Материалы для газовой сварки и резки металлов

Материалы для газовой сварки и резки металлов Кислород

Горючие газы, их получение и свойства

Для процессов газовой сварки и резки могут быть применены различные горючие газы, при сгорании которых в смеси с техническим кислородом температура газового пламени превышает 2 000 °С. По химическому составу они, за исключением водорода, представляют собой или углеводородные соединения, или смеси различных углеводородов.

Ацетилен. Для газопламенной обработки наибольшее распространение получил ацетилен. При его сгорании в кислороде образуется пламя с более высокой температурой, чем при сгорании других горючих газов — заменителей ацетилена.

Ацетилен С2Н2 представляет собой углеводород ненасыщенного ряда. Его структурная формула Н— С=С— Н. При атмосферном давлении и нормальной температуре ацетилен — бесцветный газ. Технический ацетилен вследствие присутствия в нем примесей имеет резкий специфический запах.

Полное сгорание ацетилена происходит по реакции

С2Н2 2,5О2 = 2СО2 Н2О (1.1)

т. е. для полного сгорания одного объема ацетилена требуется два с половиной объема кислорода. Высшая теплота сгорания ацетилена при температуре 0 °С и давлении 0,1 МПа — 58 660 кДж/м3. Теплота реакции сгорания ацетилена складывается из теплоты реакции распада ацетилена и суммы теплоты первичных реакций сгорания углерода и водорода.

Распад ацетилена происходит по реакции

С2Н2 ↔ 2С Н2 225,8 кДж/моль (1.2)

Важным параметром сварочного пламени помимо его температуры является интенсивность горения, под которой понимается произведение нормальной скорости горения на теплоту сгорания смеси. Данные об интенсивности горения ацетилена и некоторых других горючих газов приведены в табл. 1.

Температура самовоспламенения ацетилена (240 … 630 °С) зависит от давления и присутствия в ацетилене различных веществ. Повышение давления существенно снижает температуру самовоспламенения ацетилена. Присутствие в ацетилене частиц других веществ увеличивает поверхность контакта и тем самым снижает температуру самовоспламенения.

При сжатии ацетилена в компрессоре до давления 2,9 МПа, если температура в конце сжатия не превышает 275 °С, самовоспламенения ацетилена не происходит.

Таблица 1. Интенсивность горения газов
Горючий газПолное сгораниеНормальное пламя
Горючее,

%

Интенсивность горения, МДж/(м2 · с)
Горючее,

%

Интенсивность горения, МДж/(м2 · с)первичнаявторичнаяобщая
Ацетилен28,1116495292175
Водород66,77580444286
Метан33,35840472371
Пропан16,755205111362

Это позволяет наполнять баллоны ацетиленом в целях его длительного хранения и транспортирования. С повышением избыточного давления pи температурный предел t начала процесса полимеризации снижается (рис. 1).

При использовании ацетилена допустим его нагрев до следующих значений температуры в зависимости от давления р: при p = 0,1 МПа — до 300 °С; при p = 0,25 МПа — до 150 … 180 °С; при p  0,25 МПа — до 100 °С.

Один из важных показателей взрывоопасности горючих газов и паров — энергия зажигания. Чем меньше энергия зажигания,

Рис. 1. Области полимеризации (I ) и взрывного распада (II ) ацетилена

тем взрывоопаснее вещество. Энергия зажигания кислородно-газовых смесей в 100 раз меньше, чем воздушно-газовых. Ацетилен имеет наименьшую энергию зажигания и в отношении взрывоопасности подобен водороду.

Присутствие паров воды сильно снижает способность ацетилена к самовоспламенению от случайных источников нагрева и к взрывчатому распаду. В связи с этим в ацетиленовых генераторах, где ацетилен всегда насыщен парами воды, действующими правилами установлено предельное давление: избыточное — 0,15 МПа, абсолютное — 0,25 МПа.

При атмосферном давлении смесь ацетилена с воздухом взрывоопасна при содержании в ней 2,2 % ацетилена и более; смесь с кислородом — 2,8 % ацетилена и более. Верхнего предела взрываемости для смесей ацетилена с воздухом и кислородом не существует, так как взрываться способен и чистый ацетилен при достаточной энергии зажигания.

