3 9O2 = 2Sb2O3 6SO2

В отличие от Аs2S3 сульфиды Sb (III) и Вi (III) растворяются в концентрированной соляной кислоте:

Sb2S3 8НСI « 2НSbСl42S

Тригалогениды элементов подгруппы мышьяка ЭНаl3 получают взаимодействием простых веществ при недостатке галогена. У большинства тригалидов элементов подгруппы мышьяка кристаллические решетки молекулярны. Температура плавления трифторида висмута, имеющего координационную решетку, наиболее высокая (730 °С).

Подобно Э2О3 и Э2S3, галогениды Аs (III) — кислотные соединения, галогениды Sb (III) и Вi (III) проявляют также свойства солей.

При гидролизе АsНаl3 образуются кислоты. Однако в отличие от РНаl3 гидролиз АsНаl3 обратим:

АsСl3 2O = Н[Аs(ОН)4] 3НСl

Гидролитическое разложение галогенидов Sb (III) и Вi (III) также преобладает над их электролитической диссоциацией. Гидролиз протекает энергично до оксогалогенидов, например:

SbСl3 Н2O « SbОСl 2НСl

Оксогалогениды Sb (III) и Вi (III) состава ЭОНаl в обычных условиях – твердые, нерастворимые в воде вещества с координационнослоистой решеткой, структурно совершенно отличные от аналогичных соединений фосфора (III) и мышьяка (III).

Ослабление неметаллических свойств в ряду Аs – Sb – Вi проявляется также в изменении устойчивости солей и солеподобных соединений Э (III). Последние для Аs (III) неустойчивы и в свободном состоянии не выделены, а для Sb (III) известны сульфат Sb2(SO4)3, нитрат Sb(NО3)3 и некоторые другие. В воде эти соединения энергично разлагаются. Относительно устойчивы комплексные стибаты (III) s-элементов I группы, например сульфатостибаты (III) М 1[Sb(SO4)2].

Соли Вi (I1I) весьма разнообразны и устойчивы. Кислотные признаки у них проявляются в характере гидролиза (который у них преобладает над электролитической диссоциацией)

Вi(NО3)3 Н2O « ВiОNО3 2НNO3

и в способности образовывать производные типа M 1[Вi(SО4)2], М 1[Вi(NО3)4].

Соединения Аs (IП) довольно легко окисляются. Так, Аs2S3 окисляется персульфидом аммония:

Аs2S3 2(NН4)2S2 = 2NН4ЭS2

а Аs2О3 – азотной кислотой:

Аs2O3 4HNO3 7H2O = 6H3AsO4 4NO

У производных Sb (III) восстановительная активность проявляется в меньшей степени, однако Sb2S3 также окисляется персульфидом аммония. Окисление же соединений Вi (ПI) возможно лишь наиболее сильными окислителями в сильнощелочной среде, например:

ВiСl3 Сl2 6КОН = КВiО3 5КСl 3Н2O

Соединения мышьяка (V), сурьмы (V) и висмута (V). В ряду Аs (V) – Sb (V) – Вi (V) устойчивость соединений в целом падает. При рассмотрении подгрупп брома и селена было показано, что высшая степень окисления в этих подгруппах наиболее характерна для р-элементов 5-го периода, т. е. для I и Те. Наименее устойчива высшая степень окисления для р-элементов 6-го периода, т. е. для Аt и Ро. Подобная закономерность, хотя и выраженная — менее отчетливо, проявляется и в подгруппе мышьяка; степень окисления 5 наиболее характерна для Sb, менее характерна для Аs и неустойчива у Вi.

Для висмута (V) получен лишь фторид ВiF5, для мышьяка (V) и сурьмы (V), кроме того, известны оксиды Э2О5, сульфиды Э2S5, а для сурьмы (V) — еще и хлорид SbСl5:

Кобальт, химические свойства, получение

По химической природе бинарные соединения мышьяка (V) и его аналогов кислотные. Им соответствуют анионные комплексы, простейшие из которых ЭНаl6, ЭО43-, Э(ОН)6.