Основным способом получения ацетилена является переработка карбида кальция CaC2. Этот способ довольно громоздок, дорог и требует большого количества электроэнергии. Получение ацетилена из природного газа на 30 … 40 % дешевле, чем из карбида кальция.

Карбид кальция CaС2 — твердое вещество кристаллического строения, имеющее в изломе темно-серый цвет. Реакция образования карбида кальция из оксида кальция CaО и углерода C протекает при температуре 2 000 … 2 300 °С с поглощением теплоты:

СаО 3С = CaС2 СО — 452 кДж/моль (1.3)

Для получения 1 кг карбида кальция теоретически требуется затратить 7,06 МДж энергии. Технический карбид кальция содержит 70 … 75 % химически чистого карбида кальция, 17 … 24 % оксида кальция и различные примеси: оксиды магния, алюминия, железа, соединения серы, фосфора, ферросилиций, углерод и др.

Карбид кальция чрезвычайно активно вступает в соединение с водой, разлагаясь при этом с образованием газообразного ацетилена и гидроксида кальция (гашеной извести). Разложение карбида кальция водой протекает с выделением теплоты:

CaС2 2Н2О = С2H2 Са(ОН)2 127,4 кДж/моль (1.4)

Для разложения 1 кг химически чистого карбида кальция требуется затратить 0,562 кг воды. При этом получается 0,406 кг ацетилена и 1,156 кг гидроксида кальция. Количество ацетилена (выход ацетилена), получаемое при разложении 1 кг карбида кальция — 372 дм3/кг.

При разложении 1 кг карбида кальция выделяется 1,98 МДж/кг количества теплоты, что создает опасность перегрева в зоне реакции, требует осуществлять ее при избытке воды и обеспечивать отвод теплоты реакции. Особенно опасны местные перегревы карбида кальция, так как при этом температура в месте разложения карбида кальция может достигать 700 … 800 °С.

При такой температуре возможен взрыв ацетилена, особенно при попадании воздуха в зону реакции. В связи с этим действующими правилами предусмотрено требование поддерживать в месте разложения карбида кальция температуру не выше 250 °С, при которой еще не могут возникать процессы взрывчатого распада ацетилена.

Скорость разложения измеряется количеством ацетилена, выделившегося при разложении 1 кг карбида кальция в течение 1 мин, и зависит от сорта и грануляции карбида кальция, а также температуры воды. Повышение содержания в воде гидроксида кальция снижает скорость разложения вследствие заиливания кусков карбида кальция.

При содержании в воде 20 % гидроксида кальция и температуре 17 °С разложение карбида кальция почти полностью прекращается вследствие сильного заиливания его кусков. При разложении карбида кальция в ацетиленовых генераторах предусмотрено его периодическое перемешивание в зоне реакции.

Наибольшая скорость разложения карбида кальция отмечается в первые 2 … 4 мин после его смачивания (рис. 2). Карбидная пыль разлагается почти мгновенно, что представляет опасность при использовании мелких частиц карбида кальция в генераторах обычной конструкции.

При быстром разложении возможно резкое повышение давления и температуры в зоне реакции вследствие склонности пыли к спеканию, что, в свою очередь, часто приводит к вспышкам и взрывному распаду ацетилена. В связи с этим при использовании карбидной пыли применяют специальные генераторы, в которых обеспечивают точное дозирование подачи пыли и воды и охлаждение реакционной зоны при постоянном перемешивании реагирующих веществ.

Рис. 2. Зависимость скорости образования газообразного ацетилена от времени разложения τ карбида кальция и его грануляции (отношения размеров, мм, минимальной и максимальной фракций): 1 — 2/8; 2 — 8/15; 3 — 15/25; 4 — 25/50; 5 — 50/80

Поскольку карбид кальция интенсивно поглощает атмосферную влагу и при этом разлагается с выделением ацетилена, его хранят и транспортируют в стальных барабанах, герметически закрывающихся крышкой. Барабаны с карбидом кальция необходимо хранить в сухих, хорошо проветриваемых складах, защищенных от затопления грунтовыми водами и располагаемых на расстоянии не менее 20 м от производственных помещений и жилых зданий.

Для хранения и транспортирования ацетилена под давлением используют баллоны, заполненные специальной пористой массой, пропитанной ацетоном. Ацетон СН3СОСН3 — растворитель, имеющий температуру кипения 56 °С, температуру замерзания -94,3 °С, плотность 0,7911 кг/м3.

При температуре 20 °С и давлении 0,1 МПа в 1 кг (1 дм3) ацетона растворяется 27,9 кг (20 дм3) ацетилена. Растворимость ацетилена в ацетоне возрастает почти прямо пропорционально давлению. При снижении температуры растворимость ацетилена в ацетоне растет.

Ацетон, являясь хорошим растворителем для ацетилена, позволяет существенно увеличить количество ацетилена, закачиваемого в баллон. Кроме того, ацетон снижает взрывоопасность ацетилена. Ацетон удерживается в порах массы и распределяется по всему объему баллона, что увеличивает поверхность его контакта с ацетиленом при растворении и выделении из раствора.

Ацетилен, отпускаемый потребителям в баллонах, называется растворенным ацетиленом. Максимальное давление ацетилена при заполнении — 2,5 МПа. При отстое и охлаждении баллона до температуры 20 °С оно снижается до 1,9 МПа; при этом давлении в 40-литровый баллон вмещается 5 … 5,8 кг ацетилена (4,6 … 5,3 м3 газа при температуре 20 °С и давлении 0,1 МПа).

Чтобы полнее использовать вместимость баллона, порожние ацетиленовые баллоны следует хранить в горизонтальном положении, что способствует более равномерному распределению ацетона по всему объему баллона. Наполнять баллоны ацетиленом следует медленно — с учетом скорости его растворения в ацетоне — и обычно в два приема: сначала наполнить баллоны в течение 6 … 9 ч до давления 2,2 … 2,3 МПа, затем дать им отстояться и вторично заполнить до давления 2,3 … 2,5 МПа так, чтобы после охлаждения до температуры 20 °С давление в них составляло 1,9 МПа согласно ГОСТ 5457 — 75.

Растворенный ацетилен имеет ряд существенных преимуществ перед ацетиленом, получаемым из карбида кальция в переносных генераторах непосредственно на месте выполнения работ. При использовании ацетиленовых баллонов взамен переносных генераторов на 20 % повышается производительность труда сварщика, на 15 … 25 % снижаются потери ацетилена, повышаются оперативность и маневренность сварочного поста, удобство и безопасность выполнения работы, отсутствуют затруднения, связанные с использованием генераторов в зимнее время.

Пористая масса для ацетиленовых баллонов должна отвечать следующим требованиям: надежно локализовать взрывной распад ацетилена в баллоне при давлении до 3 МПа; не взаимодействовать с ацетиленом, ацетоном и металлом баллона; обладать достаточной механической прочностью и не разрушаться при толчках и ударах, неизбежных в процессе эксплуатации баллона; не оседать и не образовывать пустот в баллоне; должна быть легкой и пористой, чтобы не уменьшать полезный объем и не увеличивать массу тары баллона; не должна выгорать при обратном ударе пламени; должна иметь большой объем микропор, что обеспечивает равномерное распределение ацетона по всему объему баллона и предотвращает стекание раствора на дно баллона.

В качестве пористой массы применяют такие высокопористые вещества, как инфузорную землю (кизельгур, диатомит), пемзу, асбест, древесный и активированный уголь, силикат кальция, карбонат магния и др.

Газы — заменители ацетилена (далее — газы-заменители) целесообразно использовать в тех процессах газопламенной обработки, в которых не требуется слишком высокая температура подогревающего пламени: сварка легкоплавких металлов (алюминия, магния и их сплавов, свинца), пайка высоко- и низкотемпературными припоями, поверхностная закалка, сварка тонкой стали, кислородная разделительная и поверхностная резка.

Особенно широкое применение газы-заменители находят при кислородной разделительной резке, при которой температура подогревающего пламени влияет лишь на длительность начального подогрева металла перед резкой. В связи с этим для резки можно использовать все газы-заменители, у которых температура пламени при сгорании в смеси с кислородом не ниже 2 000 °С, а теплота сгорания не менее 10 МДж/м3.

Эффективность и условия использования газов-заменителей при обработке материалов газокислородным пламенем определяются следующими их свойствами: теплота сгорания; плотность; температура воспламенения и скорость горения в смеси с кислородом; соотношение между кислородом и горючим в смеси; эффективная тепловая мощность пламени; температура пламени при сгорании в смеси с кислородом; удобство и безопасность при получении, транспортировании и использовании.