Оксиды Э2O5 в обычных условиях твердые вещества. По структуре и свойствам Аs2O5 напоминает Р2O5, довольно хорошо растворяется в воде:

Аs2O52O = 2Н3АsО4

Sb2O5 (желтого цвета) в воде растворим мало, лучше в щелочных растворах:

Sb2O5 2КОН 5Н2О = 2К[Sb (ОН)6]

Оксоарсенаты (V) и оксостибаты (V), образующиеся при сплавлении Аs2O5 и Sb2О5 со щелочами и оксидами металлов, в большинстве полимерны.

Структура оксоарсенатов обычно подобна структуре оксофосфатов (V).

Чаще всего полимерные висмутаты отвечают составу М 1ВiО3.

Из растворов обычно выделяются тетраоксоарсенаты типа М 13АsО4 и гексагидроксостибаты типа М 1[Sb(ОН)6]. Подобно фосфатам арсенаты, стибаты и висмутаты, как правило, трудно растворимы в воде.

Про кислород:  Онлайн урок: Дыхание растений. Передвижение и испарение воды в растениях по предмету Биология 6 класс |

Из соответствующих соединений водорода в свободном состоянии получен лишь оксоарсенат (V) водорода Н3АsО4 (мышьяковая кислота) — твердое, растворимое в воде вещество, Н3АsО4 получают окислением Аs или Аs2О3 азотной кислотой. Мышьяковая кислота (К1 = 6×10-3) слабее фосфорной. При попытке получения сурьмяных кислот образуется осадок неопределенного состава Sb2O5×nН2О. Не выделены в свободном состоянии и висмутовые кислоты.

Сульфиды Э2S5 во многом напоминают оксиды Э2O3. Желтый Аs2S5 и оранжевый Sb2S5 с водой не взаимодействуют; будучи кислотными соединениями, они растворяются в присутствии основных сульфидов и при действии щелочей:

Э2S5 3Nа2S = 2Nа3ЭS4

Сульфиды Э2S5 можно получить либо взаимодействием простых веществ, либо осаждением при действии Н2S на производные Э(V) в кислой среде:

2Nа3АsО4 (р) 5Н2S (р) 6НСl (р) = Аs2S5 (т) 6NаС1 (р) 8Н2O (ж)

Соответствующие сульфидоарсенаты (V) и сульфидостибаты (V) (тиоанатимонаты) водорода в свободном состоянии неустойчивы.

Молекулы пентагалогенидов ЭНаl5, как и РНаl5, имеют форму тригональной бипирамиды.

В обычных условиях АsF5 — газ (Тпл. —80 °С, Ткип. —53 °С), а SbF5пл. 8 °С, Ткип. 142 °С) и SbСl (Тпл. 30 oС, Ткип. 140 оС) – жидкости; ВiF5 — твердое вещество (Тпл. 151 oС, Ткип. 230 °С). Резкое повышение точек плавления и кипения при переходе от АsF5 и SbF5 обусловливается ассоциацией молекул SbF5 в полимерные цепи, образованные октаэдрическими структурными единицами SbF6 (—SbF4 — F — SbF4 — F —). Пентагалиды типичные кислотные соединения. При взаимодействии с водой ЭНаl5 дают кислоты, с основными галогенидами образуют галогеноарсенаты (V) и галогеностибаты (V):

КF ЭF5 = К[ЭF6]

Пентафториды ЭF5—очень сильные акцепторы фторид-иона; при взаимодействии с ЭF5 основные свойства проявляют даже такие соединения, как НF, O2F2, N2F4, СlF5.