Эффективная тепловая мощность пламени горючего — это количество теплоты, вводимой в нагреваемый металл в единицу времени. В наибольшей степени эффективная мощность пламени горючего газа зависит от соотношения кислорода и горючего газа в смеси и расхода горючего газа.

Оптимальное рабочее соотношение объемов кислорода и горючего газа β = Vк/Vг в смеси для различных горючих газов принимается следующим: ацетилен 0,8 … 1,4; водород 0,3 … 0,4; природный газ (метан) 1,0 … 1,5; пропан технический 3,0 … 3,5; коксовый газ 0,75 … 0,8; нефтяной газ 1,5 … 1,6.

Коэффициентом замены ацетилена называют отношение расхода газа-заменителя Vз к расходу ацетилена Vа при равном тепловом воздействии на нагреваемый металл:  = Vз/Vа. Для определения значения коэффициента замены используют графики, приведенные на рис. 3 и 4. С их помощью находят расход газа-заменителя Vз для условий, когда при его сгорании в смеси

Рис. 3. Зависимость эффективной мощности пламени q от соотношения кислорода и горючего газа β:

  1. — пропан-бутановая смесь;
  2. — ацетилен; 3 — метан;
  3. — коксовый газ;
  4. — водород

с кислородом при рабочем соотношении газов эффективная мощность пламени равна таковой для ацетиленокислородного пламени при соотношении Vз/Vа = 1,15. Принимаемые на практике значения коэффициентов замены ацетилена другими горючими газами приведены в табл. 2.

Водород. При температуре 20 °С и давлении 0,1 МПа водород представляет собой газ без цвета и запаха плотностью 0,084 кг/м3. Водород способен проникать через мельчайшие неплотности в окружающую среду, образуя с воздухом взрывоопасные смеси.

Рис. 4. Зависимость эффективной мощности пламени q от расхода горючего газа Vг: 1 — пропан-бутановая смесь, β = 3,5; 2 — ацетилен, β = 1,15; 3 — метан, β = 1,5; 4 — коксовый газ, β = 0,8; 5 — водород, β = 0,4

Таблица 2. Значения коэффициентов замены ацетилена другими горючими газами
Резка сталиГаз — заменитель ацетилена
ВодородПриродный газПропан техническийKоксовый газНефтяной газСланцевый газ
Разделительная5,21,6 … 1,80,63,2 … 4,01,24,0
Поверхностная4,01,0 … 1,25,01,8 … 2,46,0 … 8,0

Технический водород поставляется по ГОСТ 3022 — 80. В зависимости от способа получения промышленностью выпускается водород следующих марок: А (получают электролизом воды); Б (получают железопаровым способом и взаимодействием ферросилиция с раствором щелочи);

Температура водородно-кислородного пламени — 2 000 … 2 100 °С. Пламя можно применять для получения высокочистых металлов в газовом пламени при безокислительной пайке стали, иногда при сварке свинца, кислородной разделительной резке под водой. Низшая теплота сгорания водорода — 10,6 МДж/м3.

Природный газ. Состав природного газа определяется характером газового месторождения. Обычно он состоит из 97,8 % метана СН4, 0,9 % этана С2Н6 и пропана С3Н8, 1,3 % азота N2 и диоксида углерода СО2.

Плотность природного газа — 0,7 … 0,9 кг/м3, низшая теплота сгорания (в зависимости от состава) — 31 … 33 МДж/м3. Температура пламени при сгорании в смеси с кислородом — 2 100 … 2 200 °С; при дополнительном подогреве смеси в мундштуке горелки температуру пламени можно повысить до 2 300 °С. Пределы взрываемости в смеси с воздухом — 4,8 … 16,7 об. %, с кислородом — 5,0 … 59, об.%.

При газопламенной обработке газ к постам подается в баллонах под давлением до 16,5 МПа или по трубопроводу под давлением примерно 0,3 МПа.

Природный газ применяют при разделительной и поверхностной кислородной резке стали, сварке стали толщиной до 5 мм, сварке легкоплавких металлов и сплавов, пайке.

Пропан технический и пропан-бутановая смесь. Эти газы являются побочными продуктами при переработке нефти.

Пропан технический состоит главным образом из пропана С3Н8 или из смеси пропана и пропилена С3Н6, общее количество которых должно быть не менее 93 об. %. Кроме того, в нем содержится не более 4 % этана C2H6 и этилена С2H4 (в сумме) и не более 3 % бутана С4Н10 и бутилена С4Н8.

Плотность пропана — 1,88 кг/м3, бутана — 2,52 кг/м3. Низшая теплота сгорания пропана — 87 МДж/м3, бутана — 116 МДж/м3. Пределы взрываемости в смеси с воздухом: пропана — 2,0 … 9,5 %, бутана — 1,5 … 8,5 %; в смеси с кислородом: пропана — 2,4 … 57 %, бутана — 3,0 … 45 %.

Температура пламени пропана и пропан-бутановой смеси при сгорании в смеси с кислородом — 2 300 … 2 350 °С, при дополнительном подогреве смеси в мундштуке может достигать 2 700 °С. При повышении давления до 1,6 МПа или снижении температуры до 0 °С пропан, бутан и их смеси переходят в жидкое состояние, поэтому их называют сжиженными газами.

При температуре 0 °С и давлении 0,1 МПа они находятся в газообразном состоянии. Указанное свойство этих газов делает их удобными для хранения и транспортирования. При газопламенной обработке для хранения и транспортирования сжиженных газов используют сварные стальные баллоны по ГОСТ 15860 — 84 вместимостью 5 … 50 дм3. Для перевозки по железной дороге применяют цистерны вместимостью 50 т сжиженного газа.

Коэффициент объемного расширения жидкого пропана в 16 раз, а жидкого бутана в 11 раз больше, чем воды, поэтому при нагреве сосуда со сжиженным газом выше допустимого предела (для цистерн 50 °С, для баллонов 45 °С) возникает опасность повышения давления в сосуде и его взрыва.

В связи с этим для наполнения баллонов и цистерн сжиженными газами установлены нормы, которые предусматривают наличие над жидкостью в сосуде паровой подушки, способной вместить дополнительный объем жидкости при ее расширении от нагрева внешним источником теплоты. Масса газа на 1 дм3 вместимости сосуда для пропана не должна превышать 0,425 кг, для бутана — 0,488 кг.

Сжиженные газы широко применяют в качестве заменителей ацетилена, так как дают достаточно высокую температуру газокислородного пламени, относительно дешевы, недефицитны, удобны для транспортирования и хранения.

При разделительной резке, сварке цветных металлов, пламенной закалке и пайке для замены 1 т карбида кальция (что эквивалентно примерно 235 м3 ацетилена) требуется 0,3 т сжиженного газа. Коксовый и сланцевый газы. Коксовый газ получают в процессе коксования каменного угля.

Средний состав коксового газа: 50 … 59 % водорода Н2, 25 … 30 % метана СН4, 1,8 … 3,0 % этилена С2H4 и других непредельных углеводородов, 5 … 7 % оксида углерода СО, 6 … 13 % азота N2 и диоксида углерода СО2, 0,5 … 0,8 % кислорода О2; плотность при температуре 20 °С и давлении 0,1 МПа — 0,40 … 0,55 кг/м3; низшая теплота сгорания — 14,7 … 17,6 МДж/м3.

Сланцевый газ получают при газификации горючих сланцев. Его состав: 25 … 40 % водорода Н2; 14 … 17 % метана СН4; 10 … 20 % оксида углерода СО; 10 … 20 % диоксида углерода СО2; 4 … 5 % этана С2H6 и других углеводородов;

Температура пламени коксового и сланцевого газов в смеси с кислородом — 2 000 °С.

Коксовый и сланцевый газы к постам газопламенной обработки подают по трубопроводу. Их используют при сварке легкоплавких металлов, пайке, разделительной и поверхностной кислородной и кислородно-флюсовой резке и других процессах, для которых достаточна температура пламени 2 000 °С.

Городской газ. Состав городского газа утверждается соответствующими организациями с учетом используемых источников его получения. Плотность городского газа — 0,84 … 1,05 кг/м3, низшая теплота сгорания — 18,8 … 21,0 МДж/м3, температура газокислородного пламени — 2 000 °С. Области применения городского газа те же, что и коксового газа.