Производные типа М[ЭOF4] образованы полимерными анионами в виде цепи октаэдрических структурных единиц:

Кобальт, химические свойства, получение

Соединения висмута (V) сильные окислители. Они, например, переводят Мn (II) в Мn (VII):

2Мn2 5ВiО3 14Н = 5Вi3 2МnО42O

Производные сурьмы (V) окислительные свойства проявляют в меньшей степени, однако Sb2O5 может окислять концентрированную соляную кислоту по обратимой реакции:

Sb2O5 I0НСl « 2SbСl3 2Сl22O

Применение соединений мышьяка, сурьмы и висмута весьма разнообразно. Так, производные Аs в сельском хозяйстве служат одним из основных средств борьбы с вредителями культурных растений. Например, Nа3АsО4, Са3(АsО4)2, Са(AsO2)2, и другие применяются как инсектициды. Важное применение соединения мышьяка (Аs2O3, КАsО2, органические производные) находят в медицине. Лекарства на их основе рекомендуют при малокровии, истощении, используют в стоматологической практике. Производные Аs, Sb и Bi нашли применение также в производстве керамики и в других областях.

Соединения сурьмы, висмута и в особенности мышьяка ядовиты.

Оксид кобальта(ii), химические свойства, получение

1

H

ВодородВодород

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

ГелийГелий

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

ЛитийЛитий

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

БериллийБериллий

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

БорБор

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

УглеродУглерод

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

АзотАзот

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

КислородКислород

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

ФторФтор

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

НеонНеон

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

НатрийНатрий

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

МагнийМагний

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

АлюминийАлюминий

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

КремнийКремний

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

ФосфорФосфор

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

СераСера

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

ХлорХлор

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

АргонАргон

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

КалийКалий

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

КальцийКальций

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

СкандийСкандий

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

ТитанТитан

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

ВанадийВанадий

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

ХромХром

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

МарганецМарганец

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

ЖелезоЖелезо

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

КобальтКобальт

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

НикельНикель

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

МедьМедь

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

ЦинкЦинк

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

ГаллийГаллий

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

ГерманийГерманий

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

МышьякМышьяк

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

СеленСелен

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

БромБром

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

КриптонКриптон

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

РубидийРубидий

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

СтронцийСтронций

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

ИттрийИттрий

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

ЦирконийЦирконий

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

НиобийНиобий

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

МолибденМолибден

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

ТехнецийТехнеций

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

РутенийРутений

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

РодийРодий

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

ПалладийПалладий

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

СереброСеребро

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

КадмийКадмий

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

ИндийИндий

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

ОловоОлово

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

СурьмаСурьма

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

ТеллурТеллур

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

ИодИод

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

КсенонКсенон

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

ЦезийЦезий

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

БарийБарий

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

ЛантанЛантан

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

ЦерийЦерий

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

ПразеодимПразеодим

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

НеодимНеодим

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

ПрометийПрометий

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

СамарийСамарий

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

ЕвропийЕвропий

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

ГадолинийГадолиний

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

ТербийТербий

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

ДиспрозийДиспрозий

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

ХольмийХольмий

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

ЭрбийЭрбий

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

ТулийТулий

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

ИттербийИттербий

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

ЛютецийЛютеций

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

ГафнийГафний

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

ТанталТантал

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

ВольфрамВольфрам

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

РенийРений

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

ОсмийОсмий

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

ИрридийИрридий

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

ПлатинаПлатина

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

ЗолотоЗолото

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

РтутьРтуть

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

ТаллийТаллий

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

СвинецСвинец

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

ВисмутВисмут

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

ПолонийПолоний

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

АстатАстат

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

РадонРадон

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

ФранцийФранций

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

РадийРадий

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

АктинийАктиний

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

ТорийТорий

232,04

f-элемент

Серый мягкий металл

91

Pa

ПротактинийПротактиний

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

УранУран

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

НептунийНептуний

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

ПлутонийПлутоний

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

АмерицийАмериций

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

КюрийКюрий

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

БерклийБерклий

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

КалифорнийКалифорний

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

ЭйнштейнийЭйнштейний

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

ФермийФермий

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

МенделевийМенделевий

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

НобелийНобелий

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

ЛоуренсийЛоуренсий

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

РезерфордийРезерфордий

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

ДубнийДубний

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

СиборгийСиборгий

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

БорийБорий

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

ХассийХассий

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

МейтнерийМейтнерий

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

ДармштадтийДармштадтий

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

Оцените статью
Кислород
Добавить комментарий