Пиролизный и нефтяной газы. Эти газы — смеси газообразных продуктов термического разложения нефти, нефтепродуктов и мазута при температуре 720 … 740 °С в ретортах. Выход газа составляет 0,35 … 0,4 м3 на 1 кг нефти. Состав зависит от состава нефти и режима ее переработки.

В баллонах газ находится частично в сжиженном состоянии. При отборе газа состав его изменяется вследствие испарения в первую очередь более летучих компонентов. Для выравнивания состава газа и предупреждения частичной конденсации в трубопроводах и шлангах перед горелкой иногда устанавливают промежуточный ресивер вместимостью 40 дм3, в котором газ находится под избыточным давлением (0,3 … 0,4 МПа); из ресивера газ через регулятор давления поступает в горелку или резак.

Плотность пиролизного газа при температуре 20 °С и давлении 0,1 МПа — 0,65 … 0,85 кг/см3; низшая теплота сгорания — 31,4 … 33,5 МДж/м3; коэффициент замены ацетилена при разделительной резке — 1,6.

Плотность нефтяного газа при температуре 20 °С и давлении 0,1 МПа — 0,63 … 1,43 кг/м3; низшая теплота сгорания — 41,0 … 56,6 МДж/м3.

Температура пламени пиролизного и нефтяного газов — 2 297 °С.

Области применения пиролизного и нефтяного газов те же, что и пропана и пропан-бутановой смеси. Ввиду более низкой температуры пламени пиролизный и нефтяной газы можно использовать для сварки стали толщиной не более 3 мм.

Свойства

Строе­ние внеш­ней элек­трон­ной обо­лоч­ки ато­ма К. 2s22p4; в со­еди­не­ни­ях про­яв­ля­ет сте­пе­ни окис­ле­ния –2, –1, ред­ко 1, 2; элек­тро­от­ри­ца­тель­ность по По­лин­гу 3,44 (наи­бо­лее элек­тро­от­ри­ца­тель­ный эле­мент по­сле фто­ра); атом­ный ра­ди­ус 60 пм; ра­ди­ус ио­на О2– 121 пм (ко­ор­ди­нац. чис­ло 2). В га­зо­об­раз­ном, жид­ком и твёр­дом состояни­ях К. су­ще­ст­ву­ет в ви­де двух­атом­ных мо­ле­кул О2. Мо­ле­ку­лы О2 па­ра­маг­нит­ны. Су­ще­ст­ву­ет так­же ал­ло­троп­ная мо­ди­фи­ка­ция К. – озон, со­стоя­щая из трёх­атом­ных мо­ле­кул О3.

В осн. со­стоя­нии атом К. име­ет чёт­ное чис­ло ва­лент­ных элек­тро­нов, два из ко­то­рых не спа­ре­ны. По­это­му К., не имею­щий низ­кой по энер­гии ва­кант­ной d-ор­би­та­ли, в боль­шин­ст­ве хи­мич. со­еди­не­ний двух­ва­лен­тен. В за­ви­си­мо­сти от ха­рак­те­ра хи­мич. свя­зи и ти­па кри­стал­лич. струк­ту­ры со­еди­не­ния ко­ор­ди­нац. чис­ло К. мо­жет быть раз­ным: 0 (ато­мар­ный К.), 1 (напр., О2, СО2), 2 (напр., Н2О, Н2О2), 3 (напр., Н3О ), 4 (напр., ок­со­аце­та­ты Ве и Zn), 6 (напр., MgO, CdO), 8 (напр., Na2O, Cs2O). За счёт не­боль­шо­го ра­диу­са ато­ма К. спо­со­бен об­ра­зо­вы­вать проч­ные π-свя­зи с др. ато­ма­ми, напр. с ато­ма­ми К. (О2, О3), уг­ле­ро­да, азо­та, се­ры, фос­фо­ра. По­это­му для К. од­на двой­ная связь (494 кДж/моль) энер­ге­ти­че­ски бо­лее вы­год­на, чем две про­стые (146 кДж/моль).

Па­ра­маг­не­тизм мо­ле­кул О2 объ­яс­ня­ет­ся на­ли­чи­ем двух не­спа­рен­ных элек­тро­нов с па­рал­лель­ны­ми спи­на­ми на два­ж­ды вы­ро­ж­ден­ных раз­рых­ляю­щих π*-ор­би­та­лях. По­сколь­ку на свя­зы­ваю­щих ор­би­та­лях мо­ле­ку­лы на­хо­дит­ся на че­ты­ре элек­тро­на боль­ше, чем на раз­рых­ляю­щих, по­ря­док свя­зи в О2 ра­вен 2, т. е. связь ме­ж­ду ато­ма­ми К. двой­ная. Ес­ли при фо­то­хи­мич. или хи­мич. воз­дей­ст­вии на од­ной π*-ор­би­та­ли ока­зы­ва­ют­ся два элек­тро­на с про­ти­во­по­лож­ны­ми спи­на­ми, воз­ни­ка­ет пер­вое воз­бу­ж­дён­ное со­стоя­ние, по энер­гии рас­по­ло­жен­ное на 92 кДж/моль вы­ше ос­нов­но­го. Ес­ли при воз­бу­ж­де­нии ато­ма К. два элек­тро­на за­ни­ма­ют две раз­ные π*-ор­би­та­ли и име­ют про­ти­во­по­лож­ные спи­ны, воз­ни­ка­ет вто­рое воз­бу­ж­дён­ное со­стоя­ние, энер­гия ко­то­ро­го на 155 кДж/моль боль­ше, чем ос­нов­но­го. Воз­бу­ж­де­ние со­про­во­ж­да­ет­ся уве­ли­че­ни­ем меж­атом­ных рас­стоя­ний О–О: от 120,74 пм в осн. со­стоя­нии до 121,55 пм для пер­во­го и до 122,77 пм для вто­ро­го воз­бу­ж­дён­но­го со­стоя­ния, что, в свою оче­редь, при­во­дит к ос­лаб­ле­нию свя­зи О–О и к уси­ле­нию хи­мич. ак­тив­но­сти К. Оба воз­бу­ж­дён­ных со­стоя­ния мо­ле­ку­лы О2 иг­ра­ют важ­ную роль в ре­ак­ци­ях окис­ле­ния в га­зо­вой фа­зе.

К. – газ без цве­та, за­па­ха и вку­са; tпл –218,3 °C, tкип –182,9 °C, плот­ность га­зо­об­раз­но­го К. 1428,97 кг/дм3 (при 0 °C и нор­маль­ном дав­ле­нии). Жид­кий К. – блед­но-го­лу­бая жид­кость, твёр­дый К. – си­нее кри­стал­лич. ве­ще­ст­во. При 0 °C те­п­ло­про­вод­ность 24,65·103 Вт/(м·К), мо­ляр­ная те­п­ло­ём­кость при по­сто­ян­ном дав­ле­нии 29,27 Дж/(моль·К), ди­элек­трич. про­ни­цае­мость га­зо­об­раз­но­го К. 1,000547, жид­ко­го 1,491. К. пло­хо рас­тво­рим в во­де (3,1% К. по объ­ё­му при 20 °C), хо­ро­шо рас­тво­рим в не­ко­то­рых фто­рор­га­нич. рас­тво­ри­те­лях, напр. пер­фтор­де­ка­ли­не (4500% К. по объ­ё­му при 0 °C). Зна­чит. ко­ли­че­ст­во К. рас­тво­ря­ют бла­го­род­ные ме­тал­лы: се­реб­ро, зо­ло­то и пла­ти­на. Рас­тво­ри­мость га­за в рас­плав­лен­ном се­реб­ре (2200% по объ­ё­му при 962 °C) рез­ко по­ни­жа­ет­ся с умень­ше­ни­ем темп-ры, по­это­му при ох­ла­ж­де­нии на воз­ду­хе рас­плав се­реб­ра «за­ки­па­ет» и раз­брыз­ги­ва­ет­ся вслед­ст­вие ин­тен­сив­но­го вы­де­ле­ния рас­тво­рён­но­го ки­сло­ро­да.

К. об­ла­да­ет вы­со­кой ре­ак­ци­он­ной спо­соб­но­стью, силь­ный окис­ли­тель: взаи­мо­дей­ст­ву­ет с боль­шин­ст­вом про­стых ве­ществ при нор­маль­ных ус­ло­ви­ях, в осн. с об­ра­зо­ва­ни­ем со­от­вет­ст­вую­щих ок­си­дов (мн. ре­ак­ции, про­те­каю­щие мед­лен­но при ком­нат­ной и бо­лее низ­ких темп-рах, при на­гре­ва­нии со­про­во­ж­да­ют­ся взры­вом и вы­де­ле­ни­ем боль­шо­го ко­ли­че­ст­ва те­п­ло­ты). К. взаи­мо­дей­ст­ву­ет при нор­маль­ных ус­ло­ви­ях с во­до­ро­дом (об­ра­зу­ет­ся во­да Н2О; сме­си К. с во­до­ро­дом взры­во­опас­ны – см. Гре­му­чий газ), при на­гре­ва­нии – с се­рой (се­ры ди­ок­сид SO2 и се­ры три­ок­сид SO3), уг­ле­ро­дом (уг­ле­ро­да ок­сид СО, уг­ле­ро­да ди­ок­сид СО2), фос­фо­ром (фос­фо­ра ок­си­ды), мн. ме­тал­ла­ми (ок­си­ды ме­тал­лов), осо­бен­но лег­ко со ще­лоч­ны­ми и щё­лоч­но­зе­мель­ны­ми (в осн. пе­рок­си­ды и над­пе­рок­си­ды ме­тал­лов, напр. пе­рок­сид ба­рия BaO2, над­пе­рок­сид ка­лия KO2). С азо­том К. взаи­мо­дей­ст­ву­ет при темп-ре вы­ше 1200 °C или при воз­дей­ст­вии элек­трич. раз­ря­да (об­ра­зу­ет­ся мо­но­ок­сид азо­та NO). Со­еди­не­ния К. с ксе­но­ном, крип­то­ном, га­ло­ге­на­ми, зо­ло­том и пла­ти­ной по­лу­ча­ют кос­вен­ным пу­тём. К. не об­ра­зу­ет хи­мич. со­еди­не­ний с ге­ли­ем, не­оном и ар­го­ном. Жид­кий К. так­же яв­ля­ет­ся силь­ным окис­ли­те­лем: про­пи­тан­ная им ва­та при под­жи­га­нии мгно­вен­но сго­ра­ет, не­ко­то­рые ле­ту­чие ор­га­нич. ве­ще­ст­ва спо­соб­ны са­мо­вос­пла­ме­нять­ся, ко­гда на­хо­дят­ся на рас­стоя­нии не­сколь­ких мет­ров от от­кры­то­го со­су­да с жид­ким ки­сло­ро­дом.

К. об­ра­зу­ет три ион­ные фор­мы, ка­ж­дая из ко­то­рых оп­ре­де­ля­ет свой­ст­ва отд. клас­са хи­мич. со­еди­не­ний: $ce{O2^-}$су­пер­ок­си­дов (фор­маль­ная сте­пень окис­ле­ния ато­ма К. –0,5),  $ce{O2^2^-}$пе­рок­сид­ных со­еди­не­ний (сте­пень окис­ле­ния ато­ма К. –1, напр. во­до­ро­да пе­рок­сид Н2О2), О2– – ок­си­дов (сте­пень окис­ле­ния ато­ма К. –2). По­ло­жи­тель­ные сте­пе­ни окис­ле­ния 1 и 2 К. про­яв­ля­ет во фто­ри­дах O2F2 и ОF2 со­от­вет­ст­вен­но. Фто­ри­ды К. не­ус­той­чи­вы, яв­ля­ют­ся силь­ны­ми окис­ли­те­ля­ми и фто­ри­рую­щи­ми реа­ген­та­ми.

Мо­ле­ку­ляр­ный К. яв­ля­ет­ся сла­бым ли­ган­дом и при­сое­ди­ня­ет­ся к не­ко­то­рым ком­плек­сам Fe, Co, Mn, Cu. Сре­ди та­ких ком­плек­сов наи­бо­лее ва­жен же­ле­зо­пор­фи­рин, вхо­дя­щий в со­став ге­мо­гло­би­на – бел­ка, ко­то­рый осу­ще­ст­в­ля­ет пе­ре­нос К. в ор­га­низ­ме те­п­ло­кров­ных.

Оцените статью
Кислород
Добавить комментарий